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Abstract:- In this paper, dead-beat unknown input observers (UIOs) for two-dimensional (2D) state-space
models are investigated. Dead-beat UIOs are observers which produce an exact estimate of the original
system state trajectory, after a finite number of evolution steps, independently of the system and observer
initial conditions and of the inputs and the unknown disturbances that affect the system functioning.
Necessary and sufficient conditions for the existence of dead-beat UIOs are provided. Comparisons with
Luenberger-type UIOs are also carried on, and the extension of the paper results to the case of asymptotic
UIOs with a given rate of convergence is finally discussed.

Key-Words:- Two-dimensional state-space models, dead-beat unknown input observers, Luenberger-type
observers, asymptotic observers.

1. Introduction
The interest in two-dimensional (2D) systems goes back

to the early seventies [8], and was initially motivated

by the relevance of these models in seismology appli-

cations, X-ray image enhancement, image deblurring,

digital picture processing, etc. More recently, many

other interesting contexts where 2D systems prove to

be the appropriate setting for carrying on a thorough

and successful analysis have been enlightened.

Even though estimation problems for two-dimen-

sional systems have been frequently afforded in very

specific contexts, often related to image processing ap-

plications, the theoretical contributions on this subject

are quite few [1, 2]. In particular, estimation problems

for 2D systems affected by disturbances have not re-

ceived sufficient attention, even though they represent

a much more realistic and interesting problem to afford

with respect to the standard “undisturbed” situation.

Indeed, in the 1D context, there has been a long stream

of research on this subject, which originated in the sev-

enties and flourished in the eighties [11, 13], but still

represents a very lively topic of research, mostly due

to the extreme relevance of unknown input observers

(UIOs) in contexts like fault detection, motion systems,

etc. [7, 10].

In this paper dead-beat unknown input observers for

2D quarter-plane causal discrete state-space models, de-

scribed by a Fornasini-Marchesini model [8], are intro-

duced, and necessary and sufficient conditions for their

existence are provided. As for standard dead-beat ob-

servers [1], it turns out that the problem can be effi-

ciently solved by means of a polynomial approach, as

the main focus turns out to be on the possible UIO

transfer matrices, while the state-space models that re-

alize them play no significant role, provided that they

are finite memory.

The paper is organized as follows. In section 2, 2D

systems and dead-beat unknown input observers are in-

troduced, and necessary and sufficient conditions for the

existence of a dead-beat UIO are given. Comparisons

with Luenberger-type UIOs are carried on in section 3.

Finally, in section 4, the problem extension to the case

of asymptotic UIOs with rate of convergence greater

than an assigned positive real number ρ is addressed.

2. 2D systems and observers
Consider the 2D (quarter plane causal) discrete state-

space model described by the following equations [8]:

x(h+ 1, k + 1) = A1x(h, k + 1) +A2x(h+ 1, k) (1)

+ B1u(h, k + 1) +B2u(h+ 1, k)

+ D1d(h, k + 1) +D2d(h+ 1, k),

y(h, k) = Cx(h, k) + Ju(h, k) +Kd(h, k), (2)

where the state, input, disturbance and output se-

quences x(·, ·), u(·, ·), d(·, ·) and y(·, ·) are defined on

the discrete plane Z × Z and take values in R
x
, R

u
,

R
d

and R
y
, respectively. A1, A2, B1, B2, D1, D2, C, J

and K are real matrices of suitable dimensions. A

2D system of this type will be denoted by Σ =

(A1, A2, B1, B2, D1, D2, C, J,K). The initial conditions

are assigned by specifying the local state values x(i,−i),
i ∈ Z, namely by assigning the system initial global

state X0 := {x(i,−i) : i ∈ Z}. The input to out-



put transfer matrix is Wu(z1, z2) = C(Ix − A1z1 −
A2z2)

−1(B1z1 + B2z2) + J, meanwhile the disturbance

to output transfer matrix isWd(z1, z2) = C(Ix−A1z1−
A2z2)

−1(D1z1 +D2z2)+K. A 2D observer [1, 2] for the

2D system (1)-(2) is a 2D system of the form

z(h+ 1, k + 1) = F1z(h, k + 1) + F2z(h+ 1, k) (3)

