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Abstract: –In this paper a new dynamic phenomenon in nonlinear circuits driven by two sinusoidal 
signals is investigated. By exploiting state-space analysis, the paper shows that the application of 
signals with slightly different frequencies enables the phenomenon of chaotic beats to be obtained. 
Moreover, the power spectral density and the Lyapunov exponents are computed, with the aim of 
confirming the chaotic nature of the beats. Finally, in order to analyze in detail the beats phenomenon, 
the case of two sinusoidal signals with equal frequencies is discussed. 
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1 Introduction 
 

The study of dynamic phenomena in nonlinear 
systems is an important research topic. In 
particular, in recent years several complex 
behaviors have been observed, including quasi-
periodic oscillations, period-adding sequences, 
subharmonics and torus breakdown to chaos [1]-
[6]. Furthermore, intermittent transitions, 
generation of multi-scroll attractors and 
synchronization properties have been found in 
nonlinear circuits [7]-[10]. 
Referring to nonautonomous systems, in [11] 
their behavior has been investigated in the 
presence of two sinusoidal inputs characterized 
by slightly different frequencies. Note that such 
behavior has been widely studied in linear 
systems and has been called “beats” [12]. 
Namely, when two waves characterized by 
slightly different frequencies interfere, the 
frequency of the resulting waveform is the 
average of the frequencies of the two waves, 
whereas its amplitude is modulated by an 
envelope, the frequency of which is the 
difference between the frequencies of the two 
waves [12]. By generalizing this concept, in [11] 
the generation of chaotic beats in nonlinear 
systems with very small nonlinearities has been 
studied. 

Based on these considerations, the aim of this 
paper is to investigate the phenomenon of beats 
in nonlinear circuits, rather than in nonlinear 
systems. To this purpose, by exploiting the early 
results obtained for the circuit proposed in [15], a 
detailed state-space analysis of the chaotic beats 
is carried out. The paper is organized as follows. 
In Section 2, based on the nonlinear circuit 
illustrated in [15], it is shown that the application 
of two sinusoidal signals (characterized by large 
equal amplitudes and slightly different 
frequencies) enable chaotic beats to be generated. 
In particular, a detailed state-space analysis of 
chaotic beats and corresponding envelopes is 
carried out. Additionally, the power spectral 
density and the Lyapunov exponents are reported, 
with the aim of confirming the chaotic nature of 
the phenomenon. Finally, Section 3 analyzes the 
behaviour of the proposed circuit driven by two 
sinusoidal signals with equal frequencies. 
 
2 Generating  Chaotic  Beats 
 

2.1   Proposed nonlinear circuit 
 

Based on the approach developed in [15], the 
circuit considered herein (Fig.1) contains two 
external periodic excitations, a capacitor, an 
inductor, a linear resistor and a nonlinear 
element, namely, the Chua’s diode. 
 



 

 
 

Fig.1 The considered circuit for generating chaotic beats. 
  
The state equations for the voltage vC across the 
capacitor C and the current iL through the 
inductor L can be written as: 
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where f1 and f2 are the amplitudes of the periodic 
excitations whereas Ω1 and Ω2 are their angular 
frequencies. The nonlinearity 
 

g(vC) = Gb vC  + 
 

             + (Ga – Gb)(| vC  + Bp| – | vC – Bp |)/2     (2) 
 

is the mathematical representation of the piece-
wise linear characteristic of the Chua’s diode 
[13].  Rescaling   Eq.s   (1)-(2)   as   vC = x1 Bp,  
iL = x2Bp/R,  ω1 = Ω1CR,  ω2 = Ω2CR,  t = τ CR 
and then redefining τ as t, the following set of 
dimensionless equations are obtained: 
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where β = R2 C /L, F1 = f1 β /Bp and F2 = f2 β /Bp. 
Furthermore, 
 

g(x1) = bx1 + (a – b)(| x1 + 1| – | x1 – 1|)/2,         (4) 
 

where a = Ga R and b = Gb R. Note that the 
dynamics of system (3)-(4) depend on the 
parameters β, a, b, ω1, ω2, F1 and F2. 

2.2   Generation of chaotic beats 
 

For the present analysis the parameters a = –1.27 
and b = –0.68 are fixed, whereas the remaining 
parameters  β,  F1, F2,  ω1 and ω2 have to be 
properly chosen. Since the aim of the paper is to 
develop a detailed analysis of the chaotic beats in 
the considered circuit, several numerical 
simulations are carried out for different values of 
the bifurcation parameters β, F1, F2 and for 
slightly different values of the frequencies ω1 and 
ω2. In particular, it is interesting to analyze the 
circuit behavior for  β = 0.680044, F1 = F2 = 200, 
ω1 = 0.49 and ω2 = 0.50. To this purpose, Fig. 2 
illustrates the time behavior of the state variable 
x1, giving a first idea about the occurrence of 
chaotic beats. 
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Fig.2 Time behavior of  x1 for  t ∈ [9000, 15000]. 

