
Enumerative and Structural Aspects of
Incomplete Generating Languages

MARTIN JURÁŠ
Department of Mathematics

North Dakota State University
Fargo, ND 58105–5075

United States

Abstract: In this paper we launch a systematic study of a subclass of ∞-regular languages called
incomplete generating languages. These languages represent a non-deterministic output of a com-
puter with finite operational memory, where the decisions are made by observing previous k states.

Key-Words: Incomplete generating language, Finite automaton, Regular language.

1 Introduction
Richard Büchi [1] gave a decision procedure for
the sequential calculus, by showing that each
well formed formula of the system is equiva-
lent to a formula which says something about
the infinite input history of a finite automaton.
Similar concepts were also discovered by oth-
ers while studying a problem in asynchronous
switching theory. This motivates a notion of
an ω-language constructed by a finite acceptor.
McNaughton [5] proved an analogue of Kleene’s
theorem for ω-languages constructed by finite
acceptors (so called ω-regular languages). Fur-
ther studies concerning finite and infinite state
ω-languages are found in Nivat [11],[12], Cohen
and Gold [2], Niwinski [13], Wolper [17], Staiger
[16], among others. In [14] Novotný provided a
new characterization of three special classes of
sets constructed by infinite acceptors and a new
characterization of regular languages.

Pawlak’s machine introduced in [15] and stu-
died by Kwasowiec [3] and [4], is a special type of
a finite acceptor. The ∞-language constructed
by Pawlak’s machine is called a generable set.
Kwasowiec gives a characterization of generable
sets and proves that generable sets are closed
under intersection but not under Boolean oper-
ations in general. In [6] Mezńık introduced the
notion of a G-machine which is a non-determini-
stic version of Pawlak’s machine. He showed
that the family of ∞-languages generated by G-
ma- chines is strictly greater then the family of
generable sets. He solved the equivalence prob-

lem for G-machines and gave necessary and suf-
ficient conditions for an arbitrary ∞-language
to be a language generated by some G-machine.
Yet another generalization of Pawlak’s machine
is a Gk-machine (in this terminology G-machine
is a G1-machine) introduced under the name of
[k]-machine in [8]. It was showed in [7] that G1-
languages form a lattice, a property which is not
shared by Gk-languages for k > 1. In [9] Mezńık
proved that Gk-languages over a fixed alphabet
form an upper semilattice and he obtained for-
mulas for the maximal lengths of chains and an-
tichains. He also solved the inclusion and equiv-
alence problems of Gk-machines.

An IG-machine is a generalization of a Gk-
machine (or a [k]-machine) and was first intro-
duced in [10]. IG-machine is a machine oper-
ating in a discrete time scale; at any time in-
stant it remembers k previous states and unde-
terministically passes into another one. Thus,
an IG-machine M generates finite and infinite
sequences of its states. The set of all sequences
(finite or infinite) of states generated by M is
referred to as IG-language. It was shown [10]
that IG-languages form a subclass of the class of
∞-regular languages [12]. An IG-machine may
serve as a model for various technical and elec-
tronic devices, such as a computer with a fixed
memory size.

We introduce the notions of IGk and IG-
closures of an ∞-language L. We will see that

1

these will be very useful tools in our investiga-
tions. An IGk-closure of an ∞-language L is the
least IGk-language containing L provided it ex-
ists. Similarly an IG-closure of an ∞-language
is the least IG-language containing L provided
it exists. It is easy to see that the IGk-closure
of the language L exist if and only if the length
of every word in L is ≥ k. We provide a new
characterization of IGk-languages. Our result
fully generalizes the result of Kwasowiec [3] who
obtained characterization of generable sets. We
study IG-languages with respect to Boolean op-
erations. We show that IG and IGk-languages
are closed under intersection but, in general, are
not closed under union or difference. This re-
sult generalizes results obtained by Kwasowiec
[3] for generable sets. Note that languages gen-
erated by Gk-machines are not closed under in-
tersection. We give an algorithm to construct
the IG-machine which generates the intersection
language. We study the poset structure of IG-
languages and prove that the family of IGk lan-
guages forms a lattice. As we have remarked ear-
lier according to Meznḱ [9] Gk-languages form
an upper semilattice but not a lattice. For IG-
languages we show we have only lower semilat-
tice structure. We also solve inclusion and equi-
valence problems for IG-languages. We compute
the maximal length of the chains in IGk(Σ) and
we find a lower bound for the width of IGk(Σ).
Note that Mezńik in [9] computed exactly the
width of the set of Gk-languages. We will show
why his arguments do not apply to IGk lan-
guages.

2 Preliminaries and Definitions
By N we denote the set of all non negative in-
tegers and by ω the least infinite ordinal. The
set theoretical operations of union, intersection and
difference are denoted by ∪,∩ and − respectively,
and they are referred to as Boolean operations.
⊆ (⊂) denotes the (proper) set inclusion. The
empty set is denoted by ∅, the power set of the set
A is denoted by 2A and Card(A) denotes the cardi-
nality of the set A. By definition an alphabet is a fi-
nite set; elements of an alphabet Σ are called letters.
Denote by Σ∗ ,resp., Σω the set of all finite ,resp.,
infinite sequences of elements of Σ. By λ we denote
the empty sequence and be definition we let λ ∈ Σ∗.

λ is called the empty word. Denote by Σ∞ the set
Σ∗ ∪ Σω. The elements of Σ∗,Σω and Σ∞, respec-
tively, are called words, ω-words and ∞-words.
For a ∈ Σ∞ − {λ} denote by an the (n + 1)th el-
ement of a. The length of an ∞-word a ∈ Σ∞,
in symbols |a|, is the length of the sequence a.
We write a0a1a2 . . . instead of a and we formally
identify both expressions, i.e. a = a0a1a2
Catenation of a word a and an ∞-word b is denoted
by ab. We define aλ = λa = a. Given a, b ∈ Σ∞, a
is a factor of b if and only if there are x ∈ Σ∗ and
y ∈ Σ∞, such that b = xay. Moreover, if x = λ, resp.,
y = λ then a is left factor, resp., right factor of b.
Denote by F (a), LF (a), RF (a) the set of all factors,
left factors, right factors of a, respectively. Subsets of
Σ∗, Σω and Σ∞ are called languages, ω-languages
and ∞-languages over Σ. Let L be an ∞-language.
Denote m(L) = inf{|a|; a ∈ L}. Let L1, L2, L be lan-
guages. Define catenation (or product) of L1 and
L2 by L1L2 = {xy; x ∈ L1, y ∈ L2}, and L0 = {λ},
Ln+1 = LnL. Denote the catenation closure of L by
L∗. By definition L∗ is the union of all Li, i ∈ N.
Denote by L+ = L∗ − {λ}.

