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1 Introduction
The superconductivity phenomenon was discovery
of by Heike K. Onnes in 1911 [1], when he cooled
down the purified mercury to the liquid helium
temperature (4.2 K) and the resistance abruptly
dropped to zero. Below this temperature mercury
became superconductive [1]. These low-
temperature superconductors (LTS) have its limited
use because they operate in near liquid helium
temperatures. The high-temperature
superconductors (HTS) that operate in liquid
nitrogen temperature have many advantages as low
loss, low noise, low power consumption and circuit
miniaturization [1], [6]-[8].
   The phased antenna array is composed of a group
of individual radiators that are distributed and
oriented in a linear or two-dimensional spatial
configuration. The magnitude and phase excitations
of each radiator can be individually controlled to
form a field radiation of any desired shape in space.
The position of the field in space is controlled
electronically by adjusting the phase of the
excitation signals at the individual radiators.
Phased antennas array have properties that make
the best choice for directivity in modern mobile
communication. They are well suited for use in the
                                                          

microwave frequencies. In the Fig. 1 a planar
microstrip array of 3x3 elements is shown. The
microstrip antenna consists of a radiating structure
spaced a small fraction of wavelength (0.01 to 0.05
free-space wavelength)  above  a  conducting
ground plane. Antenna arrays of this type have
found applications where low cost, lightweight,
reduced dimensions, and high efficiency are
necessary requirements for wireless
communications and can be used in many
applications over the broad range of frequencies.

Fig.1. Planar antennas array of 3x3 elements.

Usually the radiation pattern of a single element is
relatively wide, and each element provides low
values of directivity. In many applications it is
necessary to design antennas with very high
directive characteristics to meet demands of long
distance communications using antenna array.
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Otherwise, the presence of photonic materials as
substrate in antennas, has some good characteristics
such as, suppression of light spontaneous emission
and suppression of surface waves, allowing the
application in planar antenna array. The PBG
structure is added as dielectric material in antenna
that impede the propagation of electromagnetic
waves in some frequency, producing photonic band
gap (PBG).
Photonic band gap materials are similar to semi-
conductors in that they exhibit gaps in the energy
structure for photons (instead of electrons). In a
photonic crystal if a photon has energy in the
photonic band gap it will be unable to propagate
through the material no matter the direction of the
light.  In this work an elaborate analysis using the
full wave Transverse Transmission Line method,
which provides efficient and concise results is
applied to the planar antennas array with PBG
substrate and superconductor patch. Various
applications using the TTL method has been
presented by H.C.C. Fernandes et al [2]-[5].

2.Theory

2.1 Superconductor Material
 There is not a satisfactory quantum theory for

the superconductivity, however a very used
microscopic theory is the BCS theory [6]-[8] and
the macroscopic theories more used is the Two-
Fluids Model and the London Equations [9]-[13].
The superconductor material presents some
experimental characteristics, such as: null
resistivity; persistent current; magnetic field effect;
flow exclusion (Meissner effect); frequency effect
and isotope effect [6]-[8].
2.1.1 BCS Theory of Superconductivity

The base of the superconductivity quantum
theory was developed in 1957 by the works of
Bardeen, Cooper and Schrieffer. The formulation
of the theory BCS includes among other
phenomenons [6]-[8]:

a) An attractive interaction among electrons can
be led to a fundamental state separate from excited
states by a energy lacuna that separates the
superconductors electrons below the lacuna of the

normal electrons. The critical field ( H c
→

), the

thermal properties and many other electromagnetic
properties are consequences of that energy lacuna.

b) The penetration depth (λl) and the coherence
length (ξ ), that it is a measure of distance of the
lacuna, appear as natural consequences of the BCS
theory. The London equation is obtained for
magnetic fields that vary slowly in the space. In
this the Meissner effect is obtained in a natural
mode.

c)  The BCS theory predicts the critical
temperature of an element or alloy. There is a
paradox: as larger the resistivity in the ambient
temperature, greater will be the probability that the
metal is a superconductor when cold.

The BCS theory attributes the superconductivity
effect to a pair of electrons opposite spin, called
Cooper pair.

2.1.2 London Equations
It can be made an approach in the electrodynamics
equation, staying the same to the permeability (µ)
and the permittivity (ε), and being used the
hypothesis that the null resistivity leads to the
acceleration equation as presented below [6]-[8]:
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λl is the London penetration depth that measures
the penetration of the magnetic field in the
superconductor, "m" is the particle mass, "n" is the
particles quantity, "e" is electron charge, "c" is the
light speed in vacuum and "v" is the carrier speed
of the particle.
Equation (6) explains the Meissner effect, not
allowing a uniform solution in the space, not could
exist a uniform magnetic field into a
superconductor. The solution of (6) is indicated
below:

l
x

0 eB)x(B λ−→→
=                              (8)

A magnetic field applied will penetrate
approximately in a fine film in way uniform, if the
film thickness is very small than λl the Meissner
effect is not complete.