+ G1

[
u(h, k + 1)
y(h, k + 1)

]
+G2

[
u(h+ 1, k)
y(h+ 1, k)

]

x̂(h, k) = Hz(h, k) +R
[
u(h, k)
y(h, k)

]
, (4)

having u(·, ·) and y(·, ·) as its inputs and the esti-

mate x̂(·, ·) of x(·, ·) as its output. We denote by

Σ̂ = (F1, F2, G1, G2, H,R) the observer, by Ŵ (z1, z2)

the observer transfer matrix, namely

Ŵ (z1, z2)=[ Ŵu(z1, z2) Ŵy(z1, z2) ]

=H(Iz − F1z1 − F2z2)
−1(G1z1 +G2z2) +R, (5)

z being the observer dimension, and by Z0 the observer

initial global state. The sizes of Ŵ (z1, z2), Ŵu(z1, z2)

and Ŵy(z1, z2) are x×(u+y), x×u and x×y, respectively.

Definition 1. A 2D observer (3)-(4) is said to be a

dead-beat unknown input observer (UIO) if

• it is finite-memory ;

• the estimate error e(h, k):=x(h, k)− x̂(h, k) goes to

zero, within a finite number of steps, i.e. e(h, k) =

0 for h + k > N, ∃ N , for every choice of the ini-

tial global states X0 and Z0 and for every input

sequence u(h, k), h, k ∈ Z, h+ k ≥ 0 and every un-

known input sequence d(h, k), h, k ∈ Z, h+ k ≥ 0.

Remark: A 2D system is said to be finite memory if

its free state evolution goes to zero within a finite num-

ber of steps, for every choice of its initial global state. It

is well-known that finite memory systems realize finite

impulse response (FIR) 2D filters, namely filters with a

polynomial transfer matrix. Conversely, every FIR fil-

ter can be realized via a finite memory 2D system [3, 8].

In order to obtain necessary and sufficient conditions

for the existence of a dead-beat unknown input ob-

server, we first introduce the (x + y) × x PBH (observ-

ability) matrix [1, 2]

O(z1, z2) :=
[
Ix −A1z1 −A2z2

C

]
. (6)

We let V(O) denote the variety of its maximal (i.e.,

xth) order minors. Corresponding to the PBH matrix,

we introduce the Bézout equation in the unknown poly-

nomial matrices Q(z1, z2) and P (z1, z2), namely

Ix = [Q(z1, z2) P (z1, z2) ]
[
Ix −A1z1 −A2z2

C

]
. (7)

The Bézout equation (7) is solvable if and only the ob-

servability matrix is right zero prime or, equivalently

V(O) is empty. When so, a complete parametrization

of its solutions is available. LetM−1(z1, z2)N(z1, z2) be

a left coprime matrix fraction description (MFD) [12]

of the state to output transfer matrix C(Ix − A1z1 −
A2z2)

−1, so that

M−1(z1, z2)N(z1, z2) = C(Ix −A1z1 −A2z2)
−1. (8)

This amounts to saying that the (left zero prime)

2D polynomial matrix [N(z1, z2) −M(z1, z2) ] ∈
R[z1, z2]

y×(x+y) represents a minimal left annihilator of

the PBH observability matrix. If [ Q̄(z1, z2) P̄ (z1, z2) ]

is any solution of the Bézout equation (7), the set of all

solutions of (7) can be parametrized as follows

[Q(z1, z2) P (z1, z2) ]= [ Q̄(z1, z2) P̄ (z1, z2) ] (9)

+T (z1, z2) [N(z1, z2) −M(z1, z2) ] ,

as T varies in R[z1, z2]
x×y.

We are in a position, now, to provide a character-

ization of 2D systems endowed with dead-beat UIOs.

The characterization we will obtain will explicitly de-

termine, as in [1], only the (polynomial) UIO transfer

matrix Ŵ (z1, z2) and not the observer state equations.

However, since every FIR 2D filter may be realized by

means of a finite memory 2D system, as previously re-

marked, this result will create no problem at all. In

other words, all the results of the paper will work in-

dependently of the choice of the specific realization of

Ŵ (z1, z2), provided that it is finite memory. However,

since every 2D polynomial transfer matrix admits an in-

finite number of finite memory realizations, the problem

solution will never be unique.

