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Abstract : In this paper a generalized or singular two di-
mensional system—model of second order, Ex (i1 +2,i2+
2) = on(ll—i-l,ZQ+1)+A1$(21+1,ZQ)-FAQI(’Ll,’LQ—Fl),
is introduced. Using this model a technique for com-
puting its transfer function, using the discrete Fourier
transform, is given. The algorithm is straight forward
and has been implemented using the software package
Matlab™ _ One step-by-step example, illustrating the
application of the algorithm, is presented.
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1 Introduction

During the past two decades there has been extensive
research in two dimensional (2D) systems. This is due
to the extensive range of applications, especially in en-
gineering and computing [1]-[3].

First- order generalized systems are applied in engi-
neering as well as in biological and economic systems
[4]-[7]. Second- order generalized systems, applied to
power systems, were studied by Campbell and Rose [8].
These systems were also used in conjuction with the
analysis and modelling of flexible beams [9]. Recently
second—order generalized systems were used in circuit
theory, linear control systems, filtering, mechanical sys-
tem modeling and applied mathematics [10]-[12].

2D systems can be represented with a transfer func-
tion in polynomial form or with state space models [3].
State space based techniques play a very crucial role
in the analysis and synthesis of 2D systems. An im-
portant problem is to determine the coefficients of a
transfer function from its state space representation and
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vice versa. Leverrier—Fadeeva, discrete Fourier trans-
form (DFT) algorithms and Vanderlmode matrices can
be modified to be used for various models. The DFT has
been used for the evaluation of the transfer function co-
efficients for linear, singular, multidimensional and reg-
ular second— order 2D systems [13]-[17].

In this paper a computer implementable algorithm is
proposed for the computation of the transfer function
for a new generalized 2D system-model that is also of
second—order. The proposed algorithm determines the
coeflicients of the determinantal polynomial and the co-
efficients of the adjoint polynomial matrix, using the
DFT. The computational speed of the method can be
improved by using fast Fourier transform techniques.

2 G202D System

A generalized second—order two—dimensional (G202D)
system—model has the following structure [18]:

Ex(iy 4+ 2,i2+2) = Agx(ir+1,i2+1)
+Aqx(in + 1,i9)
+Asx (i1, iz + 1)
+Bju(iy + 1,i2)
+Bou(iy, iz + 1)
C x(i1,12)

(1)
y(ir,iz) =

where, l‘(il,ig) S 'R,A, u(il,ig) e R™, y(il,ig) S
RP; Ay, for £ = 0,1,2 and E,B;, By, C, are real
matrices of appropriate dimensions. Matrix E may be
singular.

It is noted that this particular G202D system— model
(1) is an extension of the 2D Fornasini-Marchesini
model [19] to cover singular systems of second—order.
For more 2D second-order structures the reader can re-
fer to [18].



Applying the 2D z;, ¢ = 1,2, transform to system—
model (1) , with zero initial conditions, the transfer
function is found to be:

T(Zl, 22) = C [EZ%Z% — A02122 — Alzl — AQZQ]_I

~(B121 + BQZQ) (2)

In the following section an interpolative approach is de-
veloped for determining the transfer function T'(z1, 22),
given the matrices Ak, k = 0,1,2 and By, Bs, C us-
ing the 2D DFT. For the sake of completeness a brief
description of the 2D DFT follows.

3 2D Discrete Fourier Transform

Consider the finite sequences X (k1, ko) and X (r1,79),
kiyr; = 0,-+-, M;,i = 1,2. In order for the sequences
X (k1,k2) and X (rq,72), to constitute a 2D DFT pair
the following relations should hold [20]:

M1 M2
X(rira) = Y0 ) X(ka ko)W MWy (3)

k1=0ko=0

1 M1 M2 -
X(ki, ko) = T Z Z X(T1,T2)W1]€1T1W2kzrz 4)
r1=07r2=0
where,

R= (M, +1)(M;+1) (5)
W, = e@m)/(Mit1) ;1 9 (6)

X, X are discrete argument matrix valued functions,
with dimensions p x m.

In the following section an interpolative approach is
developed for determining the transfer function 7'(s),
given the matrices A;,7 = 1,2, E, B, Bs, C, using the
2D DFT.

