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Abstract : In this paper a generalized or singular two di-
mensional system–model of second order, Ex(i1 +2, i2+
2) = A0x(i1+1, i2+1)+A1x(i1+1, i2)+A2x(i1, i2+1),
is introduced. Using this model a technique for com-
puting its transfer function, using the discrete Fourier
transform, is given. The algorithm is straight forward
and has been implemented using the software package
MatlabTM . One step–by–step example, illustrating the
application of the algorithm, is presented.
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1 Introduction

During the past two decades there has been extensive
research in two dimensional (2D) systems. This is due
to the extensive range of applications, especially in en-
gineering and computing [1]-[3].

First- order generalized systems are applied in engi-
neering as well as in biological and economic systems
[4]–[7]. Second- order generalized systems, applied to
power systems, were studied by Campbell and Rose [8].
These systems were also used in conjuction with the
analysis and modelling of flexible beams [9]. Recently
second–order generalized systems were used in circuit
theory, linear control systems, filtering, mechanical sys-
tem modeling and applied mathematics [10]–[12].

2D systems can be represented with a transfer func-
tion in polynomial form or with state space models [3].
State space based techniques play a very crucial role
in the analysis and synthesis of 2D systems. An im-
portant problem is to determine the coefficients of a
transfer function from its state space representation and

∗Supported by the 2003 Student Faculty Award and the Mar-
garet and Herman Sokol Faculty Award.

vice versa. Leverrier–Fadeeva, discrete Fourier trans-
form (DFT) algorithms and Vanderlmode matrices can
be modified to be used for various models. The DFT has
been used for the evaluation of the transfer function co-
efficients for linear, singular, multidimensional and reg-
ular second– order 2D systems [13]–[17].

In this paper a computer implementable algorithm is
proposed for the computation of the transfer function
for a new generalized 2D system–model that is also of
second–order. The proposed algorithm determines the
coefficients of the determinantal polynomial and the co-
efficients of the adjoint polynomial matrix, using the
DFT. The computational speed of the method can be
improved by using fast Fourier transform techniques.

2 G2O2D System

A generalized second–order two–dimensional (G2O2D)
system–model has the following structure [18]:

Ex(i1 + 2, i2 + 2) = A0x(i1 + 1, i2 + 1)
+A1x(i1 + 1, i2)
+A2x(i1, i2 + 1)
+B1u(i1 + 1, i2)
+B2u(i1, i2 + 1) (1)

y(i1, i2) = C x(i1, i2)

where, x(i1, i2) ∈ Rλ, u(i1, i2) ∈ Rm, y(i1, i2) ∈
Rp; Ak, for k = 0, 1, 2 and E,B1, B2, C, are real
matrices of appropriate dimensions. Matrix E may be
singular.

It is noted that this particular G2O2D system– model
(1) is an extension of the 2D Fornasini–Marchesini
model [19] to cover singular systems of second–order.
For more 2D second-order structures the reader can re-
fer to [18].



Applying the 2D zi, i = 1, 2, transform to system–
model (1) , with zero initial conditions, the transfer
function is found to be:

T (z1, z2) = C [Ez2
1z2

2 −A0z1z2 −A1z1 −A2z2]−1

·(B1z1 + B2z2) (2)

In the following section an interpolative approach is de-
veloped for determining the transfer function T (z1, z2),
given the matrices Ak, k = 0, 1, 2 and B1, B2, C us-
ing the 2D DFT. For the sake of completeness a brief
description of the 2D DFT follows.

3 2D Discrete Fourier Transform

Consider the finite sequences X(k1, k2) and X̃(r1, r2),
ki, ri = 0, · · · , Mi, i = 1, 2. In order for the sequences
X(k1, k2) and X̃(r1, r2), to constitute a 2D DFT pair
the following relations should hold [20]:

X̃(r1, r2) =
M1∑

k1=0

M2∑

k2=0

X(k1, k2)W−k1r1
1 W−k2r2

2 (3)

X(k1, k2) =
1
R

M1∑

r1=0

M2∑

r2=0

X̃(r1, r2)W k1r1
1 W k2r2

2 (4)

where,

R = (M1 + 1)(M2 + 1) (5)

Wi = e(2πj)/(Mi+1), i = 1, 2 (6)

X , X̃ are discrete argument matrix valued functions,
with dimensions p × m.

In the following section an interpolative approach is
developed for determining the transfer function T (s),
given the matrices Ai, i = 1, 2, E,B1, B2, C, using the
2D DFT.

