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Abstract: - In this paper, we present an exact discrete-time queuing analysis of a statistical multiplexer with a 
finite number of input links and whose arrival process is correlated and consists of a train of a fixed number of 
fixed-length packets. The functional equation describing this queuing model is manipulated and transformed 
into a mathematical tractable form. This allows us to apply the final value theorem to extract an exact 
expression for the steady-state probability generating functions (pgfs) of the queue length and packet arrivals. 
From the pgf of the queue length, several performance measures such as probabilities of buffer overflow, 
mean buffer occupancy and mean packet delay are derived. The transform approach used in the present 
analysis provides a general framework under which similar types of functional equations, arising in the 
performance analysis of statistical multiplexers, can be tackled. One of the salient characteristics of the 
analysis presented here is that it does not rely on matrix-geometric concepts such as spectral decomposition, 
probability generating matrix, and left and right eigenvectors 
 
Key-Words: - ATM multiplexers, Performance analysis, Transform analysis, Train arrivals, Functional 
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1   Introduction 
In this paper, we consider a statistical multiplexer 
with N input links, having the same transmission 
rate, and one output link. The multiplexer is 
assumed to have an infinite buffer capacity and 
packets are served on a FCFS basis. The arrival 
process to this multiplexer is correlated and consists 
of a fixed-length packet-train arrival process. The 
main thrust behind our interest in investigating the 
impact of the above train arrival process on the 
performance of switching elements stems from the 
fact that such train arrival models are often 
encountered in the performance evaluation of large-
scale ATM switching networks. For example, in 
some ATM environments, large external data frames 
(e.g voice or IP frames) are segmented at the edge of 
an ATM network into fixed-length ATM cells (mini-
cells).  In other applications [1], the edge ATM 
components are synchronized on a slot basis (time to 
carry one ATM cell) while the backbone (interior) 
ATM components operate on a mini-slot basis (a 
smaller time unit, used to carry a mini-cell). In this 
special environment, the edge ATM switching 
elements convert each ATM cell into a fixed number 
of m mini-cells which are then switched downstream 
the network. In this sense, the train arrival process 
considered in this paper captures the mini-cell 

arrival process on each internal link. Discrete-time 
queuing models with correlated train arrivals are 
also encountered in various other applications 
whereby customers are messages (eg. Frames or 
jumbo packets) composed of multiple fixed-length 
packets, see eg. [2].  
 
In this paper, we model an ATM multiplexer as a 
discrete-time queue, whose arrival process consists 
of mini-cell arrivals (thereafter referred to train 
arrivals). A functional equation describing this 
system has been derived in [1]. However, as pointed 
out in [1], it is very difficult to derive the exact 
probability generating function (pgf) of the buffer 
occupancy from the functional equation. As a result, 
we manipulated and transformed the functional 
equation describing this queuing model into a 
mathematical tractable form. This allows us to apply 
the final value theorem to extract an exact 
expression for the corresponding steady-state 
probability generating function. The proposed 
transform approach for solving this functional 
equation is an extension of an earlier approach [3] in 
the analysis of ATM multiplexers with correlated 
arrivals. From this pgf, we derive a closed-form 
expression for the mean buffer occupancy and show 
that it is equivalent to the expression derived in [1], 



despite the unavailability of the exact expression of 
the pgf there. Using the results in [4], we derive 
exact expressions for the probability generating 
function and the mean of the packet delay.  
The remaining of this paper is organized as follows: 
In section 2, we describe the queuing model and 
present the functional equation for the m-
dimensional pgf of the state vector. In section 3, the 
above functional equation is transformed into a new 
form that is mathematically tractable. Exact 
expressions for the steady-state marginal pgf of the 
packet arrival process and the queue length are 
presented in sections 4 and 5, respectively. In 
section 6, we use the marginal pgf of the queue 
length to derive expression for the mean buffer 
occupancy. In section 7, some results related to the 
packet delay are presented. In section 8, we illustrate 
the results of the paper through some numerical 
results. A summary of the main findings of the 
papers and recommendations for future research are 
provided in section 9. 
 
 
2 Queuing Model and Functional 
Equation 
In this paper, we consider a discrete-time queuing 
system (figure 1) with infinite buffer capacity, N 
input links, one output link and a single (FCFS) 
deterministic server. The time axis is divided into 
equal length slots and packet transmission is 
synchronized to occur at the slot boundaries. Here a 
slot is the time period required to transmit exactly 
one packet from the buffer, and a message enters the 
buffer as a train at a fixed rate of one packet per slot. 
We further assume that each message is composed 
of a fixed number of m packets. In addition, traffic 
on different input links is assumed to be independent 
and with the same statistical characteristics.  
 

