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Abstract
In this paper, we propose a new dynamic cryp-

tographic key generation scheme for access control
in a hierarchy with frequently inserted and deleted
security classes. Our scheme, based on the Chinese
remainder theorem and an available symmetric cryp-
tosystem, can achieve the following four goals: First,
a so-called trusted third party for generating keys is
not needed in the system. Second, each security class
can decide and choose a secret key independently of
the other classes. Third, when a security class is
inserted to or deleted from the hierarchy, we recom-
pute only the derivation key of its immediate ances-
tor, without affecting the keys of the other classes in
the hierarchy. Fourth, the storage space needed for
the public information of each class can be as far as
possible reduced.
Keywords: Access control, Cryptography, Data
security, Partially-ordered hierarchy.

1 Introduction
It is a major issue to prevent important infor-

mation from being destroyed, altered, disclosed or
copied by unauthorized users in computer protection
systems. For this reason, an access control model
was introduced for its easy implementation and was
widely used in computer protection systems [14].

In 1983, Akl and Taylor [1] proposed an elegant
solution for controlling access to information among
a group of users in a hierarchy. In such a hierar-
chy, the users and the information items they own
are divided into a number of disjoint sets of security

classes, C1, C2, · · · , Cn, and the relationships among
security classes correspond to a partially-ordered hi-
erarchy, as shown in Figure 1. In the Akl-Taylor
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Figure 1: An example of partially ordered hierarchy

scheme [1], each security class Ci is assigned a dis-
tinct prime for public information, PIi. The secret
key, SKi, for each security class Ci is calculated us-
ing the public information PIi by a trusted third
party in the system. The information items owned
by Ci are encrypted by an available symmetric (one-
key) cryptosystem with the enciphering key SKi.
This information can only be retrieved by a secu-
rity class Cj , where Ci ≤ Cj . Using the public in-
formation, PIi and PIj , and the secret key SKj ,
Cj can derive the secret key SKi and decipher the
information items owned by Ci. However, a large
amount of storage is required for storing the public
information. In the past decade, many authors have
proposed ways to reduce the storage space needed
for storing the public information.



In 1985, MacKinnon et al. [17] presented an im-
proved algorithm for the Akl-Taylor scheme to re-
duce the size of the public information. In 1988,
Sandhu [20] used one-way functions to create a cryp-
tographic implementation of a tree hierarchy for ac-
cess control. This approach has one drawback: com-
putational overhead is incurred in deriving keys.

In 1990, Harn and Lin [5] proposed an approach
somewhat similar to the Akl-Taylor scheme. In-
stead of using a top-down design approach, as in
the Akl-Taylor scheme, however, Harn and Lin p-
resented a bottom-up key generating scheme. In
1993 Liaw et al. [15, 16] proposed other schemes.
Their schemes are based on Newton’s interpolation
method and a predefined one-way function. How-
ever, their schemes are insecure against cooperative
attacks [6, 7, 8, 9]. In 1997, Shen, Chen, and Lai
[21] presented a novel cryptographic key assignmen-
t scheme for dynamic access control in a hierarchy.
Their scheme requires a large computation time to
generate and derive keys [10, 11, 12].

In 1998, Yeh et al. proposed an efficient crypto-
graphic key assignment scheme for solving the access
control problem in a hierarchy [22]. Their scheme en-
forces access control policies in a user matrix model,
which is more flexible than that in a user hierarchy.
The user matrix model not only can model the access
control policies in the user hierarchy model, but al-
so more complicated policies with anti-symmetrical
and transitive exceptions. However, their scheme is
insecure [13].

In this paper, we propose a new scheme without
trusted third party for access control in a hierarchy.
This paper is organized as follows. In the next sec-
tion, the new dynamic scheme, based on the Chinese
remainder theorem, is presented. In Section 3, we
verify the security of our scheme. The computation
for generating and deriving keys and the storage of
public information are discussed in Section 4. Final-
ly, conclusions are given in Section 5.

2 The proposed Scheme
In this section, we present an implementation

scheme for access control in a hierarchy that is based
on the Chinese Remainder Theorem (CRT). Sup-
pose a conventional cryptosystem, such as DES-like
cryptosystems [18], is available. Since DES-like is a
secure private-key cryptosystem, the outlaws can-
not break our scheme. Let E be an enciphering
procedure and let D be a deciphering procedure
of the available cryptosystem. Let SK be the se-
cret key. Given a plaintext message M, we obtain
X = ESK(M) and M = DSK(X), where X is the
ciphertext of the plaintext M. Let C1, C2, · · · , Cn be
n security classes in a hierarchy. Each Ci possess-

es three values: the secret key SKi, a prime Pi and
public information PIi. Only an ancestor of security
class Ci can derive the secret key SKi.