4  Algorithm

The transfer function of the G202D system—model (1)
is,

N(Zl, 22)
T =27 7
(21,22) (o1, 72) (7)
where,
N(Zl, 2’2) = C adj [EZ%Z% — Aozlzg — Alzl — A222]

‘[B1z1 + Bazs] (8)

d(Zl, 22) = det [EZ%Z% —Agz129 — A1z — AQZQ](Q)

Equations (8) and (9) can be written in polynomial
form as follows:

n’ﬁ’lal’ n?’iam
N(th?) = Z Z P)\h)\zzf\l'z;Q (10)
A1=0 X2=0
with, nf . := maz(2\ — 1). The numerator coefficients

P, », are matrices with dimensions (p x m).

n’ana(L' ngnam
dz1,22) = D D et 2 (11)
A1=0 \2=0
where, ng,,. := maz(2A — 1). The denominator coeffi-

clents g, x, are scalars.

The numerator polynomial matrix N(z1, z2) and the
denominator polynomial d(z1,22) can be numerically
computed at R = (r + 1), points, equally spaced on
the unit 2D disc. The R points are chosen as (21, 22)
= [v(41),v(i2)], i1,i2 = 0,---,r, with r = 2X — 1, ac-
cording to definition as:

(i) =va(i) =W ¥V i=0,...,7 (12)

where,

W; = e@m)/r+1) - =1 2 (13)

The values of the transfer function (7) at the R points
are the corresponding 2D DFT coefficients.

4.1 Denominator Polynomial

To evaluate the denominator coefficients gy, »,, define,

Qi i, = det [E’U% (’Ll)’Ug (22) —Aguy (il)vg (’LQ)
—Aqv1(i1) — Agua(iz)] (14)

Therefore using equations (11) and (14), a;, i, can be
defined as,

@iy iy = d[v1(i1), v2(i2)] (15)
Provided that at least one of a;, ;, # 0.
Equations (11), (12) and (15) yield

Aiy iy = Z Z qA17A2W*(i1>\1+i2>\2) (16)
A1=0X2=0
In the above equation (16) it is obvious that [a;, 4]
and [gx, »,] form a 2D DFT pair. Therefore the coef-
ficients [ga,,x,] can be computed using the inverse 2D
DFT, as follows:

1 r r ‘ ‘
Pare = Z Z ailxhw(ll)\lﬂzkz) (17)

i1=01i2=0



4.2  Numerator Polynomial

To evaluate the numerator matrix polynomial Py, ,,
define

F C adj [Ev?(i1)v3(i2)
—Aqvy (il)vg(ig) - A (Zl) - A2U2(i2)]

-[Blvl(il) + Bz’l)g(ig)] (18)

1,72

Using equations (10) and (18), F;, ;, can be defined as,

Fi, i» = Nlv1(i1), va(i2)] (19)
Equations (10), (12) and (19) yield

T

T Z Z PA17>\2W—(i1>\1+i2)\2) (20)

A1=0A2=0

F

In the above equation (20), [F;, ], [Pa,,] form a
2D DFT pair. Therefore the coefficients Py, », can be
computed, using the inverse 2D DFT, as follows:

1 r r ) .
P)\17)\2 = E Z Z Fil,iQW( 1A1+i2A2) (21)

i1=01i2=0

A salient example, simple yet illustrative of the theo-
retical concepts presented in this work, follow below:

5 Numerical Example

Consider the following G202D, two—input two-output
system— model

Ex(iy 4+ 2,i2+2) = Agx(ir+1,i2+1)
+Aq1x(in + 1,142)
+Asx (i1, iz + 1)
+Biu(is + 1,42)

( )

+Bou(iq,io + 1 (22)
y(il,ig) = C I(il,ig)
where,
(1 0 [1 3]
E = 0 0}’ Av=1 0 |
-1 1 [0 1
A = 01}’A2_ 11
1 2 (3 1]
B, = -3 o}’BQ__o 1|
[0 1
c = 2 1}

Since A = 2, the r = 2- X —1 = 3. Therefore R =
(r +1)2 = 16. The direct application of the proposed
algorithm yields:

P 1.0000  4.0000
007 | —45.0000 2.0000

—1.7639 — 3.80425

P 0.1180 — 2.2654;
017 | —14.7984 + 30.1563;

—9.9721 — 1.9879;

—6.2361 — 2.3511;

Foo —2.1180 — 2.7144;
027 | 9.7984 + 10.7516;

—1.0279 + 5.3431j

—6.2361 + 2.3511;

S —2.1180 + 2.7144;
0371 9.7984 — 10.7516;