 
Fig.1. Statistical multiplexer with N input links and 
m packets/train 
 
On any input link, the probability that the first 
(leading) packet of a message enters the buffer in 
any given slot is q if the first packet of the previous 
message on this link did not enter the buffer during 
the previous (m-1) slots and it is 0 otherwise. 

Further, let {cj ; j ≥1) be a series of independent and 
identical Bernoulli random variables with pgf  
 

C(z) = 1-q + qz 
The queuing model under consideration can be 
formulated as a discrete-time m-dimensional 
Markov chain. The state of the system is defined by 
the state vector (lk, a1,k,a2,k,..am-1,k) where lk is the 
queue length at the end of slot k and an,k (0<n<m) is 
the number of input links having sent the nth packet 
of a message to the buffer in slot k. 
Next let: 
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denote the joint pgf of the system state vector. 
This type of statistical multiplexers with correlated 
train arrivals was modeled in [1] and a functional 
equation describing the pgf of the system state 
vector was derived and is given by the following 
expression [1]:  
 

      

Where pk(0) = Prob (lk=0)  is the probability of an 
empty buffer at the end if the kth slot and   

C(x1z) = 1-q + qx1z. 
Applying the classical argument that as k → ∞, the 
sequences of the functions ),...,,,( 13211 −+ mk xxxxzQ  
and ),...,,,( 1321 −mk xxxxzQ  converge to the same
  limiting function, namely ),...,,,( 1321 −mxxxxzQ , 
yields the following functional equation relating the 
steady-state joint pgf of the system [1]: 
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where p(0) is the steady-state probability of an 
empty buffer. It is clear from the above approach 
that it does not allow the derivation of the steady-
state join pgf of the system since the functional 
equation cannot be solved. By letting the arguments 
of the Q-function on the left hand side and the right 
hand side of equation (2) be equal to each others, 
closed-form expression for the mean buffer 
occupancy was derived in [1], despite the 
unavailability of the steady-state pgf there. One of 
the aims of this paper is to show how to tackle such 
type of functional equations in order to extract an 
exact expression for the steady-state pgf of the 
queue length 
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3. Transforming the Functional 
Equation into a New Form 
 
In this section, we show how to transform the 
functional equation (1) of the system into a new 
form that will lead itself to a solution.  
 
3.1 Proposition 1 
 
Let u(k) be defined by the following recurrence 
relationship: 
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where i =1,2,…m-1 and where xm =1 for notational 
convenience.  
 
Then u(k) can be expressed in terms of a new 
sequence J(k), defined as follows: 

 
 

 
Where the sequence J (k) is defined by the mth-order 
linear homogeneous “difference” equation: 
 
 
 
With the following m initial conditions: 
 
 
 
 
The proof of the above proposition is readily 
obtained by induction and will not be given here.  
 
3.2 Proposition 2 
 
Let )(kiΦ be defined by the following recurrence 
relationship: 
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where i =1,2,…m-1 and where xm =1 for notational 
convenience. Then )(kiΦ can be expressed in terms 
of the sequence J(k), above, as follows: 
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The proof of the above proposition is readily 
obtained by induction and can be found in [5].  
Next, we rewrite the functional equation (1) into a 
more suitable form. First, let [ ]NkukB )()( = , then 
taking into account the definitions of B(k) and 

)(kiΦ , as defined before, we can re-write the 
functional equation (1) as follows: 
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The next theorem presents a major result in the 
paper, as it allows us to re-write the functional 
equation of the statistical multiplexer into a 
mathematically tractable form.  
 
3.3 Theorem 1 
 
The functional equation (1) describing the queuing 
model under consideration can be written as follows: 
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where the summation is taken to be empty for k=0.  
The proof of (3) is obtained through simple 
induction and can be found in [5]. 
It is interesting to note that the transient joint pgf of 
the queuing model under consideration, as expressed 
in (3) is now explicitly defined in terms of the initial 
joint pgf at slot 0, the sequences )(kJ and )(kΦ as 
well as the transient probabilities of an empty buffer 
pk(0). Further, the Markovian property of the 
queuing system under consideration implies that the 
steady-state behavior of the queuing model is 
independent of the initial conditions, embedded in 
the ))(),...,(),(,( 1210 kkkzQ m−ΦΦΦ term in equation 
(3). Therefore, without any loss of generality, we 
can assume zero initial conditions, where the buffer 
is initially empty with all links being ‘idle’. 
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Substituting  1),...,,( 1210 =−mxxxzQ  for zero initial 
conditions in (3) yields: 
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4. Steady-State Marginal PGF of the 
Packet Arrival Process 
 