Since our access control scheme is based on the
CRT, we first introduce the theorem.

Theorem 2.1 (Chinese Remainder Theorem [3])
Let P1, P2, . . . , Pr be pairwise relatively prime inte-
gers and let y = P1×P2×· · ·×Pr. Then the system
of equations

H = Hi mod Pi, for i = 1, 2, . . . , r

has a common solution H in the range [0, y − 1].

By the CRT, we can construct a cryptographic
key generation scheme for access control in a hierar-
chy by taking H as the secret information (SIi), Pi
as public information (Pij), and Hi as the secret key
(SKij) of the j-th immediate descendant (Cij) of Ci.
For convenience, we assume that Cij , j = 1, 2, · · · , r,
denotes the j-th immediate descendant of Ci in the
following algorithms. The algorithm for generating
the secret key, secret information, and the corre-
sponding public information for each security class
is stated as follows.

Algorithm Key-Generation
Step 1: Select and publish an existing available sys-
metric cryptosystem E, such as DES-like.
Step 2: Each security class, Ci, chooses his public
information, a large prime Pi, and secret key SKi,
such that SKi ≤ Pi and gcd(Pi, Pj) = 1, for i 6= j.
Step 3: Find a node Ci in the partially-ordered hi-
erarchy by in-order traversal.
Step 4: If Ci is not a leaf node, then do the follow-
ing:
Step 4.1: Compute the secret information SIi for
Ci by CRT as follows:

SIi = SKij mod Pij , for j = 1, 2, · · · , r, (1)

where SKij and Pij , for j = 1, 2, · · · , r, are the secret
key and public information of Cij , the immediate
descendants of Ci. Since SKij < Pij , SIi can been
evaluated by CRT as follows [3]:

SIi =
r∑
j=1

SKijGjG
′
j mod PP, (2)

where PP =
∏r
j=1 Pij , Gj = PP/Pij , and G′j is an

integer such that GjG′j mod Pij = 1.
Step 4.2: Compute the public information PIi of
Ci as follows:

PIi = ESKi(SIi)



where SKi is the secret key of Ci. Thus, only the
security class Ci can decipher the public information
PIi, which is an encrypted version of the secret in-
formation SIi.
Step 5: Repeat from Step 3 until all nodes of the
hierarchy are completely examined.

Note that we do not need a trusted third party
to generate keys in the above algorithm. Each class
Ci generates its own secret key and public informa-
tion and computes the secret information associated
with his immediate descendant’s secret keys. Each
Ci possesses three values: the secret key SKi which
is kept secret, a prime Pi and public information PIi.
Pi and PIi are public.

For each security class Ci, once the secret key
SKi, secret information, and public information
have been determined, we can easily derive the secret
key of Ci’s immediate descendants. We assume that
Ci’s immediate descendants are Ci1, Ci2, · · · , Cir and
that their public information is Pij , j = 1, 2, · · · , r.
The key derivation algorithm is stated as follows.

Algorithm Key-Derivation
Step 1: Compute SIi = DSKi(PIi), where DSKi is
a decipher function of DES-like under the secret key
of Ci. Since PIi is a public information, Ci gets se-
cret information, SIi, by the decipher function.
Step 2: Derive the secret key SKij of Cij as

SKij = SIi mod Pij . (3)

Note that the security class Ci also has the abil-
ity to derive any of its descendant’s secret keys by
performing the key derivation algorithm iteratively.

Our scheme achieves true dynamic control in the
sense that only a single key need to be modified each
time we insert a new security class or relationship a-
mong classes, delete an existing security class or re-
lationship among classes, or update a security class
or relationship among classes. When a new secu-
rity class or relationship among classes is inserted
into the hierarchy, the corresponding secret key, se-
cret information, and public information will be de-
termined immediately by algorithm Key-Generation
without changing any previously defined secret keys
or public information. Only the secret information
(SIi) and the public information of the immediate
ancestor of the new security class are changed as fol-
lows:

SIinew = [SIiold + SKi(r+1)G(r+1)G
′
(r+1)] mod PP,

PIinew = ESKi(SIinew).

where SKi(r+1) denotes the secret key of Ci(r+1),
which is the (r + 1)th immediate descendant of Ci

and the inserted class, PP = Pi1×Pi2×· · ·×Pi(r+1),
G(r+1) = PP/Pi(r+1) and G′(r+1) is a value such that
G(r+1) ×G′(r+1) mod Pi(r+1) = 1.

