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Abstract: − This paper presents a new output feedback technique for synchronizing chaotic circuits. In 
particular, it is shown that synchronization can be systematically achieved via a scalar signal for a 
large class of chaotic systems. The approach is successfully applied to the recently proposed Chua’s 
circuit with x|x| nonlinearity. 
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1   Introduction 
 

In their seminal paper, Carroll and Pecora have 
shown that the dynamics of two chaotic systems 
(designed as a master-slave system) synchronize 
if all the Lyapunov exponents of the slave are 
less than zero, assuming that both the systems 
have initial conditions in the same basin of 
attraction [1]. Successively, different 
synchronization methods have been proposed. In 
particular, linear combinations of the transmitted 
state variables [2], parameter control methods [3] 
and observer concept [4] have been developed 
with the aim of synchronizing complex chaotic 
dynamics via a scalar signal. Additionally, a 
theoretic approach based on state feedback 
technique has been recently proposed in [5]. 
However, such interesting method does not 
guarantee chaos synchronization via a scalar 
transmitted signal.  
Based on these considerations, this paper aims to 
give a further contribution in the field of 
synchronization techniques. Namely, an output 
feedback method for synchronizing chaotic 
circuits via a scalar signal is illustrated. The 
proposed approach has the following features: 
a) it enables synchronization to be achieved in a 

systematic way; 
b) it can be successfully applied to several well-

known chaotic and hyperchaotic systems; 
c) it enables the scalar transmitted signal to be 

easily designed. 

The paper is organized as follows. Section 2 
illustrates the proposed output feedback 
approach. In particular, Section 2 shows how 
chaos synchronization can be achieved by 
exploiting linear control theory [6]. Section 3 
illustrates the application of the proposed 
technique to the novel Chua’s circuit with x|x| 
nonlinearity [5]. Finally, Section 4 shows that the 
proposed approach can be successfully applied to 
a large class of hyperchaotic circuits. 
 
2   Synchronization via Output Feedback 
 

We start by considering a chaotic system for 
which state and output equations can be written, 
respectively, as 
 

 ( ) ( ) ( ( ))t t t= +&x Ax g x  (1) 
 

 ( ) ( ( ))y t h t= x  (2) 
 

where n n×∈ℜA , ( ) n∈ℜg x  is a nonlinear 
function, h is a scalar function and y is a generic 
scalar output. By exploiting output feedback 
approach, the response system can be designed 
as follows: 
 

 ( ) ( ) ( ( )) ( ( ) ( ))t t t y t y t= + + −&% % % %x Ax g x F  (3) 
 

 ( ) ( ( ))y t h t= %% x  (4) 
 

where ( ( ) ( ))y t y t= − %u F ∈ℜn is an output 
feedback control input vector and F is a 



 

nonlinear function. In order to achieve 
synchronization, F has to be constructed so that 
the synchronization error system 
 

 ( ) ( ( ) ( ))t t t= − && & %e x x  (5) 
 

possesses an asymptotically stable equilibrium 
point at the origin. This objective can be 
achieved in two steps. 
 

Step 1 
 

It consists in making the error system (5) linear 
time-invariant when the output feedback input 
vector u is properly chosen. To this purpose a 
proposition is given. 
 

Proposition 1:  Given the response system (3)-
(4), let  
 

 ( ) ( )f=% %g x b x  (6) 
 

be the nonlinear function in (3), where b∈ nℜ  is 
a constant vector and ( )f %x  is a scalar 
nonlinearity. Moreover, let 
 

 ( ) ( )y h f= = +% % %% x x kx  (7) 
 

be the scalar output (4) with 
1

1 2, ,... n
nk k k ×  = ∈ℜk , and let 

 

 ( ( ) ( )) ( )y t y t y y= − = −% %u F b  (8) 
 

be the output feedback input vector in (3). Then 
the error system (5) becomes linear time-
invariant and can be written as: 
 

 ( )=&e A bk e- . (9) 
 

Proof: By taking into account (1) and (6), it 
follows that ( ) ( )f=g x b x . Moreover, from (2) 
and (7) it follows that ( ) ( )y h f= = +x x kx . 
Therefore the error system (5) becomes: 
 

[ ( )] [ ( ) ( )]
  ( )

f f y y= − = + − + + − =
= − = −

&& & % % % %e x x Ax b x Ax b x b
Ae bke A bk e

 

This completes the proof. 
 