First, we determine the steady-state pgf of the packet 
arrival process. Let: 
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 be the (m-1)-dimensional transient pgf of the 
random variables a1,k,a2,k,..am-1,k.  Also, let 
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be the corresponding steady state pgf, where           
ar (1≤ r ≤ m-1) denotes the number of links having 
sent their rth packet of a message to the buffer in an 
arbitrary slot in steady state. 
From (4): 
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To derive the steady-state pgf 

[ ]Nkm kJxxxA )(ˆlim),...,( 121 ∞→−∞ = , we will make use 
of the following proposition: 
 
4.1 Proposition 3: 
 
Let us define the following transform: 
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The proof to the above proposition is readily 
obtained by simple transformation techniques and 
can be found in [5]. 
Next, we determine the steady-state joint pgf of 
a1,a2,..am-1  by applying the final value theorem to 
(5) 
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From the above, we note that )(ˆ)1(lim 1 wGww −−→  

is zero, except at the single singularity where the 
denominator of )(ˆ wG is equal zero at w=1. Hence : 
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which yields the following explicit expression of the 
steady-state pgf of the random variables a1,a2,..am-1  : 
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The packet arrival process in the steady-state, is 
explicitly characterized the m-dimensional joint pgf, 

),,....,( 121 mm xxxxA −  , of all random variables 
a1,a2,..am-1, am, which, from (7), is given by: 
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Next, let Ar(xr) denotes the marginal pgf of ar (1≤ r 
≤ m. This marginal pgf can be derived from the joint 
pgf (8) by setting xk=1 for ( 1≤ k≤ m and k ≠ r), 
giving: 
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From (9), the steady-state arrival rate of the packets 

to the system is given by
qm

Nqm
)1(1 −+

. Since the 

service rate is one packet/slot, the load of the system 
is: 
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and for a stability, we require that ρ <1 . 
Note that expression 9, describing the arrival 
process and expression (10) for the load of the 
system are equivalent to those derived in [1]. The 
only difference is that while these derivations in [1] 
were based on probabilistic arguments related to 
packet arrivals, our results were derived directly 
from the joint pgf of the system.  
 
5. Steady-State Marginal PGF of the 
Queue Length  
 
In this section, we determine the steady-state 
marginal pgf of the queue length. Let 
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marginal pgf of the buffer occupancy at the end of 
the kth slot, assuming zero initial conditions. From 
(4): 
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In order to extract the steady-state marginal pgf P(z) 
= )(lim zPkk ∞→ of the queue length from the above 
expression, we will make use of the following 
proposition: 
 
5.1 Proposition 4: 
 
The function 1... 121
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and iλ ’s (i=1,2, ..m) are the m distinct roots of the 
characteristic equation: 
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The proof of the above proposition is readily 
obtained via simple transform techniques and can be 
found in [5]. 
From (14), it is obvious that one of the roots has the 
property that 11==zλ . This particular root is 

thereafter denoted by mλ  
Next let us define the following transforms ( 1≤w ): 
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Now substituting Pk(z) from (11) into P(z,w), as 
defined in (15): 
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Interchanging the order of summations in the second 
term and recognizing P(w) defined in (15), yields 
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Substituting for the Multinomial expansion and 
interchanging the order of the summation,  

( )

( )
jm

i

nj
ii

j mNnnn

km

i

nk
ii

k mNnnn

z
wC

nnn
NwPz

z
wC

nnn
NwzP

i

m

i

m
















−+
















=

=

−
∞

==+++

=

−
∞

==+++

∑∑

∑∑

11 21...

10 21...

!!...!.
!)()1(

!!...!.
!),(

21

21

λ

λ

 
Separting the inner summations, and simplifying 
gives: 
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Next, we determine the steady-state PGF of the 
queue length by applying the final value theorem to 
the last expression, 
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In P(z,w) the first term is transient while the second 
term leads us to the steady-state, thus we have: 
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Substituting this into P(z)  gives the final expression 
for the steady-state PGF of the queue length, 
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Though the stability condition of the system was 
already determined in section 4.1, it can also be 
determined from the normalization condition 

1)( 1==zzP , as follows: 
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particular root was previously denoted by mλ . Then 
it is convenient to re-write the steady-state PGF of 
the queue length as follows: 
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Note that in the above expression F(1)=0, H(1)=1, 
and G(1) =1. Differentiating both sides of the above 
equation with respect to z and setting z=1 
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to verify that 
)1(1

)1('
−+

−
=

mq
mq

mλ and 

therefore
qm

Nqm
)1(1 −+

=ρ , in accordance with (10).  