—1.0279 — 5.34315

- 5.7361 — 2.71445  0.8090 — 2.4899;
1071 16.4443 + 25.8828.J  4.6631 — 2.0409;

po_ | —6-2361+1.1756j —1.4271 - 29389
U7 3097874 7.05345  0.1910 + 5.29015
P | 5:8992+9.8208] —3.9271+ 3.3022j
1271 16.2812 - 16.5312j  8.5451 + 3.3022
Fro = [ 5.7361 —2.99195  2.3541 4+ 1.5388; |
B —11.9721 - 5.89815  —0.5000 — 3.4410; |
poo_ | 126394226545 —0.3090 —0.2245; ]
207 | —1.4443 — 1423315 —3.1631 — 5.2043j |
Fo = [ 1.2639 —5.7921j —4.3541 —0.3633; |
*17 | —3.0279 — 18.10287 —0.5000 — 0.8123; |

Fon — —1.7639 — 1.9021j 1.9271 + 4.7553;
271 159787 — 11.41275  1.3090 — 8.5595;

1.0000 — 5.70635

Fon 3.3090 — 0.9511;
B 7| 27639+ 2.9717j

—6.7812 — 1.22867

1.2639 — 2.26545

P —0.3090 + 0.22455
307 | —1.4443 + 14.23315

—3.1631 + 5.2043j



—6.3992 + 3.13075

P —0.5729 + 3.2164;
317 6.2188 + 11.5312;

2.9549 + 3.21647

1.0000 + 5.7063

For — 3.3090 + 0.9511;
327 | 27639 — 2.9717j

—6.7812 + 1.22865

Fon — —1.7639 + 1.90215 1.9271 — 4.7553;
3371 1597874 11.41275  1.3090 + 8.5595;
Using (21), the numerator matrix polynomials are,

3 1
-3 1

Fyo P01—0,P02—[ ],P()?,—O

1 3 0 -1
Py = 07P11=[_13 _1}71312:[0 5]
Ps = 0

B 30
Po = {—11 —4}’1)21_[—15 o}’P”_
0 1
Pas = {0 1]
-3 0
Py = P31=0,P32=[_3 0]7P33=0

Once the denominator and the adjoint matrix co-
efficients have been computed, the transfer function
T(z1, 22) is determined as,

0 0 Py O

0 Py P2 O 2
Py Py O Pa3

0 0 Ps3s 0

T(21,20) =
(1, 22) 0 0 gqo O
2 0 q1 q2 0 7
G20 g21 0 qo3
0 0 gz2 0
where,

or

-3 0
+|:_3 0:|z?z§
2.3 32

T(z1,22) =
2 2 2 2
25 — 22122 — 22125 — 27 + 222 — 2725 — 2725

Finally the transfer function of our two-input two—
output GSO2D system-model is,

ar1(z1, 22) ai2(z1, z2)

az1(z1, 22)

g2 (21, 22)

T Z21y,22) = 23
(21, 22) —z§—2z1zz—2z1z§—z%—i—zfzz—z%zg—z?zg (23)
where,
2 2 2 3 2
a11(z1,22) = 4325 + z122 — 321 + 32122 — 32125
2 2 2.3
a12(z1,22) = 25 +3z122 — 2125 + 2125
2 2 2 3.2
a21(z1,22) = —3z5 — 132122 — 1127 — 152720 — 32725
2 2 2 2
a22(z1,22) = +25 — 2122 + 52129 — 421 + 27

The correctness of the transfer function (23) can easily
be verified using (2).

6 Complexity of the Algorithm

The proposed algorithm has two parts. In the first part
the matrices F;, ;, and the scalars a;, ;, are evaluated
with a cost of pmRA3 operations. In the second part the
coefficients of Py, », and gy, ), are evaluated using the
DFT with a cost of pmR? + R? operations. For more
efficient computation, especially for high order systems,
fast Fourier methods can be used to implement the DFT
[20].

Due to the inherent modularity and the algorithmic
structure of the presented method high parallelism is
permitted. In this case the computation of each de-
terminant a;, ;,, (16), and each matrix product F;, ;,,
(20), can be distributed over a number of processing el-
ements, considerably reducing the computation time of
the algorithm.

7 Conclusions

An algorithm was presented for the computation of the
transfer function for a new generalized second—order 2D
system— model . The technique is using the DFT algo-
rithm and has been implemented with the software pack-
age Matlab™ . To further improve the computational
speed of the algorithm, fast Fourier transform (FFT)
techniques and FPGA (Field-Programmable Gate Ar-
ray) based machines can be used.
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