Proposition 1. [4] Given a 2D state-space model

(1)-(2), consider the disturbance to output system ma-

trix

Sd,y(z1, z2) :=
[
Ix −A1z1 −A2z2 D1z1 +D2z2

C −K
]
.

A necessary and sufficient condition for the existence of

a dead-beat UIO is that there exists a polynomial pair

(Q(z1, z2), P (z1, z2)) satisfying

[ Ix 0 ] = [Q(z1, z2) P (z1, z2) ]Sd,y(z1, z2). (10)

Remark: As it comes out of the previous proof [4],

once we obtain a pair (Q(z1, z2), P (z1, z2)) satisfying

(10), the corresponding dead-beat UIO exhibits the fol-

lowing polynomial transfer matrix

Ŵ (z1, z2) = [ Ŵu(z1, z2) Ŵy(z1, z2) ] (11)

= [Q(z1, z2)(B1z1 +B2z2) − P (z1, z2)J P (z1, z2) ]

and, conversely, any dead-beat UIO necessarily exhibits

a transfer matrix Ŵ (z1, z2) that can be expressed as in

(11), for some pair (Q,P ) which solves (10).



In the following, we steadily assume that O(z1, z2)

is right zero prime and devote our attention to deter-

mining necessary and sufficient conditions for the set

S := {[Q(z1, z2) P (z1, z2) ] satisfying (10)}, to be not

empty.

Theorem 2. [4] Set d̄ := rank
([
D1z1 +D2z2

−K
])

and let [Hd(z1, z2) Hk(z1, z2) ] be an MLA of[
D1z1 +D2z2

−K
]
. The following conditions are equiv-

alent:

i) the set S is not empty, namely there exists a dead-

beat UIO;

ii) Γ1(z1, z2) := Hd(z1, z2)(Ix − A1z1 − A2z2) +

Hk(z1, z2)C ∈ R[z1, z2]
(x+y−d̄)×x is a right zero

prime matrix.

Remarks 1) If Γ1(z1, z2) is right zero prime, and

hence the corresponding Bézout equation

Ix = X(z1, z2)Γ1(z1, z2) (12)

is solvable, then corresponding to any solution X, we
get [4] both a pair (Q,P ) ∈ S given by

[Q(z1, z2)|P (z1, z2)]=X(z1, z2)[Hd(z1, z2)|Hk(z1, z2)]
(13)

and the corresponding transfer matrix of a dead-beat

UIO

Ŵ (z1, z2) = X(z1, z2) [Hd(z1, z2) Hk(z1, z2) ](14)

·
[
B1z1 +B2z2 0

−J Iy

]
.

2) Condition v) in Theorem 2 shows that a necessary

condition for the existence of an UIO is that y ≥ d̄. This

result is consistent with the analogous result obtained

for 1D state-space models [5, 6, 14].

We may now synthesize the previous results in the

following algorithm for testing the existence and possi-

bly constructing a dead-beat UIO:

1) Check whether Γ1(z1, z2) is right zero prime. If not,

no dead-beat UIO can be obtained for the given

system, otherwise go to the following step.

2) Find a solution X(z1, z2) of the Bézout equation

(12).

3) A pair (Q,P ) belonging to S is given in (13), and

the corresponding dead-beat UIO transfer matrix

Ŵ (z1, z2) is given in (14).

4) Any finite memory realization of Ŵ (z1, z2), ob-

tained, for instance, via the algorithm described

in [8], provides the desired observer.

Example 1 Consider the 2D system (1)-(2) with

A1 =
[

1 0
−1 0

]
, A2 =

[
0 −1
0 1

]
, B1 =

[
1
0

]
, B2 =

[
0
1

]
,

D1 = D2 =
[

1
−1

]
, C = [ 0 1 ] , J = K = [ 0 ] .