Note that for small values of m, more explicit 
expressions for the PGF of the queue length can be 
obtained from (14) and (16). For instance, for m=1 
we get : 
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6. Mean Buffer Occupancy 
Let N denote the mean buffer occupancy in steady-
state. By differentiating (17) twice with respect to z 
and setting z=1 and the resulting expression, we get: 
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The above expression (18) can also be expressed in 
terms of the load ρ of the system to yield: 
 

( ) ( ) )19(
)1(2

)1(1
)1(2

1 3

2

2

ρ
ρ

ρ
ρρ

−
−−

−
−

−
+=

m
N

Nm
N

NN

The above expression is equivalent to the 
corresponding result in [1] without the availability 
of the PGF of the queue length. Higher moments of 
the buffer occupancy can also be obtained by 
successive differentiation of (17) but will not be 
given here. 

 
7. Steady-State packet Delay 
Let D(z) be the PGF of the delay of an arbitrary 
packet in steady-state. This delay represents the 
number of slots between the end of the packet’s 
arrival slot and the end of the packet’s transmission 
slot. In [4] it was shown that for any discrete-time 
single-server queuing system, with FCFS queuing 
discipline and constant service time of one slot, D(z) 
is related to the PGF of the queue length, P(z), 
through the following relationship: 
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The above result will be most useful in the 
derivation of the moment of packet delay. In 
particular, let d denote the average packet delay, 
then from (19) and (20): 
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8. Numerical Results 
 
In this section, we illustrate our solution method 
through some numerical examples, illustrated in 
figures 2 and 3 below. First, the overflow 
probability (packet loss rate) due to a finite buffer 
size (S) is often approximated by the probability that 
the buffer occupancy in an infinite buffer system 
exceeds the proposed buffer size (i.e. Prob ( l > S)). 
In our case, exact probabilities can be computed by 
observing that the required probabilities correspond 
to the coefficients of ZS, in the polynomial

z
zP

−
−
1

)(1 . 

These probabilities, derived from the Taylor series 
expansion, using Maple™ [6] computational 
software, are illustrated in figure 2, below. As may 
be seen from figure 2, and as expected, the 
probability of overflow gets larger as the correlation 
of the packet arrival process increases. Note that the 



probability of overflow curve for m=1 corresponds 
to the uncorrelated case.  
 

 
 
Fig.2  Probability of overflow versus buffer size, 
ρ=0.8 Erlang, N=4,8 and m=1,2  
 
Figure 3 also presents some results related to the 
mean packet delay. We also note from this figure the 
negative effect of correlation (increasing m) on the 
average packet delay.  
 

 
 
Fig.3 Mean packet delay versus load ρ, for N=5 and 
m=1,4,8,16,32,64, and 128 

 
9.  Conclusions and Suggestions for 
Further Research 
 
In this paper, we have carried an exact queuing 
analysis of a statistical multiplexer with a finite 
number of input links and whose arrival process 
consists of a train of a fixed number of fixed-length 
packets. By means of a generating functions 
approach, coupled with functional transformation 

techniques, we were able to extract an exact 
expression for the steady-state probability 
generating functions (pgfs) of the queue length and 
packet arrivals. From the pgf of the queue length, 
several performance measures such as mean buffer 
occupancy, mean packet delay and buffer overflow 
probabilities were derived. The transform approach 
used in the present analysis provides a general 
framework under which similar types of functional 
equations, arising in the performance analysis of 
statistical multiplexers, can be tackled. Unlike other 
queuing methods such as those based on matrix 
geometric and spectral decomposition approaches, 
our solution provides more explicit results, which 
are not in general matrix form. Further, the results 
presented in this paper have diverse applications in 
the buffer dimensioning, congestion control, and 
resource management of the queuing model under 
consideration. This work can be further explored in 
many directions. For example, since the inversion of 
the steady-state pgf of the queue length is not trivial, 
tight upper-bounds for the tail distribution of the 
buffer occupancy ought to be derived. This is left for 
future research.  
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