Definition 2.1. An incomplete generating ma-
chine over Σ, or briefly an IG-machine or more pre-
cisely IGk-machine, is a quadruple M = 〈Σ,H, k,
S〉, where Σ is an alphabet, H 6∈ Σ, k ≥ 1, S ⊆
Σk × (Σ ∪ {H}). The elements of Σ are referred to
as states, H is called the halt state, k is called the
depth of memory,S is called the successor opera-
tor. Define Dom S = {a ∈ Σk; (∃b ∈ Σ ∪ {H})(ab ∈
S)}, Pos S = {a ∈ Σk−1 × (Σ ∪ {H}); (∃b ∈ Σ)(ba ∈
S)}, and TopS = Pos S −Dom S.

M operates in discrete time scale N and at the
i-th time instant the successor operator S is applied.
By this way ∞-words are obtained forming the ∞-
language of M as given in the following definitions.

Definition 2.2. An output word (of M) is defined
recursively as follows:
(1) a0 . . . ak−1 ∈ Dom S is an output word;
(2) a0 . . . an(n ≥ k) is an output word if a0 . . . an−1

is an output word and an−k . . . an ∈ S with an ∈ Σ.
(3) All output words are obtained by (1) and (2).
Denote by OUT(M) the set of all output words.

Definition 2.3. A word a, of length n is gener-
ated by M if and only if a is an output word and
(an−k . . . an−1H ∈ S or an−k . . . an−1 6∈ Dom S).

2

An ω-word a is generated by M if and only if a0 . . . an

is an output word of M for any n ≥ k.

The ∞-language generated by M is the set
of all words and ω-words generated by M and is
denoted by L∞(M). ∞-languages generated by IG-
machines and IGk-machines are referred to as IG-
languages and IGk-language. Denote by IGk(Σ)
and IG(Σ) the sets of all ∞-languages generated by
IGk-machines over Σ, and IG-machines over Σ.

The easiest way to introduce the notion of a fi-
nite automaton is perhaps to view it as a labeled
digraph, where each edge is labeled by one or several
letters of the alphabet Σ. Furthermore two subsets
of nods are specified called the set of initial and final
nods. We say that a word a over Σ is accepted by a
finite automaton A if there is a path from an intial
node to a final node labeled by a. The language L(A)
accepted by A is defined to be the set of all words
accepted by A. An infinite path is called an omega-
path. The ω-path is called successful if it begins
from an initial node and passes infinitely many times
through final nodes. For a finite automaton A we de-
fine an ω-language Lω(A) accepted by A as Lω(A) =
{a ∈ Σω; a is a label for some successful ω-path }.
Languages accepted by finite automata are called
regular; ω-languages accepted by finite automata
are referred to as ω-regular languages. A language
obtained by a union of a regular and an ω-regular
language is termed ∞regular. To an IG-machine
M = 〈Σ,H, k, S〉 we can easily construct two finite
automata A1 and A2 such that the ∞-language gen-
erated by M is a union of L(A1) and Lω(A2). For
example we construct A2. let V denote the set of
nods and E denote the set of arcs. Set V = Dom S∪
TopS, and E = { (a0 . . . ak−1, a1 . . . ak) ; a0 . . . ak

∈ S, }. An arc (a0 . . . ak−1, a1 . . . ak) is labelled by a0.
Nods in Dom S are initial nods and every nod is a fi-
nal nod. Hence every IG-language is also ∞-regular.
The converse is not true. For instance the ∞-regular
language { a2n ; n ≥ 1 } is not generated by any IG-
machine. The proof of the following lemma is left to
the reader.

Lemma 2.4. Let M = 〈Σ,H, k, S〉 be an IG-
machine. The following statements are true.

(i) λ 6∈ L∞(M).
(ii) m(L∞(M)) ≥ k.

(iii) (∀a ∈ OUT(M))(∃x ∈ L∞(M))(a ∈ LF (x)).

(iv) (∀a ∈ L∞))(∀x ∈ Σ∞)(|a| > k and a ∈ RF (x)
⇒ a ∈ L∞(M)).

(v) (∀u, a, b, c, d ∈ Σ∞)(|u| = k) (aub ∈ L∞(M)
and cud ∈ L∞(M) ⇒ aud ∈ L∞(M)).

(vi) Let a ∈ Σω. If for every i ∈ N there are x(i) ∈
Σ∗, y(i) ∈ Σ∞, such that x(i)ai . . . ai+ky(i) ∈
L∞(M) then a ∈ L∞(M).

(vii) Let a ∈ Σω. If for every i ∈ N there is y(i) ∈
Σ∞, such that a0 . . . ai+ky(i) ∈ L∞(M) then a ∈
L∞(M).