We obtain [Hd(z1, z2) Hk(z1, z2) ] =
[

1 1
0 0

0
1

]

and Γ1(z1, z2) =
[

1 1
0 1

]
, which is unimodular (and

therefore right zero prime). The only solution of (12) is

X(z1, z2) = Γ−1
1 (z1, z2) =

[
1 −1
0 1

]
, which leads to

Q(z1, z2) =
[

1 1
0 0

]
, P (z1, z2) =

[−1
1

]
,

Ŵ (z1, z2) =
[
z1 + z2 −1

0 1

]
. (15)

Among the infinitely many finite memory realizations

of (15), a minimal one is

z(h+ 1, k + 1)=[ 1 0 ]
[
u(h, k + 1)
y(h, k + 1)

]

+ [ 1 0 ]
[
u(h+ 1, k)
y(h+ 1, k)

]

x̂(h, k)=
[

1
0

]
z(h, k) +

[
0 −1
0 1

] [
u(h, k)
y(h, k)

]
.

Notice that this structure is the same one of a reduced

order UIO, since from the structure of C we have that

x2 = y needs not to be estimated, so that the previous

output equation can be rewritten as

x̂(h, k) =
[
x̂1(h, k)
x̂2(h, k)

]
=

[
z(h, k) − y(h, k)

y(h, k)

]
.

3. Luenberger observers
A 2D Luenberger-type UIO is described by the following

equations

x̂(h+ 1, k + 1) = (A1 + L1C)x̂(h, k + 1) (16)

+ (A2 + L2C)x̂(h+ 1, k)

+ [B1 + L1J −L1 ]
[
u(h, k + 1)
y(h, k + 1)

]

+ [B2 + L2J −L2 ]
[
u(h+ 1, k)
y(h+ 1, k)

]
,

where the symbols x̂, u and y take the usual meaning

and all matrices involved have real entries. Notice that

A1, A2, B1, B2, C and J are the same matrices appear-

ing in the original system description (1)-(2). In other

words, a Luenberger observer is a special case of ob-

server (3)-(4) with these additional constraints:

• its dimension coincides with the system dimension,

namely x̂ = x;

• the observer output coincides with the observer

state;

• the observer matrices are related to the system ma-

trices by means of the following conditions:

Fi = Ai + LiC, Gi=[B1 + LiJ −Li ] ,i = 1, 2,

H = Ix, R = 0.

Such an observer is said to be a dead-beat UIO if it sat-

isfies both conditions of Definition 1. The problem we



now address is the following one: if a given 2D system

admits a dead-beat UIO, and hence satisfies any of the

equivalent conditions of Theorem 2, when among them

there exists at least one of Luenberger-type?

As any dead-beat UIO must be a finite memory sys-

tem, the polynomial matrix Ix − (A1 +L1C)z1 − (A2 +

L2C)z2 must be unimodular. Notice that the exis-

tence of a matrix pair (L1, L2) that makes Ix − (A1 +

L1C)z1 − (A2 + L2C)z2 unimodular (a necessary and

sufficient condition for the existence of a Luenberger-

type dead-beat observer, in case no unknown input

affects the system [1]) is a more restrictive condition

with respect to the right primeness of O(z1, z2). In-

deed, it clearly corresponds to the existence of a so-

lution (Q,P ) of the Bézout equation (7) of the form

[Q(z1, z2) P (z1, z2) ] = [Ix − (A1 + L1C)z1 − (A2 +

L2C)z2]
−1 · [ Ix −L1z1 − L2z2 ] .

So, a necessary condition for the existence of

Luenberger-type dead-beat UIO is that there exists a

pair of matrices (L1, L2) such that Ix − (A1 +L1C)z1 −
(A2 + L2C)z2 is unimodular. Once the unimodularity

condition is satisfied, however, the matrix pair (Q,P )

thus obtained must satisfy the orthogonality condition

[Q(z1, z2) P (z1, z2) ]
[
D1z1 +D2z2

−K
]

= 0, (17)

namely [ Ix −L1z1 − L2z2 ]
[
D1z1 +D2z2

−K
]

= 0. So,

we have shown the following result.

Proposition 3. A necessary and sufficient condition

for the existence of a Luenberger-type dead-beat UIO

is that there exists a pair (L1, L2) ∈ R
x×y × R

x×y
s.t.