 
Moreover, by computing the power spectral 
density of the envelope of the signal x1 (Fig.3), it 
is possible to confirm the chaotic nature of the 
beats phenomenon. 
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Fig.3 Power spectral density of the envelope of the signal x1. 



 

Additionally, the Lyapunov exponents of system 
(3) are calculated. In particular, the 2th-order 
time-periodic nonautonomous system (3) is 
converted into a 3th-order autonomous system by 
appending an extra state variable [14]. Thus, 
since sinusoidal forcing terms in Eq.(3) are 
treated as a parameter, a null exponent is 
obtained. Namely, the Lyapunov exponents are: 
 

λ1 = 1.8893e–005,   λ2 = 0.00000, 
 

  λ3 = –2.3767e–005. (5) 
 

Notice that the presence of one positive 
Lyapunov exponent further confirms the chaotic 
dynamics of the considered circuit. 
 
2.3   State-space analysis of chaotic beats 
 

In order to analyze in detail the chaotic amplitude 
modulation of the beats, several phase portraits 
are carried out in the (x1, x2)-state space at 
different time units. Such instants have been 
chosen by considering the most significant 
amplitude changes in the time behavior of the 
state variable x1 (see Fig. 4 and consider instants  
t = 105, 307, 440, 545, 655, 777). The 
corresponding phase portraits are reported in Fig. 
5(a)-(f). 
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Fig.4 Time behavior of the state variable x1 for t ∈[0, 1000]: 
the amplitude reaches relative maximum or minimum values 
for t = 105, 307, 440, 545, 655, 777. 
 
In particular, Fig.4 and Fig.5(a) show that the 
circuit dynamics start from the origin and expand 
until x1 approximately reaches the values ±23700. 
Then, Fig.4 and Fig.5(b) illustrate that the 
trajectory of variable x1 shrinks back until the 
values ±9100 are approximately reached. In Fig.4 
and Fig.5(c) the dynamics expand again until 
they reach the values ±25500, whereas in Fig.4 

and Fig.5(d) the trajectory goes toward the origin. 
Successively, in Fig.4 and Fig.5(e) the values 
±26900 are approximately reached. Finally, Fig.4 
and Fig.5(f) show that the dynamics contract 
again, until the values ±7100 are reached. 
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(b) 
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(d) 
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(e) 
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Fig.5  Phase portraits in the (x1, x2)-state space. (a): time t = 
105; (b): time t = 307; (c): time t = 440; (d): time t = 545; 
(e): time t = 655; (f): time t = 777. 
 
These expanding and contracting behaviors go on 
chaotically for increasing times. An example of 

the attractor, obtained for large time, is reported 
in Fig.6, where the maximum/minimum values of 
x1 are ±28400. 
 
Based on the state-space analysis developed 
herein, it can be concluded that for the parameter 
values given by: 
 

 β = 0.680044, a = –1.27, b = –0.68, (6) 
 

 F1 = F2 = 200, (7) 
 

 ω1 = 0.49, ω2 = 0.50, (8) 
 

the suggested circuit is able to generate the new 
phenomenon of chaotic beats. 
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Fig.6  Phase portraits of the attractor in the (x1, x2)-state 
space for large t. 
 
3    Generating Periodic Beats 
 

This Section try to answer to the following 
question: are the chaotic beats preserved when 
equal frequencies ω1 = ω2 are chosen in the 
considered nonlinear circuit? To this purpose, the 
dynamics of system (3) are analyzed for the 
parameter values (6)-(7), whereas equal 
frequencies ω1 = ω2 = 0.49 are chosen. The 
resulting time waveforms of the state variable x1 
are reported in Figure 7(a)-(b) for different 
resolutions of the time scale. Differently from the 
previous Section, Figure 7 clearly highlights that 
in this case the expanding and contracting 
behavior goes on periodically for increasing 
times. More precisely, Figure 7(a) highlights the 
presence of beats due to a periodic envelope, 
whereas Figure 7(b) reveals in the signal x1 also 
the presence of a fundamental frequency. Based 
on the analysis developed through this Section, it 
can be concluded that for the parameter values 



 

(6)-(7) and equal frequencies 
 

 ω1 = ω2 = 0.49, (9) 
 

the chaotic beats are not preserved. However, 
notice that in this case the considered nonlinear 
circuit exhibit periodic beats, similarly to the 
phenomenon obtained in linear systems. 
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Fig.7  Behaviors of the state variable x1 for different 
resolutions of the time scale; (a): t ∈ [11000, 15000]; (b): t 
∈ [14400, 15000]. 
 
4 Conclusions 
 

In this paper a new dynamic phenomenon in 
nonlinear circuits driven by two sinusoidal 
signals has been investigated. In particular, state-
space analysis has shown that the application of 
signals with slightly different frequencies enables 
chaotic beats in nonautonomous circuits to be 
obtained. Finally, it has been shown that the 

application of signals with equal frequencies 
enables periodic beats to be obtained. 
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