Proof. (i) and (ii) are trivial consequences of Defi-
nition 1.3. (iii) was proved in [10]. To prove (iv) let
ya = x ∈ L∞(M) for some y ∈ Σ∗. First, assume
ω > |a| = n > k. Hence a is an output word and
an−k . . . an−1H ∈ S or an−k . . . an−1 6∈ Dom S. Thus,
a ∈ L∞(M). Second, let a ∈ Σω. Since ya ∈ L∞(M)
we get ai . . . ai+k ∈ S for all i ∈ N, which implies
a ∈ L∞(M). (v). First we assume that a = d = λ.
If, moreover, b = λ then aud = aub ∈ L∞(M). If
b 6= λ then u ∈ Dom S. Since cu ∈ L∞(M) then
uH ∈ S. Thus, aud = u ∈ L∞(M). Second, we
assume that a 6= λ or d 6= λ. By Definition 1.3
au ∈ OUT(M) provided a 6= λ, and ud ∈ OUT(M)
provided d 6= λ, and so aud ∈ OUT(M). If d is an
ω-word then obviously aud ∈ L∞(M). Assume d is
a word. Denote by g = g0 . . . gn−1 the word aud.
Since |aud| > k then by 1.3 gn−k . . . gn−1H ∈ S or
gn−k . . . gn−1 6∈ Dom S. Thus, again aud ∈ L∞(M).
(vi). Let x(i)ai . . . ai+ky(i) ∈ L∞(M) for all i ∈ N.
Then it holds (ai . . . ai+k ∈ S) for all i ∈ N and so
a ∈ L∞(M). (vii) is an immediate consequence of
(vi) letting x0 = λ and xi = a0 . . . ai−1.

3 IG and IGk-Closures
This section introduces notions of IGk and IG-closu-
res. We find necessary and sufficient conditions for
the existence of the IGk-closure of a given ∞-langua-
ge. We also give an new characterization of IGk-
languages.

Definition 3.1. Let L be an ∞-language over Σ and
k ≥ 1. Define an IGk-machine M(L, k) = 〈Σ,H, k,
S(L, k)〉, where S(L, k) = {a ∈ Σk+1; (∃x ∈ L)(a ∈
F (x))} ∪ {aH; a ∈ Σk ∩ L} ∪ {aH; (∃x ∈ L)(a ∈
Σk ∩RF (x)) and (∃y ∈ L)(∃ak ∈ Σ)(aak ∈ F (y))}.

The following lemma is immediate.

3

Lemma 3.2. Let L be an ∞-language. Let a ∈
L∞(M(L, k)), |a| = n < ω. Then there is x ∈ L,
such that an−k . . . an−1 ∈ RF (x).

Theorem 3.3. Let L be an ∞-language, 1 ≤
k ≤ m(L). Then L∞(M(L, k)) is the least IGk-
language containing L (with respect to the set
inclusion).

Proof. It is straightforward to verify that L ⊆
L∞(M(L, k)). Let L′ ∈ IGk and assume L ⊆ L′.
Denote by M ′ = 〈Σ,H, k, S′〉 the IG-machine that
generates L′. We shall prove L∞(M(L, k)) ⊆ L′.
First, let a ∈ L∞(M(L, k)), |a| = k. It holds aH ∈
S(L, k). Since L ⊆ L′ then a ∈ L′ or ((∃x ∈ L′)(a ∈
RF (x)) and (∃y ∈ L′)(∃ak ∈ Σ)(aak ∈ F (y))). As-
sume the latter possibility holds true. Then aak ∈ S′

and there is x′ ∈ Σ∗, such that x = x′a ∈ L′. Obvi-
ously aak ∈ OUT(M ′) and by Lemma 1.5(iii) there
is z′ ∈ Σ∞, aakz′ ∈ L′. By Lemma 1.5(v) a ∈ L′.
Second, let a ∈ L∞(M(L, k)), ω > |a| = n > k. By
Definition 3.1 (∀i = 0, . . . , n − k − 1)(ai . . . ai+k ∈
S(L, k)) and by Lemma 3.2 there exists x ∈ L such
that an−k . . . an−1 ∈ RF (x). Since L ⊆ L′ then we
deduce (∀i = 0, . . . , n− k− 1)(∃x(i) ∈ L′)(ai . . . ai+k

∈ F (x(i))) and so (∀i = 0, . . . , n−k−1)(ai . . . ai+k ∈
S′) and

an−k . . . an−1H ∈ S′ or an−k . . . an−1 6∈ Dom S′.
(5)

It follows that a ∈ L′. Third, assume a ∈ L∞(M(K,
k)), |a| = ω. It holds ai . . . ai+k ∈ S(L, k) for all
i ∈ N. From Definition 3.1 it follows for all i ∈ N
there is x(i) ∈ L, such that ai . . . ai+k ∈ F (x(i)).
Since L ⊆ L′, then ai . . . ai+k ∈ S′ and so a ∈ L′.
We conclude that L∞(M(L, k)) ⊆ L′.

Definition 3.4. Let L be an ∞-language, k ≥ 1.
If there is the least IGk-language containing L, then
we call it the IGk-closure of L and denote it by L

k
.

Corollary 3.5. Let L be an ∞-language. The

IGk-closure L
k

of L exists if and only if m(L) ≥ k.

Moreover, L
k

= L∞(M(L, k)).

Proof. Consider the first statement. Assume IGk-
closure L

k
of L exists. By Definition 3.4 L ⊆ L

k ∈
IGk and by Theorem 1.5(ii) m(L) ≥ m(L

k
) ≥ k. The

reverse implication and the second statement follow
readily from Theorem 3.3.

The following theorem gives a new characteri-
zation of IG-languages and generalizes the result of

Kwasowiec [3], Theorem 1.

Theorem 3.6. Let L be an ∞-language. Then
the following statements (i), (ii) are equivalent:

(i) L ∈ IGk.

(ii) (1) m(L) ≥ k.

(2) (∀x ∈ L)(∀y ∈ Σ∞)(|y| > k and y ∈ RF (x)
⇒ y ∈ L).

(3) (∀u, a, b, c, d ∈ Σ∞)(|u| = k)(aub ∈ L and
cud ∈ L ⇒ aud ∈ L).

(4) Let a be an ω-word. If for every i ∈ N
there is y(i) ∈ Σ∞, such that a0 . . . ai+ky(i) ∈ L,
then a ∈ L.