4 Algorithm

The transfer function of the G2O2D system–model (1)
is,

T(z1, z2) =
N(z1, z2)
d(z1, z2)

(7)

where,

N(z1, z2) = C adj [Ez2
1z

2
2 −A0z1z2 −A1z1 −A2z2]

·[B1z1 + B2z2] (8)
d(z1, z2) = det [Ez2

1z
2
2 −A0z1z2 −A1z1 −A2z2](9)

Equations (8) and (9) can be written in polynomial
form as follows:

N(z1, z2) =
nP

max∑

λ1=0

nP
max∑

λ2=0

Pλ1,λ2z
λ1
1 zλ2

2 (10)

with, nP
max := max(2λ− 1). The numerator coefficients

Pλ1,λ2 are matrices with dimensions (p × m).

d(z1, z2) =
nq

max∑

λ1=0

nq
max∑

λ2=0

qλ1,λ2z
λ1
1 zλ2

2 (11)

where, nq
max := max(2λ − 1). The denominator coeffi-

cients qλ1,λ2 are scalars.
The numerator polynomial matrix N(z1, z2) and the

denominator polynomial d(z1, z2) can be numerically
computed at R = (r + 1)2, points, equally spaced on
the unit 2D disc. The R points are chosen as (z1, z2)
= [v(i1), v(i2)], i1, i2 = 0, · · · , r, with r = 2λ − 1, ac-
cording to definition as:

v1(i) = v2(i) = W−i, ∀ i = 0, . . . , r. (12)
where,

Wi = e(2πj)/(r+1), i = 1, 2 (13)
The values of the transfer function (7) at the R points
are the corresponding 2D DFT coefficients.

4.1 Denominator Polynomial

To evaluate the denominator coefficients qλ1,λ2 , define,

ai1,i2 = det [Ev2
1(i1)v

2
2(i2) −A0v1(i1)v2(i2)

−A1v1(i1) −A2v2(i2)] (14)

Therefore using equations (11) and (14), ai1,i2 can be
defined as,

ai1,i2 = d[v1(i1), v2(i2)] (15)
Provided that at least one of ai1,i2 6= 0.

Equations (11), (12) and (15) yield

ai1,i2 =
r∑

λ1=0

r∑

λ2=0

qλ1,λ2W
−(i1λ1+i2λ2) (16)

In the above equation (16) it is obvious that [ai1,i2 ]
and [qλ1,λ2 ] form a 2D DFT pair. Therefore the coef-
ficients [qλ1,λ2 ] can be computed using the inverse 2D
DFT, as follows:

qλ1,λ2 =
1
R

r∑

i1=0

r∑

i2=0

ai1,i2W
(i1λ1+i2λ2) (17)



4.2 Numerator Polynomial

To evaluate the numerator matrix polynomial Pλ1,λ2 ,
define

Fi1,i2 = C adj [Ev2
1(i1)v

2
2(i2)

−A0v1(i1)v2(i2) −A1v1(i1) −A2v2(i2)]
·[B1v1(i1) + B2v2(i2)] (18)

Using equations (10) and (18), Fi1,i2 can be defined as,

Fi1,i2 = N[v1(i1), v2(i2)] (19)

Equations (10), (12) and (19) yield

Fi1,i2 =
r∑

λ1=0

r∑

λ2=0

Pλ1,λ2W
−(i1λ1+i2λ2) (20)

In the above equation (20), [Fi1,i2 ], [Pλ1,λ2 ] form a
2D DFT pair. Therefore the coefficients Pλ1,λ2 can be
computed, using the inverse 2D DFT, as follows:

Pλ1,λ2 =
1
R

r∑

i1=0

r∑

i2=0

Fi1,i2W
(i1λ1+i2λ2) (21)

A salient example, simple yet illustrative of the theo-
retical concepts presented in this work, follow below:

5 Numerical Example

Consider the following G2O2D, two–input two–output
system– model

Ex(i1 + 2, i2 + 2) = A0x(i1 + 1, i2 + 1)
+A1x(i1 + 1, i2)
+A2x(i1, i2 + 1)
+B1u(i1 + 1, i2)
+B2u(i1, i2 + 1) (22)

y(i1, i2) = C x(i1, i2)

where,

E =
[

1 0
0 0

]
, A0 =

[
1 3
0 0

]

A1 =
[

−1 1
0 1

]
, A2 =

[
0 1
1 1

]

B1 =
[

1 2
−3 0

]
, B2 =

[
3 1
0 1

]

C =
[

0 1
2 1

]

Since λ = 2, the r = 2 · λ − 1 = 3. Therefore R =
(r + 1)2 = 16. The direct application of the proposed
algorithm yields:

F00 =
[

1.0000 4.0000
−45.0000 2.0000

]

F01 =
[

−1.7639− 3.8042j 0.1180− 2.2654j
−14.7984 + 30.1563j −9.9721− 1.9879j

]

F02 =
[

−6.2361− 2.3511j −2.1180− 2.7144j
9.7984 + 10.7516j −1.0279 + 5.3431j

]

F03 =
[

−6.2361 + 2.3511j −2.1180 + 2.7144j
9.7984− 10.7516j −1.0279− 5.3431j

]

F10 =
[

5.7361− 2.7144j 0.8090− 2.4899j
16.4443 + 25.8828J 4.6631− 2.0409j

]

F11 =
[

−6.2361 + 1.1756j −1.4271− 2.9389j
30.9787 + 7.0534j 0.1910 + 5.2901j

]

