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Abstract: The conditions required by the majority of signal processing algorithms can be realy satisfied in  the 
design of parallel processors in VLSI technology. In this paper, the discrete state space recursive filters are 
implemented in the form of array processors. The state space description permits the straightforward 
application of systolic architectures of the Kung-type to realize recursive filters of both 1D and 2D types. We 
show that the recursivity inherent to the filtering algorithm introduces a latency proportional to the filter order 
which has a direct effect on the computation throughput of these structures. Morover, we show that the use of 
CTP decomposition technique together with the cylindrical-type structures reduces significantly this latency 
and improves the computation throughput of these arrays. The processing cells of the systolic array are 
designed via Switched-Capacitor techniques. 
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1 Introduction 
The concept of systolic architecture has been 
introduced by H. T. Kung in his paper "Why 
systolic architectures?" [1] as a general 
methodology for mapping high-level 
computations into hardware structures. 
According to Kung, in a systolic system, data 
flows from the computing machine memory in a 
rhythmic fashion, passing through many 
processing elements before it returns to memory, 
much as blood circulates to and from the heart. 
Moreover, to implement a variety of 
computations, data flow in a systolic system may 
be done at multiple speeds in multiple directions 
(both inputs and partial results flow, contrarily to 
classical pipelined systems, where only results 
flow in the system). 

Consequently, a systolic system can be easily 
implemented, because of its regularity and can be 
easily reconfigured (in order to meet the various 
outside constraints) because of its modularity. 
The concept of systolic architecture was 
developed for the first time during the years 1979 
and 1980 at the Carnegie-Mellon-University [1], 
and many versions of systolic processors have 
been designed and constructed by several 
industrials and researchers [1-12]. 

In a previous work [7, 8], we have presented a 
methodology for the implementation of state 
space recursive filters on systolic architectures of  
the Kung-type [1] and the cylindrical-type [3]. In  
this paper, we present a review of the application 
of systolic system concept (of both the Kung-
type and the cylindrical-one) to the realization of  
discrete recursive filters described in the state 
space by a simple matrix equation. We will show 
that the recursivity inherent to the filtering 
algorithm introduces a latency proportional to the 
filter order which has a direct effect on the 
computation throughput of these architectures. 
Furthermore, the use of  CTP decomposition 
technique [7, 8] together with the cylindrical 
structures can considerably reduce the latency of 
the array, thus improving its computation 
throughput rate. 

We will start our study by introducing the 
principle of the Kung-type systolic 
implementation of 1D discrete recursive filters. 
Systolic structures of the cylindrical-type 
together with the CTP technique are considered 
in section 3 for the implementation of discrete 
recursive filters. In the last section, we propose 
the design of processing elements,  of  the 



  

different systolic architectures presented in this 
paper, by using switched-capacitor architectures. 
 
 
2 Systolic structure for discrete 
recursive filters 
A  discrete recursive filter can be described in the 
state space domain by the following two 
equations :  
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where: A, B, C, and D are the state matrices of 
the filter, x(n) RN∈  the state signal vector of 
dimension (N 1)× , e(n) R∈  the input signal and 
y(n) R∈  the output signal. 

The internal state space description of the 
filter permits to represent the filtering algorithm 
as a simple product of a square matrix with a 
column vector. 
The systolic array implementation of the discrete 
filter, represented in figure 1 uses the  the global 
state matrix elements to load the PE's memories 
of the systolic array. 

The computation throughput of the systolic 
architecture of figure 1 is estimated to  

 1
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where tm  and ta  are respectively the times 
required to perform a multiplication and an 
addition. 

In the next section, we will show that the use 
of CTP techique together wih systolic 
architectures of the cylindrical-type [7, 8] permits 
to improve the computation throughput of these 
structures. 
 
 
3 Fast systolic architectures with 
dynamic reconfiguration for discrete 
recursive filters 
Consider an ( )N −1 th  order 1D discrete recursive 
filter ( )N pq=  described by equation (2). Let: 
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Equation (2) is then equivalent to the following 
linear relation:  

v = Hu                                  (3) 
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Fig. 1 Systolic implementation of a third order 

discrete recursive filter. 
 
 

In this section, we will apply the CTP 
decomposition technique [7] to our recursive 
filtering algorithm (3) in order to obtain a faster 
form. 
Consider the example of a third order recursive 
filter described by the state space equation (3) 
with N = =4 2 2× , p q= = 2, and: 
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A single term CTP decomposition of H can be 
found by using methods of [8]. This 
decomposition is defined by the following ( )2 2×  
matrices L and R: 
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such as H is the tensor product of L and R. 
Mapping the vector  u on a ( )p q×  matrix U by 
using segments of u as columns of U, we get: 
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The matrix V is obtained by the same procedure 
from the vector v. 
The CTP expansion associated with equation (3) 
takes then the following fast form: 

V LUR=                                (4) 
The cylindrical arrays of [3] are compatible with 
the CTP decomposition. Fig. 2 represents a 
cylindrical array performing the ( )2 2×  matrix-
matrix product LU. The triangular figures denote 
local  memory wherein elements of the matrix L 
are stored as indicated in Fig. 2a. We transmit the 
columns of U down the longitudinal paths. At 
each node, the longitudinal input is multiplied by 
the scalar stored in its internal register. The 
resulted product is added to the input arriving 
along the transversal path. This sum is 
retransmitted transversally. The longitudinal 
sequence is retransmitted without alteration. Fig. 
3a depicts the calculation at the start of the 
second step. Fig. 2b shows the computation at the 
second step. 