Proof. (i)⇒(ii) holds true due to Lemma 1.5. (ii)⇒
(i). By Theorem 3.5 L

k
exists and by Definition 3.4

L ⊆ L
k
. We shall prove the reverse inclusion. First,

suppose a ∈ L
k
, |a| = k. By Theorem 3.5 aH ∈

S(L, k) and from Definition 3.1 it follows that either
a ∈ L or there are x, y ∈ Σ∗ and z ∈ Σ∞, z 6= λ, such
that xa ∈ L and yaz ∈ L. Assume the latter possibil-
ity holds true. Then by (2) az ∈ L and using (3) fol-
lows a ∈ L. Second, suppose a ∈ L

k
, ω > |a| = n >

k. Hence ai . . . ai+k ∈ S(L, k)) for all i = 0, . . . , n −
k − 1. By Definition 3.1 there are x(i) ∈ Σ∗, y(i) ∈
Σ∞, such that x(i)ai . . . ai+ky(i) ∈ L for every i =
0, . . . , n − k − 1. Applying (3) (n − k − 1)-times we
get x(0)a0 . . . an−1y

(n−k−1) ∈ L. From (2) follows
a0 . . . an−1y

(n−k−1) ∈ L. Using Lemma 3.2 observe
that there is x′ ∈ Σ∗, such that x′an−k . . . an−1 ∈
L. Using again (3) we arrive at a = a0 . . . an−1 ∈
L. Third, suppose a ∈ L

k
, |a| = ω. Then (∀i ∈

N)(ai . . . ai+k ∈ S(L, k)). By Definition 3.1 there ex-
ist x(i) ∈ Σ∗, y(i) ∈ Σ∞, such that x(i)ai . . . ai+ky(i)

∈ L. By (2) ai . . . ai+ky(i) ∈ L and so applying (3)
i-times we get a0 . . . ai+ky(i) ∈ L for all i ∈ N. Con-
sequently from (4) follows a = a0a1a2 . . . ∈ L. We
conclude that L

k ⊆ L.

Define the map cr from the set of all ∞-langua-
ges into itself by cr(L) = {a ∈ L; |a| ≥ r}, for an ∞-
language L. From Theorem 3.6 immediately follows
the following theorem.

Lemma 3.7. Let L ∈ IGk, r ≥ k. Then cr(L) ∈
IGr.

We will now explicitely construct the IG-machi-
ne that for a given M generates cr(L∞(M). First

4

we introduce the operation of overlaping catena-
tion which is a generalization of the usual catena-
tion operation. Let L,L′ be ∞-languages, r ∈ N.
Define L©r L′ = {xuy; |u| = r, xu ∈ L, uy ∈ L′}. By
©r k≤i≤nLi we abbreviate Lk ©r Lk+1 ©r . . . ©r Ln;
we write ©r k≤i≤nL instead of ©r k≤i≤nLi in case
Lk = Lk+1 = · · · = Ln = L. Observe that the oper-
ation ©r is associative.

Let M = 〈Σ,H, k, S〉, r ∈ N. Define an IG-
machine M/r = 〈σ,H, k/r, S/r〉 as follows:

k/r =
{

k, for r ≤ k

r, for r > k ,

S/r =

S, for r ≤ k

{aH; a ∈ ©k k≤i≤r−1S ∩ Σr, ar−k . . . ar−1

6∈ DomS} ∪ ©k k≤i≤rS, for r > k .

Lemma 3.8. Let M = 〈Σ,H, k, S〉 be an IG-
machine, r ∈ N, L = L∞(M). Then cr(L∞(M)) =
L∞(M/r).

Proof: For r ≤ k the statement is straightforward.
Assume the contrary. By Lemma 3.7 cr(L) = L∞(M
(cr(L), r)). We shall prove that M(cr(L), r) = M/r.
Obviously a ∈ S(cr(L), r)∩Σr+1 if and only if there
is x ∈ cr(L) ⊆ L, such that a ∈ F (x) if and only if
a ∈ ©k k≤i≤rS iff a ∈ S/r. Let aH ∈ S(cr(L), r).
By Definition 3.1 there is y ∈ cr(L) ⊆ L, such that
a ∈ RF (y). Hence ai . . . ai+k ∈ S for all i = 0, . . . , r−
k − 1 and (ar−k . . . ar−1H ∈ S or ar−k . . . ar−1 6∈
DomS). By Definition a ∈ ©k k≤i≤r−1S and aH ∈
S/r. To prove the reverse inclusion assume aH ∈ S/r.
Hence either aH ∈ ©k k≤i≤rS or (a ∈ ©k k≤i≤r−1S
and ar−k . . . ar−1 6∈ DomS). In both cases a ∈ L
which implies aH ∈ S(cr(L), r).

Using Lemma 3.7 it is easy to see that if 1 ≤
r ≤ s ≤ m(L), then L

s ⊆ L
r

and so

L
1 ⊇ L

2 ⊇ · · · ⊇ L
m(L)

for 1 ≤ m(L) < m,

andL
1 ⊇ L

2 ⊇ L
3 ⊇ . . . for m(L) = ω.

Definition 3.9. Let L be an ∞-language. If there
is the least IG-language containing L then we call it
the IG-closure of L and denote it by L.

Note that if 1 ≤ m(L) < ω, then the IG-closure
L of L exists and L = L

m(L)
.

Theorem 3.10. Let m(L) = ω. Then the follow-
ing three conditions are equivalent:

(1) The IG-closure of L exists.

(2) There exists r ≥ 1 such that for all s >

r,L
r

= L
s
. Moreover, L = L

r
.

(3)
⋂ω

k=1 L
k ∈ IG. Moreover,

⋂ω
k=1 L

k
= L.

Proof. (1) ⇒ (2). Let L exists. Then L ∈ IGr for
some r ≥ 1 and so L = L

r ⊇ L
r+1 ⊇ L

r+2 ⊇

Hence L
r

= L
r+1

= L
r+2

= (2) ⇒ (3) is im-
mediate. (3) ⇒ (1). Denote

⋂ω
k=1 L

k
byL0. Obvi-

ously L ⊆ L0. Consider an arbitrary IG-language L′,
L ⊆ L′. Then there is r ≥ 1, such that L′ ∈ IGr. By
definition L0 ⊆ L

r ⊆ L′ and so L0 is the IG-closure
of L.