Di = −LiK, i = 1, 2, (18)

Ix − (A1 + L1C)z1 − (A2 + L2C)z2 is unimodular. (19)

It is immediately apparent that if any of the equiv-

alent conditions of Theorem 2 holds, in general such

a matrix pair (L1, L2) does not exists. For instance,

if K = 0 condition (18) cannot be satisfied unless the

system is unaffected by disturbances (D1 = D2 = 0).

Example 1 (continued) We have already proved

the existence of a dead-beat UIO. A Luenberger-type

dead-beat observer exists (corresponding to L1 = L2 =[
1
−1

]
the polynomial matrix I2 − (A1 + L1C)z1 −

(A2 + L2C)z2 is unimodular). However, as K = 0,

no Luenberger-type dead-beat UIO exists.

As a general statement, the existence of a dead-beat

Luenberger-type UIO is a rare occurrence. However,

when K is of full row rank and a dead-beat UIO exists,

then a dead-beat Luenberger-type UIO can be found.

Proposition 4. Suppose that system (1)-(2) admits

a dead-beat UIO, namely any of the equivalent condi-

tions of Theorem 2 holds, and K is of full row rank.

Then the dead-beat UIO transfer matrix Ŵ (z1, z2) is

uniquely determined, and it can be implemented by

means of a Luenberger-type observer (16).

Proof If K−1
r denotes a right

inverse of K, then y = rank
([

(D1z1 +D2z2)K
−1
r

−Iy

])
≤

rank
([
D1z1 +D2z2

−K
])

= d̄. On the other hand, when

a dead-beat UIO exists, y ≥ d̄ and hence it must be

y = d̄. So [4], the dead-beat UIO transfer matrix

is uniquely determined and Γ1 is square unimodular.

Also, Hd(z1, z2) is a square matrix. We now prove that

it is unimodular, too. From

0 = [Hd(z1, z2) Hk(z1, z2) ]
[
D1z1 +D2z2

−K
]

one easily gets Hk(z1, z2) = Hd(z1, z2)(D1z1 +

D2z2)K
−1
r . So, [Hd(z1, z2) | Hk(z1, z2)] = Hd(z1, z2)

·[Ix | (D1z1 + D2z2)K
−1
r ], and, since it is left factor

prime, Hd(z1, z2) must be unimodular. Also, condition

0 = [ Ix (D1z1 +D2z2)K
−1
r ]

[
D1z1 +D2z2

−K
]

ensures

D1z1 +D2z2 = (D1z1 +D2z2)K
−1
r K, i.e.

Di = DiK
−1
r K, i = 1, 2. (20)

To prove our claim, it suffices to verifying that by as-

suming Li := −DiK
−1
r , i = 1, 2, both (18) and (19)

are satisfied. By postmultiplying Li by K and by us-

ing (20), condition (18) is immediately obtained for

i = 1, 2. On the other hand Ix − (A1 + L1C)z1 − (A2 +

L2C)z2 = Ix−(A1−D1K
−1
r C)z1−(A2−D2K

−1
r C)z2 =

(Ix − A1z1 − A2z2) + (D1z1 + D2z2)K
−1
r C =

H−1
d (z1, z2)[Hd(z1, z2)(Ix −A1z1 −A2z2) +Hk(z1, z2)C]

= H−1
d (z1, z2)Γ1(z1, z2). So, by the unimodularity ofHd

and Γ1, (19) holds.

4. Problem extensions
The dead-beat UIO design problem discussed in this pa-

per can be easily generalized to the case of asymptotic

observers with rate of convergence greater than an as-

signed positive real value ρ ≥ 1 (see [2] for the standard

asymptotic observers, in case no disturbances affect the

system dynamics). Indeed, we may look for an UIO

described as in (3)-(4) and satisfying the following con-

ditions [2]:

• the variety of the characteristic polynomial

∆F1,F2(z1, z2) := det(Iz − F1z1 − F2z2) does not

intersect the closed polydisc of radius ρ ≥ 1:

Pρ := {(z1, z2) ∈ C × C : |z1| ≤ ρ and |z2| ≤ ρ};

• the estimate error e(h, k) = x(h, k)−x̂(h, k) asymp-

totically goes to zero, with rate of convergence

greater than ρ−1, i.e. there exists ρ̄ > ρ such that

limh+k→+∞ ρ̄
h+k · e(h, k) = 0, for every choice of

the initial global states X0 and Z0 (provided that

they are bounded) and for every input sequence

u(h, k), h, k ∈ Z, h + k ≥ 0 and every unknown

input sequence d(h, k), h, k ∈ Z, h+ k ≥ 0.