Step 2 
 

It consists in stabilizing the error system (5) at 
the origin. To this purpose a proposition is given.   
 

Proposition 2: If Proposition 1 holds, the drive 
and response systems described by (1)-(4) are 

globally asymptotically synchronized by a 
suitable feedback gain k, provided that the pair 
(A, b) is controllable. 
 

The proof of Proposition 2 follows from linear 
control theory [6]. Namely, the error system (9) 
is globally asymptotically stabilized at the origin 
if its controllability matrix is full rank. 
 
3   Case study: Chua’s circuit with  x|x| 
 

Herein the proposed technique is applied to a 
recently introduced version of Chua’s circuit, 
which includes the novel x|x| nonlinearity [5]. 
The state and output equations of the Chua’s 
circuit with x|x| can be written in form (1)-(2) as: 
 

 
1 1 1

2 2

3 3

0 0 ( )
1 1 1 0
0 0 0

x x f x
x x
x x

α α

β

      
      
      
            

−
− +
−

&
&
&

=  (10) 

 

 ( ) ( ( ))y t h t= x  (11) 
 

where 1 1 1 1( )f x ax bx x= +  is the circuit 

nonlinearity. The parameters reported in [5] 
enable to obtain the chaotic attractor in Fig.1. 
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Fig. 1. Chaotic attractor in Chua’s circuit with x|x|. 
 
The state and output equations of the response 
system can be written in the form (3)-(4) as: 
 

 
1 1 1

2 2

33

0 0 ( )
1 1 1 0 ( )
0 0 0

x x f x
x x y y

xx

α α

β

                              

−
− + + −
−

&% % %
&% % %
& %%

= F  

 (12) 
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 ( ) ( ( ))y t h t= %% x . (13) 
 

According to Proposition 1, let 
 

 
1

1

( )
( ) 0 ( ) 0 ( )

0 0

f x
f f x

α α   
   
   
     

− −
= = =

%
% % %g x b x  (14) 

 

be the nonlinearity in (12). Moreover, let 
 

 
1 1 1 2 2 3 3

( ) ( )
( )

y h f
f x k x k x k x

= = +
+ + +

% % %%
% % % %

x x kx =
             =

 (15) 

 

be the scalar output (13). Finally, let 
 

 ( ( ) ( )) ( )y t y t y y= − = −% %u F b  (16) 
 

be the output feedback control input vector in 
(12). Therefore the equations of the drive and 
response systems become: 
 

 
1 1

2 2 1

3 3

0 0
1 1 1 0 ( )
0 0 0

x x
x x f x
x x

α α

β

      
      
      
            

−
− +
−

&
&
&

=  (17) 

 
 1 1 1 2 2 3 3( )y f x k x k x k x= + + +  (18) 
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2 2 1

33

0 0
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0

x x
x x f x

xx

y y
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−
− + +
−
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& %%

%

=

 (19) 

 

 1 1 1 2 2 3 3( )y f x k x k x k x= + + +% % % % % . (20) 
 

The circuit parameters reported in [5] are: α = 
9.78, β = 14.97, a = -1/6, and b = 1/16. These 
values guarantee that the pair (A, b) be 
controllable. As a consequence, the eigenvalues 
of the error system (9) can be placed anywhere in 
the left half plane. This implies that the two 
Chua’s circuits are globally synchronized. 
Namely, synchronization is achieved regardless 
of the initial conditions of the response system. 
Now, three different cases are discussed. 
 
Case 1): 1 2 30, 0, 0k k k≠ ≠ ≠ . 
 

By placing the eigenvalues in 
 

{–4.638, –2.093±j1.390}, 
 

it results 
 

k = [–0.8000  –1.3000  –0.6000]. 
 

The time behavior of the synchronization error e1 
is reported in Fig.2. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 2. Time behavior of the error e1 in Case 1). 

 
Case 2): 1 3 20, 0, 0k k k≠ ≠ = . 
 