We assume our array operates synchronously. 
The sequences available on the transversal paths 
at the bottom of the array are the rows of  LU. 
We can verify that the top row nodes complete 
their computations at the same time with the 
completion of computation of the first row of LU 
by  the bottom row nodes. At the pth  step (here 
p q= = 2 ), the array is switched as indicated in 
Fig. 2b. The row sequences of (LU) are fed back 
on the transversal paths of  the input nodes. 

 
The R row sequences follow the U row 

sequences on the longitudinal paths. When the 
new computation starts down the array, the node 
operation changes to another form. 
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Fig. 2a Step 1. 
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Fig. 2b Step 2.  
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Fig. 2c Step 3.  
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Fig. 2d Step 4. 

 
Fig. 2 Operating principle of the fast  

cylindrical array with dynamic 
 reconfiguration of a third order filter. 

 
This time, the node retransmits all input 
sequences unchanged while iteratively 
calculating the dot product of these sequences. 
This product is stored at the node memory as 
indicated in Fig. 2. The switch in function of  the 
nodes will propagate down the array  together 
with the first arrival of LU and R data. Fig. 2c 
shows the computational wave front reaching the 
second row. The components of V = LUR  are 
stored in the memories at the ( )p q+ th  step of  this 
sequence. The indices i, j on the nodes of Fig. 2d 
represent the location of Vij . Therefore, using the 



  

same cylindrical arrays, the matrix-matrix 
operation V = LUR  can be computed in 
O p q( )+ time units while the matrix-vector 
operation v=H u takes O pq( ) time. We can clearly 
see the superiority in computational speed of  the 
first linear operation over the last one. This  
implementation technique of 1D IIR filters could 
achieve a throughput rate of 1 ( )(p q t tm a+ + )  
much higher than the throughput rate of 
 + )1 2( )(pq t tm a  of the Kung-type systolic array 
of Fig. 1. 

At the last step, a separate collection network 
may be used to pipe out the Vij  results. Thus, the 
states x n+1)i( ,  1≤ ≤i N , of  the filter  together  
with the next input sample e(n) will be used as 
direct entries of the array for  the next wave 
front. 
In the last discussion, the ability to dynamically 
switch and reconfigurate the array implies added 
hardware complexity. These hardware 
complexity  need careful evaluation in any 
specific design process. 
 
 
4 Design of processing elements by 
using switched-capacitor architectures 
In this paper, we propose the use of switched-
capacitor stuctures [13-17] to build the PEs of the 
systolic architectures. These last structures are 
mainly based on the switched-capacitor element 
of figure 3. This basic element can be used to 
construct adders, multipliers, and delay elements 
[13-17] which are the basic blocks of all types of 
processing elements of a systolic array. 

An interesting MOS circuit [13] which 
performs a function similar to that of a resistor 
takes advantage of the components and precision 
available in MOS technologies (Fig. 3a). 

Each cylindrical-type PE of the systolic array 
of figure 2 is built from a Switched-Capacitor 
Multiplier/Adder, a one time-unit delay, and a 
memorization component [13-17]. The Switched-
Capacitor Multiplier/Adder allows the 
computation y = y + a xs e ij e , the memorization 
component is used to load the aij coefficient of 
the filter during the first wave front, or to store 
the result V =V +(LU) rij ij ik kj  locally at the PE, 

and the one time-unit delay permits the 
transmission of  the vertical input of  the PE to its 
vertical output with one time-unit delay x = xs e. 
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Fig. 3 The Basic switched-capacitor element. 

 
 
5 Conclusion  
In this paper, we have presented and analyzed 
systolic architectures of the cylindrical-type that 
can be used to realize sampled-data recursive 
filters. All these structures are obtained in a 
straightforward manner from a matrix 
representation of the filters in the state-space 
domain. We have noticed in a previous work that 
a latency proportional to the filter order is the 
main disadvantage of the Kung-type systolic 
architectures. We have shown that the use of 
CTP technique together with the cylindrical 
structures leads to an improvement of 
computation throughput of these systolic arrays. 
Switched-capacitor techniques are proposed, in 
this paper, to built processing elements used in 
these structures. 

 
ye

xe

ysxs

l ij

  
(a) Operation of the cylindrical-type PEs 
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(b) PE's Construction of the cylindrical-type 

Fig. 4  PE's Construction of the cylindrical-type 
using SC techniques 
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