Remark: The first condition ensures that an asymp-

totic UIO is, in particular, asymptotically stable. In-

deed, it is well known [9] that a 2D system is asymptot-

ically stable if and only if its characteristic polynomial

is devoid of zeros in P1. Moreover, if it is devoid of zeros

in Pρ, with ρ ≥ 1, we say that the system is asymptot-

ically stable with stability degree ρ.

In order to solve this general problem we need to in-

troduce some suitable algebra. Indeed, introduce [2] the

set Hρ := {f(z1, z2) ∈ R(z1, z2) : f is analytic in Pρ}.
Of course, R[z1, z2] = limρ→+∞ Hρ. For every ρ > 0

and even for ρ → +∞, Hρ is a (unique factoriza-

tion) domain. The units in Hρ are those elements

f(z1, z2) ∈ Hρ whose inverses f−1(z1, z2) are, in turn,

analytic in Pρ. If we denote by V(f) the variety of f ,

namely the set of zeros of f , then f ∈ Hρ is a unit if

and only if V(f) ∩ Pρ = ∅. Given f1, f2, . . . , fn in Hρ,

the following facts are equivalent:

• the ideal generated by f1, f2, . . . , fn is Hρ;

• there exist x1, x2, . . . , xn ∈ Hρ such that∑n

i=1
xi(z1, z2)fi(z1, z2) = 1;

• ∩n
i=1V(fi) ∩ Pρ = ∅.

Also, if we consider the set of matrices with entries

in Hρ, it can be proved (by resorting to the previous

equivalent facts or by suitably adjusting the same argu-

ments provided in [2]) that given M(z1, z2) ∈ Hp×q
ρ of

full column rank the following facts are equivalent ones:

• M(z1, z2) is right zero prime in Hρ, by this meaning

that rank M(z1, z2) = q for any (z1, z2) ∈ Pρ.

• the ideal generated by its maximal order minors is

Hρ;

• the variety of the maximal order minors of M ,

V(M), does not intersect Pρ;

• the Bézout equation X(z1, z2)M(z1, z2) = Iq is

solvable in Hρ.

So, by simply moving from R[z1, z2] to Hρ, one may

adapt all previous results to this case. All the Bézout

equations involved in the dead-beat problem solution

may be considered in the context of matrices with en-

tries in Hρ. This way, we easily obtain necessary and

sufficient conditions for the existence of an asymptotic

UIO with rate of convergence greater than ρ. In-

deed, such an UIO exists if and only if there exists a

pair (Q(z1, z2), P (z1, z2)) with entries in Hρ satisfying

(10) or, equivalently, if and only if Γ1(z1, z2) is right

zero prime in Hρ. If so, corresponding to any solu-

tion X (with entries in Hρ) of the Bézout equation

Ix = X(z1, z2)Γ1(z1, z2), we obtain the transfer matrix

Ŵ (z1, z2), described in (14), of a possible asymptotic

UIO. As proved in [3], Ŵ (z1, z2) can always be realized

by means of an asymptotically stable 2D state-space

model with stability degree ρ. Any such system pro-

vides the desired asymptotic UIO (with rate of conver-

gence greater than ρ).

Example 2 Consider the 2D system (1)-(2) with

A1 =
1

2

[
1 0
0 0

]
, A2 =

1

2

[
0 0
0 1

]
, B1 = B2 =

[
0
0

]
,

D1 = −D2 =
[

1
−1

]
, C = [ 1 1 ] , J = [ 0 ] , K = [ 8 ] .

The corresponding PBH matrix (6) is of full column

rank in any point except for (2, 2) �∈ P1. Indeed,

V(O) = {(2, 2)}. One finds

[Hd(z1, z2) Hk(z1, z2) ] =
[

8 0
0 8

z1 − z2
z2 − z1

]
,

Γ1(z1, z2) =
[

8 − 3z1 − z2 z1 − z2
z2 − z1 8 − z1 − 3z2

]
.