2.1.3 Two-Fluid Model and Surface Impedance
There is not a macroscopic theory that describes
with accuracy the electric properties of the
superconductor to temperatures below the critic.
The model more used for those temperatures is the
two-fluids model that has been applied with
success. The theory BCS is very used in
superconductors with low critical temperature,
while the two-fluids model is used in
superconductors with high critical temperature and
for materials with weak magnetic field.
The complex conductivity obtained of the two-
fluids model is expressed in (9), while for a
superconductor of the type II, the advanced two-
fluids model is used, being the conductivity
expressed in (10) [9]-[12],[14]:
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where σn is the conductivity for the superconductor
in its normal state; λef is the effective penetration

depth of the magnetic field for the normal and
advanced two fluids model [9]-[12],[14]:
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where 1,4 < α <1,8 [14].
In this theory the effective penetration depth is
larger than the London penetration depth for
materials of high Tc due to irregularities of the
material. The effect of another mechanisms of
losses, as the surface contours losses and residual
losses are frequently included in σn.
 In spite of those uncertainties the two-fluids model
is still a powerful empiric tool and it supplies
important qualitative results.
The surface impedance of a dielectric material, a
metal normal and a superconductor are shown in
Fig. 2 [13].

Fig. 2. Surface impedance of a dielectric, normal
metal and a superconductor.

The surface impedance of a dielectric material
losssless or of low-losses it is real positive, the
surface impedance of a normal metal meets along
the line of 45° and for a superconductor, that can
be also treated as negative dielectric (in agreement
with some authors) the surface impedance meets in
the positive imaginary axis. In the limit case in that
the conductivity (σ) tend to infinite in the
conductor or the dielectric constant (εr) tend to
infinite in the dielectric, the surface impedance will
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tend to zero. When they approach of the origin is
not possible to distinguish macroscopically the
perfect conductor of superconductor. For a
conductor the inductive reactance is the same to the
resistance however for the superconductor the part
reactivates it is larger than the resistive part. The
surface impedance is given by:
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being considered the effective penetration depth
(λef) larger than the thickness of the superconductor
film can approach the surface impedance for
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where J v
→

 is the uniform volumetric current density
and t is the thickness of the superconductor sheet.
For a fine superconductor sheet, or normal
conductive strip, where the internal field of the
strip is approximately uniform, the tangential
component of the electric field is given for:

TsT JZE
→→

=                           (17)

where ET is the tangential component of the field
electric in the strip and JT is the surface current
density.

2.2  TTL   Method

Considering the microstrip antenna resonator of
Fig. 3, the equations that represent the
electromagnetic fields in the x and z direction as
function of the electric and magnetic fields in the y
direction are obtained applying the TTL method.

Fig 3. Microstrip patch antenna resonator

Starting from the Maxwell’s equations and after
various algebraic manipulations the general
equations for the structure in the Fourier Transform
Domain-FTD are obtained, for the x direction as:
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and for z direction as:
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where i = 1, 2 are the regions dielectric of
structure, 2

i
2

k
2

n
2

i k−β+α=γ  is the propagation
constant in y direction, αn is spectral variable in x
direction, βk is spectral variable in z direction,

∗ε=µεω= ri
2

0
22

i kk  is wave number of ith dielectric
region and 

0

i
riri j

ωε
σ

−ε=ε∗  is the relative electric

permissive  of material, αn is the spectral variable,
k is the wave number , Γ=α+jβ is the complex
propagation constant, α is the attenuation constant,
β is the phase constant and  γ is the propagation in
the y direction in the FTD.
The inclusion of the superconductor patch is made
using the resistive complex boundary condition.
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That condition relates the electric field inside of the
superconductor strip with the current density,
through surface impedance

                       TST J~ZE~ =               (22)

where TE~  and TJ~  are the electric field and the
tangential current density to the superconductor
strip, respectively, and ZS is the surface impedance,
defined for:

                     
22S

S t
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σ
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σS2 is the conductivity of the superconductor strip
and t2 the thickness of the strip.
 After the application of the boundary conditions,
the Moment method is used to eliminate the
electric fields and to obtain the homogeneous
matrix equation for the calculation of the complex
resonant frequency. The roots of this matrix are the
real and imaginary resonant frequencies.
 
 2.3 Phased Array
 

To provide radiation in two angular dimensions,
a planar array of radiating elements is used. The
complete field of the array is the field of one
element positioned at the origin multiplied by the
factor array. This is function of the geometry of the
array and of the phase excitation. Changing the
distance and the phase of the elements, the
characteristics of the factor array and of the
complete field can be controlled [5],[15]. A planar
array of M x N uniformly spaced identical
microstrip antenna elements localized along the
any axis of the coordinate system is considered.
The pattern field of the planar array, is given by:

( ) ( ) yxTT,F ,E ⋅φθ=φθ
(24)

where F(θ,φ) is the element pattern, Tx and Ty are
the factors array in the x and y directions,
respectively.
The element pattern is:
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In these equations h is the dielectric substrate
thickness and W is the width of the antenna
element.
The factor array is calculated, considering the
excitation, phase and the relative displacement
between the elements as well as the dimensions and
number of elements. The factor array of a
rectangular planar array of M x N elements is then
given by

           ( )[ ]∑
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where βx is the phase excitation and Im0, is the real
current gain, in this x direction, βy is the phase
excitation and In0, is the real current gain in the y
direction, and, the current in the surface is [16]:

nomomn III .=          (28)

considering the phase excitation uniform, the total
excitation can be defined by Imn=Io, then the array
factor will be expressed as:
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    Techniques for maximize the output power in
adaptive antenna have been developed [19].