When an existed security class Cij is removed
from the hierarchy, the secret key, secret informa-
tion and public information of Cij is simply dropped
without changing any previously defined secret keys
or public information. If the security class is a leaf
node, only the secret information (SIi) and public
information (PIi) of the immediate ancestor (Ci) of
the removed security class are changed as follows:

SIinew = [SIiold − SKijGjG
′
j ] mod PP,

PIinew = ESKi(SIinew).

If the security class is a non-leaf node, the corre-
sponding secret information and public information
of the immediate ancestor (Ci) of the removed secu-
rity class are changed as that of the above inserting
these new security classes (the immediate descen-
dants of the removed security class).

3 Security Analysis
There are two cases to consider in the security

analysis. One is whether a security class Ci can in-
deed derive the keys of other security classes Cj if
Cj ≤ Ci using Ci’s own cryptographic key. In con-
trast, this is impermissible if Ci 6≥ Cj . The second
case is whether the scheme provides security against
two or more security classes collaborating to derive
a higher level key. In the following, we verify the
security of our method in respect to these two cases.

Theorem 3.1 The proposed scheme satisfies that
Cj ≤ Ci if and only if SKj can be derived by Ci
with SKi, where SKi and SKj are the keys of Ci
and Cj, respectively.

Proof. We divide the proof into the following two
cases.
Case 1: If Cj ≤ Ci then SKj can be derived by Ci
with SKi.
When Ci is an immediate ancestor of Cj , from Step-
s 1 and 2 of algorithm Key-Derivation in Section 2
we know that

SIi = DSKi(PIi),
SKij = SIi mod Pij .

Thus, it is clear that SKij can be derived by Ci with
SKi. By transitivity, SKj can also be derived by Ci
with SKi when Ci is an ancestor of Cj .
Case 2: If SKj can be derived by Ci with SKi then
Cj ≤ Ci.
This case is equivalent to showing that if Cj 6≤ Ci
then SKj cannot be derived by Ci with SKi. Since



in our scheme the secret key of each security class
is determined randomly and independently by that
class, no one can know the secret key of another class
except by knowing directly or indirectly the secret
information of the immediate ancestor of that class.
Ci, Ci 6≥ Cj , cannot evaluate the secret derivation
key (SIj) directly or indirectly from Step 1 of algo-
rithm Key-Derivation in Section 2 unless Ci is able
to attack the existing cryptosystem. Thus, in this
case the security of our scheme depends on that of
the existing cryptosystem. 2

If the available cryptosystem can be attacked then
our scheme can be attacked. In this case, then the il-
legal users can obtain the secret derivation keys (SIi)
of all Cis. It is easy to evaluate the secret key SKij

of the jth immediate descendant of Ci from Equa-
tion (3). Thus, our scheme is insecure.

If our scheme can be broken, the illegal users can
obtain the secret information SIi from the public
information PIi of Ci. This means that the illegal
users can use known-plaintext to attack the following
equation in Step 1 of the algorithm Key-Derivation
in Section 2:

SIi = DSKi(PIi),

where D is a deciphering procedure of the existing
cryptosystem.

It is well known that the existing sysmetric cryp-
tosystem, e.g., DES-like, can withstand known-
plaintext attacks [3]. Therefore, our scheme can
withstand two or more security classes collaborat-
ing to derive a higher level secret information.

4 Computation and Storage Space
Complexity

Since Steps 1 and 2 of the algorithm Key-
Generation in Section 2 require constant time to
compute, we ignore them here. Steps 3 and 5 are
iterative steps for computing the public information
PIi of all security classes. Thus, the algorithm re-
quires n times the computation for constructing the
secret information of a single class if there are n secu-
rity classes in our hierarchy. To compute the secret
information SIi for Ci by the CRT [3] from Step 4.1
of the algorithm Key-Generation in Section 2 re-
quires a total of 2r multiplications, (r−1) additions,
r divisions, and one module operation. Let top(g, h)
denote the time cost of an ”op” operation (i.e., mul-
tiplication, division, addition, or module) with two
bits g and h. We assume that the length of each key
is h bits. The computation of Step 4.1 of algorithm
Key-Generation is as follows:

t4.1 = 2rtmultiplication(rh, h) + (r − 1)taddition(rh, h)
+rtdivision(rh, h) + tmodule(rh, h),

If DES-like is used as the available cryptosystem
in our scheme, it partitions the data text into pieces
of 64 bits each. The computation of Step 4.2 of al-
gorithm Key-Derivation is as follows:

t4.2 = r ∗ dh/64eDES(64),

where DES(64) is the time required to encipher 64
bits of text (secret information) using the DES-like
device. The total processing time of Step 4 of the
algorithm Key-Generation is

t4 = t4.1 + t4.2.