As det(Γ1) = 4(4 − z1 − z2)2, Γ1 is unimodular in H1.
So, an asymptotic UIO with rate of convergence greater
than 1 (indeed, greater than any real number ρ satisfy-
ing 1 ≤ ρ < 2) exists and its transfer matrix is uniquely
determined. In fact

X(z1, z2) =
1

4(4 − z1 − z2)2

[
8 − z1 − 3z2 z2 − z1

z1 − z2 8 − 3z1 − z2

]
,

and, correspondingly, we get the UIO transfer matrix

Ŵ (z1, z2) =
(z1 − z2)

(4 − z1 − z2)2
[

0 2 − z2
0 z1 − 2

]
.

We aim at showing that such an asymptotic UIO trans-

fer matrix may be realized by means of an asymp-

totically stable Luenberger-type UIO. To this end one

may simply observe that K is trivially of full row rank.

Therefore Ŵ is uniquely determined and it suffices to

assume L1 = −D1K
−1 and L2 = −D2K

−1, namely

L1 = 1
8

[−1
1

]
= −L2. A minimal asymptotically

stable realization of Ŵ (z1, z2) that corresponds to a

Luenberger-type UIO (with L1 and L2 previously given)

is

F1=
1

8

[
3 −1
1 1

]
, F2 =

1

8

[
1 1
−1 3

]
, G1 =

1

8

[
0 1
0 −1

]
,

G2=
1

8

[
0 −1
0 1

]
, H =

[
1 0
0 1

]
, R =

[
0 0
0 0

]

To conclude, we aim at providing an example which

clearly shows that situations arise when all dead-beat

UIO transfer matrices correspond to state-space real-

izations whose dimension is greater than the original

system dimension. This, of course, prevents the exis-

tence of a Luenberger-type UIO.

Example 3 Consider the 2D system (1)-(2) with

A1 =




0 0 0 0
−1 0 0 0
0 −1 0 0
0 0 −1 0


 , A2 =




0 −1 0 0
0 0 −1 0
0 0 0 0
0 0 0 0


 ,

D2 =




0
0
1
0


 , C =

[
0 0 0 1
0 0 0 1

]
, K =

[
1
0

]
,



while B1, B2, D1 and J are zero matrices. One gets

[Hd(z1, z2) Hk(z1, z2) ] =




1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0

0 0
0 0
z2 0
0 0
0 1




and hence

Γ1(z1, z2) =




1 z2 0 0
z1 1 z2 0
0 z1 1 z2
0 0 z1 1
0 0 0 1


 .

It is a matter of computation to determine the possible

polynomial matrices X which solve the Bézout equation

X(z1, z2)Γ1(z1, z2) = Ix.

Correspondingly, we get

Q(z1, z2) = X(z1, z2)Hd(z1, z2)




1 + z1z2 + 2z2
1z2

2 −z2(1 + 2z1z2) z2
2(1 − 2z1z2) 4z3

2

−z1(1 + 2z1z2) 1 + 2z1z2 −z2(1 − 2z1z2) −4z2
2

z2
1(1 + 2z1z2) −z1(1 + 2z1z2) 1 + z1z2 − 2z2

1z2
2 4z1z2

2
0 0 0 0




+



p1(z1, z2)
p2(z1, z2)
p3(z1, z2)
p4(z1, z2)


 [−z31 z21 −z1(1 − z1z2) 1 − 2z1z2 ]

P (z1, z2) = X(z1, z2)Hk(z1, z2)

=




z32(1 − 2z1z2) −z32(5 − 2z1z2)
−z22(1 − 2z1z2) z22(5 − 2z1z2)

z2(1 + z1z2 − 2z21z
2
2) −z2(1 + 5z1z2 − 2z21z

2
2)

0 1




+



p1(z1, z2)
p2(z1, z2)
p3(z1, z2)
p4(z1, z2)


 [−z1z2(1 − z1z2) −1 + 3z1z2 − z21z22 ] ,

with pi(z1, z2) arbitrary in R[z1, z2]. Moreover,

Ŵ (z1, z2) = [ 0 P (z1, z2) ] . As both entries in the first

row of P have degree not smaller than 5, no state-space

realization of dimension smaller than 5 can be found.
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