F12 =
[

5.8992 + 9.8208j −3.9271 + 3.3022j
16.2812− 16.5312j 8.5451 + 3.3022j

]

F13 =
[

5.7361− 2.9919j 2.3541 + 1.5388j
−11.9721− 5.8981j −0.5000− 3.4410j

]

F20 =
[

1.2639 + 2.2654j −0.3090− 0.2245j
−1.4443− 14.2331j −3.1631− 5.2043j

]

F21 =
[

1.2639− 5.7921j −4.3541− 0.3633j
−3.0279− 18.1028j −0.5000− 0.8123j

]

F22 =
[

−1.7639− 1.9021j 1.9271 + 4.7553j
−15.9787− 11.4127j 1.3090− 8.5595j

]

F23 =
[

1.0000− 5.7063j 3.3090− 0.9511j
−2.7639 + 2.9717j −6.7812− 1.2286j

]

F30 =
[

1.2639− 2.2654j −0.3090 + 0.2245j
−1.4443 + 14.2331j −3.1631 + 5.2043j

]



F31 =
[

−6.3992 + 3.1307j −0.5729 + 3.2164j
6.2188 + 11.5312j 2.9549 + 3.2164j

]

F32 =
[

1.0000 + 5.7063j 3.3090 + 0.9511j
−2.7639− 2.9717j −6.7812 + 1.2286j

]

F33 =
[

−1.7639 + 1.9021j 1.9271− 4.7553j
−15.9787 + 11.4127j 1.3090 + 8.5595j

]

Using (21), the numerator matrix polynomials are,

P00 = P01 = 0,P02 =
[

3 1
−3 1

]
, P03 = 0

P10 = 0,P11 =
[

1 3
−13 −1

]
,P12 =

[
0 −1
0 5

]

P13 = 0

P20 =
[

−3 0
−11 −4

]
,P21 =

[
3 0

−15 0

]
, P22 = 0

P23 =
[

0 1
0 1

]

P30 = P31 = 0,P32 =
[

−3 0
−3 0

]
, P33 = 0

Once the denominator and the adjoint matrix co-
efficients have been computed, the transfer function
T(z1, z2) is determined as,

T(z1, z2) =

z




0 0 P02 0
0 P11 P12 0
P20 P21 0 P23

0 0 P32 0


 z′

z




0 0 q02 0
0 q11 q12 0
q20 q21 0 q23

0 0 q32 0


 z′

where,

z =
[

1 z1 z2
1 z3

1

]

or

T(z1, z2) =

[
3 1

−3 1

]
z2
2 +

[
1 3

−13 −1

]
z1z2

+

[
0 −1
0 5

]
z1z2

2 +

[
−3 0

−11 −4

]
z2
1

+

[
3 0

−15 0

]
z2
1z2 +

[
0 1
0 1

]
z2
1z3

2

+

[
−3 0
−3 0

]
z3
1z2

2

−z2
2 − 2z1z2 − 2z1z2

2 − z2
1 + z2

1z2 − z2
1z3

2 − z3
1z2

2

Finally the transfer function of our two–input two–
output GSO2D system–model is,

T(z1, z2) =

[
α11(z1, z2) : α12(z1, z2)
............... : ...............
α21(z1, z2) : α22(z1, z2)

]

−z2
2 − 2z1z2 − 2z1z2

2 − z2
1 + z2

1z2 − z2
1z3

2 − z3
1z2

2

(23)

where,

α11(z1, z2) = +3z2
2 + z1z2 − 3z2

1 + 3z2
1z2 − 3z3

1z2
2

α12(z1, z2) = +z2
2 + 3z1z2 − z1z

2
2 + z2

1z3
2

α21(z1, z2) = −3z2
2 − 13z1z2 − 11z2

1 − 15z2
1z2 − 3z3

1z2
2

α22(z1, z2) = +z2
2 − z1z2 + 5z1z

2
2 − 4z2

1 + z2
1

The correctness of the transfer function (23) can easily
be verified using (2).

6 Complexity of the Algorithm

The proposed algorithm has two parts. In the first part
the matrices Fi1,i2 and the scalars ai1,i2 are evaluated
with a cost of pmRλ3 operations. In the second part the
coefficients of Pλ1,λ2 and qλ1,λ2 are evaluated using the
DFT with a cost of pmR2 + R2 operations. For more
efficient computation, especially for high order systems,
fast Fourier methods can be used to implement the DFT
[20].

Due to the inherent modularity and the algorithmic
structure of the presented method high parallelism is
permitted. In this case the computation of each de-
terminant ai1,i2 , (16), and each matrix product Fi1,i2 ,
(20), can be distributed over a number of processing el-
ements, considerably reducing the computation time of
the algorithm.

7 Conclusions

An algorithm was presented for the computation of the
transfer function for a new generalized second–order 2D
system– model . The technique is using the DFT algo-
rithm and has been implemented with the software pack-
age MatlabTM . To further improve the computational
speed of the algorithm, fast Fourier transform (FFT)
techniques and FPGA (Field–Programmable Gate Ar-
ray) based machines can be used.
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