Example 3.11. Consider an ω-regular language L =
{baω} ∪ {anbω;n > 0}. By Definition 3.1

S(L, k) = {bak, ak+1, akb, ak−1b2, . . . , abk, bk+1}.

Hence bakbω ∈ L
k
. Assume bakbω ∈ L

k+1
. Then

bakb ∈ S(L, k + 1). Thus, bakb is a factor or some
ω-word of L. This yields a contradiction and so we
conclude that L

k 6= L
k+1

for all k ≥ 1. By Theorem
3.10 IG-closure of L does not exist.

4 Inclusion and Equivalence
In this section we solve the inclusion and equivalence
problems for IG-languages.

Theorem 4.1. Let M = 〈Σ,H, k, S〉, M ′ = 〈,Σ,H,
k, S′〉. Then the following statements (i),(ii) are
equivalent:

(i) L∞(M) ⊆ L∞(M ′)

(ii) S ⊆ S′ and DomS′ ∩TopS ⊆ {a; aH ∈ S′}.
Proof. (i)⇒(ii). First, assume a ∈ S ∩ Σk+1. Hence
a ∈ OUT(M). By Lemma 1.5(iii) there exists x ∈
L∞(M), such that a ∈ LF (x). Using (i) we get
x ∈ L∞(M ′) and by Definition 1.3 a ∈ S′. Second, if
aH ∈ S, then it holds a ∈ L∞(M) ⊆ L∞(M ′), which
implies aH ∈ S′ and so we conclude that S ⊆ S′.
Now assume that a ∈ Dom S′ ∩ TopS. By Defini-
tion 1.3 there is b ∈ Σ, ba ∈ S and a 6∈ Dom S
and so ba ∈ L∞(M). By (i) ba ∈ L∞(M ′). Due
to a ∈ Dom S′ we obtain aH ∈ S′. (ii)⇒(i). First,

5

let a ∈ L∞(M), |a| = k. Then aH ∈ S ⊆ S′ which
implies a ∈ L∞(M ′). Second, let a ∈ L∞(M), ω >
|a| = n > k. Hence ai . . . ai+k ∈ S ⊆ S′, for all
i = 0, . . . , n−k−1 and (an−k . . . an−1H ∈ S ⊆ S′ or
an−k . . . an−1 6∈ Dom S). If an−k . . . an−1H ∈ S ⊆ S′

or an−k . . . an−1 6∈ Dom S′ then a ∈ L∞(M ′). As-
sume the contrary, i.e. an−k . . . an−1H 6∈ S and
an−k . . . an−1 ∈ Dom S′. Then an−k . . . an−1 ∈ TopS
and an−k . . . an−1H ∈ S′ and so a ∈ L∞(M ′). Third,
let a ∈ L∞(M), |a| = ω. It holds (∀i ≥ 0)(ai . . . ai+k

∈ S ⊆ S′) and so a ∈ L∞(M ′).

Theorem 4.2. Let M = 〈Σ,H, k, S〉, M ′ = 〈Σ,H,
k′, S′〉, r = max(k, k′). Then the following state-
ments (i),(ii) are equivalent:

(i) L∞(M) ⊆ L∞(M ′).

(ii) (1) S/r ⊆ S′/r and

(2) Dom(S′/r) ∩ Top(S/r) ⊆ {a; aH ∈ S′/r}
and

(3) m(L∞(M)) ≥ r.

Proof. (i)⇒(ii) By Lemma 3.7. L∞(M/r) = cr(L∞(
M)) ⊆ cr(L∞(M ′)) = L∞(M ′/r). By Theorem 4.1
the conditions (1),(2) are satisfied. Let a ∈ L∞(M).
Then |a| ≥ k. Since L∞(M) ⊆ L∞(M ′) then also
|a| ≥ k′. Consequently |a| ≥ r. (ii)⇒(i) From (1),(2),
using theorem 4.1, it follows L∞(M/r) ⊆ L∞(M ′/r).
By Lemma 3.7. cr(L∞(M)) ⊆ cr(L∞(M ′)) and by
(3) L∞(M) = cr(L∞(M)) ⊆ cr(L∞(M ′)) ⊆ L∞(M ′).

The following statement is a straightforward conse-
quence of Theorem 4.2.

Theorem 4.3. Let M = 〈Σ,H, k, S〉, M ′ = 〈Σ,H,
k′, S′〉, k ≤ k′. Then the following statements
(i),(ii) are equivalent:

(i) L∞(M) = L∞(M ′).

(ii) S/k′ = S′ and m(L∞(M)) ≥ k′.

In particular if k′ = k Theorem 4.3 has the fol-
lowing simple form.

Theorem 4.4. Let M = 〈Σ,H, k, S〉, M ′ = 〈Σ,H,
k, S′〉. Then the following statements (i) (ii) are
equivalent:

(i) L∞(M) = L∞(M ′).

(ii) S = S′.

5 Boolean Operations
n this section we study the closure properties of IG-
languages under Boolean operations. We show that
the classes of IGk/languages and IG-languages are
closed under finite intersection but, in general, they
are not closed under infinite intersection, finite union
and difference.

Theorem 5.1. The sets IGk(Σ) and IG(Σ) are
closed under finite intersection.

Proof. Let L1, L2 ∈ IGk(Σ). One can easily verify
that the conditions (1),(2) (3) and (4) in Theorem
3.6 are satisfied for L1 ∩ L2. for example we prove
that condition (4) is satisfied. Let a be an ω-word
and for every i ∈ N let there be y(i) ∈ Σ∞, such that
a0 . . . ai+ky(i) ∈ L1 ∩ L2. Then a ∈ L1 and a ∈ L2

and so a ∈ L1 ∩ L2. Thus L1 ∩ L2 ∈ IGk(Σ). Let
Li ∈ IGki(Σ), i = 1, 2 and assume k1 ≥ k2. Then
L1∩L2−ck2(L1)∩L2. The theorem now follows from
its firs part.

Theorem 5.2. The set IG(Σ) is not closed un-
der infinite intersection with the only exception
when Card(Σ) = 1.