Next, we investigate time complexity of the algo-
rithm Key-Derivation in Section 2. The computa-
tion time of Step 1 of the algorithm Key-Derivation
is the same as that of Step 4.2 of the algorithm Key-
Generation shown in Equation (4). The computa-
tion time of Step 2 of the algorithm Key-Derivation
requires only one module operation. Thus, the
computation time needed for the algorithm Key-
Derivation is as follows:

tKD = t4.2 + tmodule(rh, h).

Dirr and Taylor [4] have designed a fast and
efficient hardware implementation of the CRT in
residue arithmetic. Their method incurs a time
cost of 70dlog2 re ns for computing the equation
SIi = SKij mod Pij , for j = 1, 2, · · · , r. It need-
s only 0.7 seconds to evaluate all secret information
with 106 security classes and 1000 immediate descen-
dants for each class. Thus, our scheme is practical
to implement.

Next, we investigate the storage space needed for
the public information PIi and Pi. From Equa-
tion (2), SIi =

∑r
j=1 SKijGjG

′
j mod

∏r
j=1 Pij , so

the length of SIi is at most that of
∏r
j=1 Pij . Since

SKi ≤ Pi, the length of each Pi requires at least h
bits if that of SKi is h. In order to reduce the space
of Pi, we modify Equation (1) as follows.

SIi = SKij mod P tijij , for j = 1, 2, · · · , r,

where tij is an integer such that the length of P tijij is
greater than that of SKij . If the length of SKij is
512 bits, then we can choose Pij with 24 bits and an
integer tij with 6 bits. The space needed for public
information is apparently less than that needed for
the secret key SKijs.

We compare our scheme with other famous
schemes, Akl-Taylor scheme [1] and Harn-Lin [5]
in computation and storage space. In Akl-Taylor



scheme, the public information and secret informa-
tion of each security class are

PIi =
∏

Cj 6≤Ci

Pj ,

SIi = KPIi
0 mod m,

where Pj is a large prime, m is the product of p
and q, which are two random large primes, and K0

is a random secret key, where 2 ≤ K0 ≤ m − 1,
gcd(K0,m) = 1. In Harn-Lin scheme, the public
information and secret information of each security
class are

PIi =
∏

Cj≤Ci

Pj ,

SIi = g

∏
Cj≤Ci

dj
mod m,

where (Pj ,m) and dj are the same as the public key
and secret key in RSA cryptosystem [2, 19].

Since the secret information need to compute
in exponential operation in Akl-Taylor and Harn-
Lin schemes, their schemes are inefficient than our
scheme because the secret information need to com-
pute in multiplication and addition operations in our
scheme. As to the storage space, Akl-Taylor scheme
requires to store

∏
Cj 6≤Ci Pj , Harn-Lin scheme re-

quires to store
∏
Cj≤Ci Pj , and our scheme requires

to store
∏
Cj<Ci

Pj . It is obvious that the public in-
formation space in Akl-Taylor scheme is larger than
that of Harn-Lin scheme. In addition, the public in-
formation space of our scheme is less one Pj than
that of Harn-Lin scheme.

5 Conclusions
We have proposed a new dynamic cryptograph-

ic key generation scheme to handle the problem of
access control in a partially-ordered hierarchy. Our
scheme has the following advantages:

1. Each security class can determine its own secret
key without relying on a trusted third party.

2. When a new security class is added to the hi-
erarchy, the scheme needs only to compute the
keys for the new class and update the secret in-
formation of its immediate ancestor. There is no
need to change the keys of every security class.

3. When an existing security class is removed from
the hierarchy, the scheme merely drops the keys
of that class and updates the secret information
of its immediate ancestor. Again, there is no
need to change the keys of every security class.

4. The number of public information generated is
small. Therefore, the scheme utilizes memory
space efficiently.

5. The procedures for key generation and deriva-
tion are simple.
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