Normalizing (29), the factor array is obtained
[16]:
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where

                   xxx sinkd βφθψ += cos                   (31)

                        yyy sinkd βφθψ += cos                  (32)
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    In the planar array, the element spacing and
lattice must be chosen so that the total number
necessary of elements in the planar array is
minimized. For a rectangular lattice, the principal
maximal and grating lobes can be located by

       ...,2,1,0m,
d
mcossincossin

x
00 =

λ
±=φθ−φθ       (33)

         ,...2,1,0n,
d
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y
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and the element spacing must be chosen so that

                           m
yx

sin1
dd

θ+=
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=
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where θm is the maximal scan angle.

2.4 PBG Structures
One of the problems that emerge when we worked
with photonic material is the determination of the
effective dielectric constant. For being a non-
homogeneous structures and that submit the
incident sign at the process of multiple spread. A
solution can be obtained through of numerical
process called of homogenization [20].
The process is based in the theory related the
diffraction of a plane electromagnetic wave
incident imposed by the presence of cylinders of air
immerged in a homogeneous material [17].
Chosen a Cartesian coordinates system of axes (O,
x, y, z), shown in the Fig. 4. Consider firstly a
cylinder with relative permittivity ε1, with traverse
section in the xy plane, embedded in a medium of
permittivity ε2. For this process the two-
dimensional structure is sliced in layers whose
thickness is equal at the cylinder diameter. In each
slice is realized the homogenization process.

Fig. 4.  Homogenized two dimensional PBG .

According to homogenization theory the
effective permittivity depends on the polarization
[18]. For s and p polarization, respectively, are:

                      ( ) 221eq ε+ε−εβ=ε                        (36)
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where β is defined as the ratio of the area of the
cylinders over the area of the cells and α is an
independent parameter whose value s equal to
0.523. The A1 and A2 variables in (38) and (39)
were included only for simplify (37).
The process of homogenization involves a
particular choosing direction, the results obtained
are for small variation de incidence angle of wave
vector, usually these values are between 70° and
90° degrees [18]. This concept of homogenization
may well be extended to planar arrays on PBG
structures. One of the most desirable features  of
this arrangement is the suppressing of mutual
coupling of the array  elements.

3 Numerical Results
The computational program used to calculate the
resonant frequency, factor array and the radiation
pattern for the phased antenna array possessing
PBG material was developed in Fortran
PowerStation and Matlab 6.0, using one 800 MHz
PC microcomputer.
The Fig. 5 shows the real frequency of a patch
antenna as function of width and length. The
relative permittivity is 10.233 for s polarization and
8.7209 for p polarization. The substrate thickness is
0.7 mm.
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(a)

(b)
Fig. 5.   Resonant frequency of microstrip patch
(a) s polarization and (b) p polarization.

For the radiation patterns is considered the
microstrip antenna with resonant frequency of 9.14
GHz, the width and length of patches are 10 and 5
mm, respectively, the substrate have an thickness
of 0.7 mm and relative permittivity equal to 10.233
(s polarization), number of elements disposed in
the x and y direction are 5 and distance between the
elements radiator is λ/2, where λ is wavelength.
The Fig. 6 shows the E-plane and H-plane of
microstrip antenna with the incidence angles θ0 =
90o and φ0 = 90o.

(a)

(b)
Fig. 6 Radiation patterns  (a) E-Plane (b) H-Plane.

In the Fig. 7  the incident angles are θ0 = 85o and φ0
= 80o. The modification in phase excitation has the
objective of adjusting the antenna for new
transmission or reception conditions.

(a)

(b)
Fig. 7. Radiation patterns  (a) E-Plane (b) H-Plane.

    Considering the parameters of structure of
microstrip antenna of Fig. 2 and that the
rectangular patch has the YBCO superconductor
with the following parameters: σn = 2.105 S/m; λef
= 150 nm, t = 1000 nm, Tc = 93 K.

4  Conclusions
 The Transverse Transmission Line (TTL) method
was used for analysis of the microstrip phased
antenna array. The inclusion of superconductor
patch was made in agreement with the resistive
complex boundary condition. The TTL method is
an efficient and accurate method applied to the
analysis and design of several planar structures.
This is a very versatile method that can be used
with lossless, losses, semiconductor or PBG
substrate. The resonant frequency and radiation
patterns were presented for the microstrip antenna
array. It observed the influence of the variation of
the phase excitation on the radiation pattern in the
antenna array. The computational programs were
developed in Fortran PowerStation and in Matlab
6.0. This work was supported by CNPq.
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