Proof. Let a, b ∈ Σ and a 6= b. Consider the language
L from Example 3.11. We have L

k ∈ IG(Σ) for
all k ≥ 1 and we know that IG-closure of L does
not exist, hence by Lemma 3.10

⋂ω
k=1 L

k 6∈ IG. Let
Σ = {a}. It is easy to see IG({a}) = {∅, {aω}} ∪
{{ak}; k ≥ 1}∪{{an;n ≥ k}∪{aω}; k ≥ 1}. Consider
an infinite sequence Li ∈ IG({a}), i ∈ N. If there is
n ∈ N, such that Card(Ln) = 1 or L = ∅, then⋂

i∈N Li equals Ln or ∅ which both are in IG({a}).
Assume the contrary. Then there are ki, such that
Li = {an;n ≥ ki} ∪ {aω} for all i ∈ N. Thus,

⋂
i∈N

Li = {an; n ≥ sup{ki; i ∈ N}} ∪ {aω}

which again is in IG({a}).

Theorem 5.3. The classes IGk(Σ) and IG(Σ) are
not closed under union and difference.

Proof. If a ∈ Σ, then { ak }, { aω }, L = { an;n ≥
k}∪{aω } ∈ IGk(Σ). One easily observes that {ak }∪
{ aω} 6∈ IG,L − { aω } = {an;n ≥ k} 6∈ IG and
{a, b}ω − {aω} 6∈ IG.

Let Li ∈ IG, for 1 ≤ i ≤ n. We now explicitly

6

construct the IG-machine that generates
⋂n

i=1 Li.

Lemma 5.4. Let Mi = 〈Σ,H, k, Si〉, i = 1, 2. Then
Top(S1 ∪ S2) ⊆ TopS1 ∪TopS2.

Proof. Let aH ∈ Top(S1 ∪ S2). Then there is b ∈
Σ, such that baH ∈ S1 ∪ S2. Hence baH ∈ S1 or
baH ∈ S2 and so aH ∈ TopS1 or aH ∈ TopS2. Let
a ∈ Top(S1 ∪ S2) ∩ Σk. Hence a 6∈ Dom(S1 ∪ S2)
and there is b ∈ Σ, ba ∈ S1 ∪ S2. So a 6∈ Dom Si for
i = 1, 2 and ba ∈ S1 or ba ∈ S2. Thus, a ∈ TopS1 or
a ∈ TopS2.

Theorem 5.5. Let Mi = 〈Σ,H, k, Si〉, Li = L∞(
Mi) for 1 ≤ i ≤ n. Then M = 〈Σ,H, k, S〉, L∞(M)
=

⋂n
i=1 Li, where S =

⋃
S′∈Θ S′ where S′ ∈ Θ

if and only if the following two conditions are
satisfied:

(1) S′ ⊆
n⋂

i=1

Si and

(2) TopS′ ⊆
n⋂

i=1

(TopSi ∪ {a; aH ∈ Si}).

Proof. By Theorem 5.1 there is an IG=machine
M = 〈Σ,H, k, S〉, such that L∞(M) =

⋂n
i=1 Li.

Claim 1. S ∈ Θ. Since L∞(M) ⊆ L∞(Mi), then
by Theorem 4.1 S ⊆ Si for all 1 ≤ i ≤ n. Hence
condition (1) holds for S. Let aH ∈ TopS. Then
there is b ∈ Σ, baH ∈ S. By (1) baH ∈ Si for all
1 ≤ i ≤ n, and so aH ∈ TopSi for all 1 ≤ i ≤ n.
If a ∈ TopS ∩ Σk, then there is b ∈ Σ, such that
ba ∈ S and so ba ∈

⋂n
i=1 Li. Assume a 6∈ TopSi.

Since ba ∈ Li, then a ∈ Dom Si and so aH ∈ Si.
Consequently (2) holds for S.

Claim 2. If S′ ∈ Θ then L∞(M ′) ⊆
⋂n

i=1 Li where
M ′ = 〈Σ,H, k, S′〉. By (2) Dom Si∩TopS′ ⊆ Dom Si

∩(TopSi ∪ {a; aH ∈ Si}) = {a; aH ∈ Si}. From
Theorem 4.1 follows L∞(M ′) ⊆ L∞(Mi) = Li.

Claim 3. If S′, S′′ ∈ Θ, then also S′ ∪ S′′ ∈ Θ. The
claim follows easily from Lemma 5.4.

From claims 2 and 3 follow that Θ has the great-
est element, namely

⋃
S′∈Θ S′.By claim 2 L∞(M ′) ⊆

L∞(M) for any S′ ∈ Θ and so by Theorem 4.1
S′ ⊆ S. By claim 1 S ∈ Θ and so S is the greatest
element of Θ.

We now provide an algorithm for constructing

S. Denote

∆ =
n⋂

i=1

(TopSi ∪ {a; aH ∈ Si}).

Define recursively the sequence

S(0) =
n⋂

i=1

Si,

S(m+1) = S(m) − {ba; b ∈ Σ, a ∈ TopS(m) −∆}.

Whenever TopS(m) ⊆ ∆ we claim that S(m) = S.

To prove this we first observe that S(0) is finite,
S(m+1) ⊆ S(m) and TopS(m) ⊆ ∆ if and only if
S(m) = S(m+1). Thus, there is m0 such that S(m0) =
S(m0+1) = S(m0+2) = We shall now prove that
S ⊆ S(m) for every m ∈ N. By Theorem 5.5 S ⊆
S(0). Proceeding inductively we assume S ⊆ S(m).
By contraposition assume S 6⊆ S(m+1). Hence there
is a ∈ S−S(m+1). By assumption a ∈ S(m)−S(m+1).
First, assume a is of the form bH, b = b0 . . . bk−1. For
all bH ∈ S(m) follows b ∈ Li which implies bH ∈ Si

for all 1 ≤ i ≤ n. Hence b1 . . . bk−1H ∈ TopSi for
all 1 ≤ i ≤ n and so b1 . . . bk−1H ∈ ∆. Thus, a =
bH ∈ S(m+1) which yields a contradiction. Second,
assume a ∈ Σk+1. By the definition of S(m+1) we
obtain a1 . . . ak 6∈ ∆ and a1 . . . ak ∈ TopS(m) and
so a1 . . . ak 6∈ Dom S(m). Since S ⊆ S(m), then also
a1 . . . ak 6∈ Dom S. Hence a1 . . . ak ∈ TopS. By the
definition of S, TopS ⊆ ∆ and so a1 . . . ak ∈ ∆. This
yields a contradiction. We have proved S ⊆ S(m)

for all m ∈ N. If S(m) = S(m+1), then S(m) ⊆ ∆
and so S(m) ∈ Θ. S is the greatest element of Θ and
consequently S = S(m).