By placing the eigenvalues in 
 

{–4.346, –0.772±j1.665}, 
 

it results 
 

k = [-0.5000  0  -0.4000]. 
 

The time behaviors of the errors e1 and e2 are 
reported in Fig.3. 
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(b) 
 

Fig. 3. (a): time behavior of error e1 in Case 2); (b): 
time behavior of error  e2  in Case 2).  
 
Case c): 1 2 30, 0, 0k k k≠ = = . 
 

By placing the eigenvalues in 
 

{-29.675,-3.332±j3.833}, 
 

it results 
 

k = [-0.3000   0   0]. 
 

The time behaviors of the synchronization errors 
are reported in Fig.4. 
 

Remark 
A significant feature of the proposed output 
feedback technique is the flexibility of designing 
the transmitted signal in different ways. In 
particular, note that in Case 3) synchronization is 
achieved by using only one state variable (i.e., 
x1). 
 
4   Hyperchaos Synchronization 
 

Now, we show that the proposed approach can be 
applied to some well-known hyperchaotic 
circuits. 
 

4.1   Matsumoto-Chua-Kobayashi circuit 
 

This hyperchaotic circuit contains only one 
nonlinear element, a three-segment piecewise-
linear resistor [7]. Its dynamics can be written as: 
 

( )
1 1

2 2
2 1

3 3

4 4

0 0 2 0 2
0 0 0 20 20
1 0 1 0 0
0 1.5 0 0 0

x x
x x

g x x
x x
x x

      
      
      
      
      

            

−
− −

+ −

&
&
&
&

=  

where g(· ) is the piecewise-linear function 
given by: 
 

( )
( )

2 1 2 1

2 1 2 1                    

( ) 3

1.6 1 1

g x x x x

x x x x

+− = −

− − − − − +
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 4. Time behaviors of   e1, e2 and e3  in Case 3). 



 

Since the pair (A, b) is controllable, the 
eigenvalues of the synchronization error can be 
moved anywhere. By placing them in 
 

{–0.3351±j6.6322, –0.1649±j0.8081}, 
 

it results 
 

k=[1 0 0 -0.5]. 
 

Notice that synchronization is achieved by using 
only two state variables in the scalar transmitted 
signal y(t). 
 
4.2   4D hyperchaotic oscillator 
 

The 4D hyperchaotic oscillator proposed in [8] is 
now considered. Its dynamics can be written in 
dimensionless form as in [8]: 
 

( ) ( )

1 1

2 2

3 3

4 4

4 4

0.7 1 1 0
1 0 0 0
3 0 0 3
0 0 3 0

0
0

                                      1 1
0
30

x x
x x
x x
x x

x H x

    
    
    
    
    

        
 
 
 
 
 
  

− −

+
−

+ − −

−

&
&
&
&

=

 

 

where ( ) 0 if <0; ( ) 1 if 0H u u H u u= = ≥ . 
 

Also in this case (A, b) is controllable, that is, the 
eigenvalues of the synchronization error can be 
placed anywhere.  By  placing  them  in 
 

{–26.2436, –2.8894, –0.0835±j1.1396}, 
 

it results 
 

k=[0 0 1 –1]. 
 

Again, global synchronization is achieved by 
using only two state variables in the scalar 
transmitted signal. 
 

Remark 
The proposed method can be successfully 
applied to a wide class of chaotic and 
hyperchaotic systems. In particular, by 
computing the rank of the controllability 
matrices, it can be shown that Chua’s circuit [9], 
Chua’s oscillator [9], their modified versions 
[10]–[11], Rössler system [12], the oscillator 
with gyrators in [13] and the circuit with 
hysteretic nonlinearity in [14] can be globally 
asymptotically synchronized via output feedback 
method. 

5 Conclusions 
 

This paper has shown that output feedback 
technique represents an effective and practical 
tool for achieving chaos synchronization. In 
particular, the paper has proved that a large class 
of chaotic and hyperchaotic systems can be 
systematically synchronized via a scalar signal. 
In order to show how the technique works, the 
method has been applied to Chua’s circuit with 
x|x| nonlinearity. 
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