Theorem 5.6. Let Mi = 〈Σ,H, ki, Si〉, Li = L∞(
Mi) for 1 ≤ i ≤ n. Put k = max{ki; 1 ≤ i ≤ n}.
There is M = 〈Σ,H, k, S〉, such that L∞(M) =⋂n

i=1 Li and S =
⋃

S′∈Θ S′ where S′ ∈ Θ if and
only if the following two conditions are satisfied:

(1) S′ ⊆
n⋂

i=1

Si/k,

(2) TopS′ ⊆
n⋂

i=1

(Top(Si/k) ∪ {a; aH ∈ Si/k}).

7

Proof. Observe that
⋂n

i=1 Li =
⋂n

i=1 ck(Li). By
Lemma 3.7 ck(Li) = L∞(Mi/k) ∈ IGk. The The-
orem now follows from Theorem 5.5.

Theorem 5.6 yields an algorithm for construct-
ing the IG-machine M which generates

⋂n
i=1 Li : To

each IG-machine Mi we construct the IGk-machine
Mi/k. Then we apply the above algorithm.

6 Poset Structures
Let (P,≤) be partially ordered set and S a subset of
P. If the partial ordering ≤ of the set P is known,
we formally identify P with (P,≤) to simplify the
notation. This simplification will be commonly used
throughout this section. We say that an element
a ∈ P is a join, resp., meet of S if a is the least up-
per, resp., the greatest lower bound of SA partially
ordered set in which every pair of elements has a join,
resp., meet is called an upper, resp., lower semilat-
tice. A partially ordered set in which every pair of
elements has a join and meet is called a lattice.

Lemma 6.1. Let Mi = 〈Σ,H, k, Si〉, Li = L∞(Mi),
1 ≤ i ≤ n. Consider the IGk-machine M = 〈Σ,H,
k, S〉, where

S =
n⋃

i=1

Si ∪ {aH; a ∈ (
n⋃

i=1

TopSi) ∩Dom(
n⋃

i=1

Si)}.

Then L∞(M) =
⋃n

i=1 Li

k
.

Proof. Using Definition 3.1 one easily verifies that
S = S(

⋃n
i=1 Li, k). Since m(

⋃n
i=1 Li) ≥ k the lemma

follows from Corollary 3.5.

Theorem 6.2. The set IGk(Σ) is a lattice with

meet L1∩L2 and join L1 ∪ L2
k
. The least element

of IGk(Σ) is ∅ and the greatest element is Σ∞ −⋃k−1
n=0 Σn.

Proof. Consider the first statement. By Theorem
5.1 the set IGk(Σ) is closed under finite intersection.
Obviously L1 ∩ L2 is a meet of {L1, L2}. By Theo-
rem 3.5 L1 ∪ L2

k
is a join of {L1, L2}. The second

statement is immediate.

Example 6.3. We give an example of an T ω-
language over a two letter alphabet which is the
union of two IG1-languages and for which IG-closure

does not exist. Consider two IGω-machines Mi =
〈Σ,H, 1, Si〉, i = 1, 2, where S1 = {a2, ab, b2}, S2 =
{b2, ba, a2}. Define L = L∞(M1)∪L∞(M2) = {anbω,
bnaω; n ∈ N}. Let k ≥ 1. Then by Definition 3.1 akb,
ak−1b2, . . . , abk, bka, bk−1a2, . . . , bak ∈ S(L, k).
Hence (akbk)ω ∈ L

k
. Assume L

k
= L

k+1
for some

k ≥ 1. Then abka ∈ S(L, k + 1). By Definition 3.1
S(L, k + 1) consists of all factors of length k + 2 of
ω-words in L. Obviously abka is not a factor of any ω-
word in L. This yields a contradiction. We conclude
L

k 6= L
k+1

for all k ≥ 1. By Lemma 3.10 IG-closure
of L does not exist.

Theorem 6.4. If Card(Σ) ≥ 2, then the set IG(Σ)
is a lower semilattice, with the meet L1∩L2, but
not lattice. For Card(Σ) = 1 the set IG(Σ) is a
lattice. In both cases the least element of IG(Σ)
is ∅; the greatest element of IG(Σ), is Σ∞ − {λ}.

Proof. Consider the first statement. It is immedi-
ate from Theorem 5.1 that IG(Σ) is a lower semilat-
tice. Let a, b ∈ Σ. Consider the two IG1-languages
L1 = {anbω;n ∈ N}, L2 = {bnaω;n ∈ N} from
Example 6.3 and assume that the join of {L1, L2}
exists. Hence there is the least IG-language contain-
ing L1 ∪L2 and so IG-closure of L1 ∪L2 exists. This
yields a contradiction with Example 6.3. It is easy to
see that IGX({a}) is a lattice. The last statement
is obvious.

7 Enumeration Results
Let (P,≤) be partially ordered set and S a subset of
P. If S is a subset of P with the property that any two
elements in P are comparable, resp., noncomparable,
then set S is called a chain, resp., antichain. The
length of the chain S is Card(S) − 1. P is said to
be of length n, in symbols l(P) = n, if there is a
chain of length n and all the chains are of length
≤ n. The width of P is n, in symbols w(P) = n, if
there is an antichain of n elements and all antichains
have ≤ n elements. From Theorem 4.4 immediately
follows Card(IGk(Σ)) = 2nk(n+1).

Theorem 7.1. If Card(Σ) = n, then l(IGk(Σ)) =
nk(n + 1).

Proof. Consider an arbitrary chain L0 ⊂ L1 ⊂
· · · ⊂ Lm of elements of IGk(Σ). Denote by Mi =
〈Σ,H, k, Si〉 the IGk-machine over Σ that generates
Li. By Theorem 4.1 S0 ⊂ S1 ⊂ · · · ⊂ Sm ⊆ Σk ×

8

(Σ ∪ {H}). Hence m ≤ nk(n + 1). To end the proof
we shall construct a chain of IGk-languages over Σ
of length nk(n + 1). Assume a linear ordering on
Σk = {x1, . . . , xnk} and Σk+1 = {y1, . . . , ynk+1}. De-
fine recursively S0 = ∅, Si = Si−1 ∪ {xiH} for 1 ≤
i ≤ nk, Si = Si−1 ∪ {yi−nk} for nk + 1 ≤ i ≤
nk(n + 1). Put Mi = 〈Σ,H, k, Si〉. By Theorem 4.1
L∞(Mi) ⊂ L∞(Mi+1). Thus, L∞(M0) ⊂ L∞(M1) ⊂
· · · ⊂ L∞(Mnk(n+1)) is the chain we sought.

Theorem 7.2. If Card(Σ) = n, then

w(IGk(Σ)) ≥
(

nk(n + 1)
nk(n+1)

2

)
.

Proof. We shall construct an antichain in IGk(Σ)

of
(

nk(n + 1)
nk(n+1)

2

)
elements. Consider the set A(m) =

{L∞(M); M = 〈Σ,H, k, S〉, Card(S) = m}. By
Theorem 4.1 elements of A(m) are noncomparable

and Card(A(m)) =
(

nk(n + 1)
m

)
. To end the proof

put m = nk(n+1)
2 .

The set A

(
nk(n+1)

2

)
is the greatest set (with re-

spect to cardinality) of all A(m), 0 ≤ m ≤ nk(n + 1).
Notice that, unlike the case of Gk-languages, the set
A(m) is not always an antichain of maximal length
in IGk(Σ) and this is why the argument used by
Mezńık in [9] does not apply in the above case. hence
instead obtaining the width of IGk(Σ) we only ob-
tain the lower bound on width. Indeed, consider
Σ = {a, b}, n = k = m = 2 and S = {abb, bba, bab},
M = 〈Σ,H, k, S〉. Then L∞(M) = RF ((abb)ω) = L.
We shall prove that L is non-comparable with all
elements of A(2). Arguing indirectly assume the con-
trary, i.e that there is L′ = L∞(M ′), M ′ = 〈Σ,H, 2,
S′〉, Card(S)′ = 2 such that L ⊆ L′ or L′ ⊆ L. Since
Card(S) = 3 then S 6⊆ S′ and so by Theorem 4.1
L 6⊆ L′. Thus, L′ ⊆ L and by definition L′ 6= ∅.
Hence L′ contains at least one of the words (abb)ω,
(bba)ω, (bab)ω. In either case abb, bba, bab ∈ S′ which
is a contradiction. Thus, A(2) is not a maximal an-
tichain in IGk(Σ).

References
[1] J. R. Büchi, On Decision Method in Restricted

second order arithmetic Proc. of the Int. Cong.
on Logic, Methodology and Philosophy of Sciences
1960, Stanford Univ. Press, Stanford, California.

[2] R. S. Cohen and A. Y. Gold, Theory of ω-langu-
ages a study of various models of ω-type gen-
eration and recognition, J. Comput. System Sci
15, 1977, pp. 185–206.

[3] W. Kwasowiec, Generable sets, Information and
Control 17, 1970, pp.257–264.

[4] W. Kwasowiec, Relational Machines, Bull.
Acad. Polon. Sci. Ser. Sci. Math. Astronom.
Phys. 18, 1970, pp. 245–249.

[5] R. McNaughton, Testing and Generating Infi-
nite Sequences by a Finite Automaton, Infor-
mation and Control 9, 1966 pp. 521–530.

[6] I. Mezńık, G-Machines and Generable Sets,
Information and Control 20, 1972, pp. 499–509.

[7] I. Mezńık, On Lattice properties of Generable
Languages, Rev. Roum. Math. Pures et Appl.
8,1974, pp. 1037–1040.

[8] I. Mezńık, On finite [k]-machines and their lan-
guages, Kniž. Odb. a Věd. Spisu VUT Brno
B-56, 1975, pp. 203–216.

[9] I. Mezńık, itfont On some structural properties of
a subclass of ∞-regular languages, Discrete
Applied Mathematics 18, 1987, pp. 315–319.

[10] I. Mezńık, A new class of ∞-regular langua-
ges Kniž.Odb. a Věd.Spisu VUT Brno B-119,
1988, pp. 187–196.

[11] M. Nivat, Mots infinis engendres par une gra-
mmaire algebrique, RAIRO Inform. Theor. 11,
1977, 311–327.

[12] M. Nivat, Infinite words, infinite trees, infi
nite computations, Foundations of Computer
Science III, J. W. De Bakker and J. Van
Leeuwen, eds., Mathematisch Centrum, Amster-

dam, 1979, pp. 5–52.
[13] D. Niwinski, Fixed-point characterization of

context-free ∞-languages, Inform. and Control
61, 1984, pp. 247–276.

[14] M. Novotný, Sets constructed by acceptors,
Inform. and Control 26, 1974, pp. 116–133.

[15] Z. Pawlak, Maszyny programowane, Algoryt-
my 10, 1969, pp. 7–22.

[16] L. Staiger, Hierarchies of recursive ω-langua-
ges, Elektron. Informationsverarb. Kybern.
22, 1986, pp. 219–241.

[17] P. Wolper, M. Y. Vardi and A. P. Sistla Rea
soning about computation paths, Proc.
24th Ann. Symp. on Foundation of Computer

Science, Arizona 1983, IEEE Computer Soc.
Press, Silver Spring, MD, pp. 185–193.

9

