Enumerative and Structural Aspects of Incomplete Generating Languages

MARTIN JURÁŠ Department of Mathematics North Dakota State University Fargo, ND 58105–5075 United States

Abstract: In this paper we launch a systematic study of a subclass of ∞ -regular languages called incomplete generating languages. These languages represent a non-deterministic output of a computer with finite operational memory, where the decisions are made by observing previous k states.

Key-Words: Incomplete generating language, Finite automaton, Regular language.

1 Introduction

Richard Büchi [1] gave a decision procedure for the sequential calculus, by showing that each well formed formula of the system is equivalent to a formula which says something about the infinite input history of a finite automaton. Similar concepts were also discovered by others while studying a problem in asynchronous switching theory. This motivates a notion of an ω -language constructed by a finite acceptor. McNaughton [5] proved an analogue of Kleene's theorem for ω -languages constructed by finite acceptors (so called ω -regular languages). Further studies concerning finite and infinite state ω -languages are found in Nivat [11],[12], Cohen and Gold [2], Niwinski [13], Wolper [17], Staiger [16], among others. In [14] Novotný provided a new characterization of three special classes of sets constructed by infinite acceptors and a new characterization of regular languages.

Pawlak's machine introduced in [15] and studied by Kwasowiec [3] and [4], is a special type of a finite acceptor. The ∞ -language constructed by Pawlak's machine is called a generable set. Kwasowiec gives a characterization of generable sets and proves that generable sets are closed under intersection but not under Boolean operations in general. In [6] Mezník introduced the notion of a G-machine which is a non-deterministic version of Pawlak's machine. He showed that the family of ∞ -languages generated by Gma- chines is strictly greater then the family of generable sets. He solved the equivalence problem for G-machines and gave necessary and sufficient conditions for an arbitrary ∞ -language to be a language generated by some G-machine. Yet another generalization of Pawlak's machine is a Gk-machine (in this terminology G-machine is a G1-machine) introduced under the name of [k]-machine in [8]. It was showed in [7] that G1languages form a lattice, a property which is not shared by Gk-languages for k > 1. In [9] Mezník proved that Gk-languages over a fixed alphabet form an upper semilattice and he obtained formulas for the maximal lengths of chains and antichains. He also solved the inclusion and equivalence problems of Gk-machines.

An IG-machine is a generalization of a Gkmachine (or a [k]-machine) and was first introduced in [10]. IG-machine is a machine operating in a discrete time scale; at any time instant it remembers k previous states and undeterministically passes into another one. Thus, an IG-machine M generates finite and infinite sequences of its states. The set of all sequences (finite or infinite) of states generated by M is referred to as IG-language. It was shown [10] that IG-languages form a subclass of the class of ∞ -regular languages [12]. An IG-machine may serve as a model for various technical and electronic devices, such as a computer with a fixed memory size.

We introduce the notions of IGk and IGclosures of an ∞ -language L. We will see that these will be very useful tools in our investigations. An IGk-closure of an ∞ -language L is the least IGk-language containing L provided it exists. Similarly an IG-closure of an ∞ -language is the least IG-language containing L provided it exists. It is easy to see that the IGk-closure of the language L exist if and only if the length of every word in L is $\geq k$. We provide a new characterization of IGk-languages. Our result fully generalizes the result of Kwasowiec [3] who obtained characterization of generable sets. We study IG-languages with respect to Boolean operations. We show that IG and IGk-languages are closed under intersection but, in general, are not closed under union or difference. This result generalizes results obtained by Kwasowiec [3] for generable sets. Note that languages generated by Gk-machines are not closed under intersection. We give an algorithm to construct the IG-machine which generates the intersection language. We study the poset structure of IGlanguages and prove that the family of IGk languages forms a lattice. As we have remarked earlier according to Meznk [9] Gk-languages form an upper semilattice but not a lattice. For IGlanguages we show we have only lower semilattice structure. We also solve inclusion and equivalence problems for IG-languages. We compute the maximal length of the chains in $IGk(\Sigma)$ and we find a lower bound for the width of $IGk(\Sigma)$. Note that Mezník in [9] computed exactly the width of the set of Gk-languages. We will show why his arguments do not apply to IGk languages.

2 Preliminaries and Definitions

By N we denote the set of all non negative integers and by ω the least infinite ordinal. The set theoretical operations of union, intersection and difference are denoted by \cup, \cap and – respectively, and they are referred to as Boolean operations. $\subseteq (\subset)$ denotes the (proper) set inclusion. The empty set is denoted by \emptyset , the power set of the set A is denoted by 2^A and Card(A) denotes the cardinality of the set A. By definition an alphabet is a finite set; elements of an alphabet Σ are called *letters*. Denote by Σ^* , resp., Σ^{ω} the set of all finite ,resp., infinite sequences of elements of Σ . By λ we denote the empty sequence and be definition we let $\lambda \in \Sigma^*$. λ is called the *empty word*. Denote by Σ^{∞} the set $\Sigma^* \cup \Sigma^{\omega}$. The elements of $\Sigma^*, \Sigma^{\omega}$ and Σ^{∞} , respectively, are called words, ω -words and ∞ -words. For $a \in \Sigma^{\infty} - \{\lambda\}$ denote by a_n the (n+1)th element of a. The length of an ∞ -word $a \in \Sigma^{\infty}$, in symbols |a|, is the length of the sequence a. We write $a_0a_1a_2\ldots$ instead of a and we formally identify both expressions, i.e. $a = a_0 a_1 a_2 \dots$ Catenation of a word a and an ∞ -word b is denoted by ab. We define $a\lambda = \lambda a = a$. Given $a, b \in \Sigma^{\infty}$, a is a factor of b if and only if there are $x \in \Sigma^*$ and $y \in \Sigma^{\infty}$, such that b = xay. Moreover, if $x = \lambda$, resp., $y = \lambda$ then a is left factor, resp., right factor of b. Denote by F(a), LF(a), RF(a) the set of all factors, left factors, right factors of a, respectively. Subsets of $\Sigma^*, \Sigma^{\omega}$ and Σ^{∞} are called *languages*, ω -languages and ∞ -languages over Σ . Let L be an ∞ -language. Denote $m(L) = \inf\{|a|; a \in L\}$. Let L_1, L_2, L be languages. Define catenation (or product) of L_1 and L_2 by $L_1L_2 = \{xy; x \in L_1, y \in L_2\}$, and $L^0 = \{\lambda\}$, $L^{n+1} = L^n L$. Denote the catenation closure of L by L^* . By definition L^* is the union of all L^i , $i \in N$. Denote by $L^+ = L^* - \{\lambda\}.$

Definition 2.1. An incomplete generating machine over Σ , or briefly an IG-machine or more precisely IGk-machine, is a quadruple $M = \langle \Sigma, H, k, S \rangle$, where Σ is an alphabet, $H \notin \Sigma, k \geq 1, S \subseteq \Sigma^k \times (\Sigma \cup \{H\})$. The elements of Σ are referred to as states, H is called the halt state, k is called the depth of memory, S is called the successor operator. Define Dom $S = \{a \in \Sigma^k; (\exists b \in \Sigma \cup \{H\})(ab \in S)\}$, Pos $S = \{a \in \Sigma^{k-1} \times (\Sigma \cup \{H\}); (\exists b \in \Sigma)(ba \in S)\}$, and Top S = Pos S - Dom S.

M operates in discrete time scale N and at the *i*-th time instant the successor operator S is applied. By this way ∞ -words are obtained forming the ∞ -language of M as given in the following definitions.

Definition 2.2. An *output word* (of M) is defined recursively as follows:

(1) $a_0 \ldots a_{k-1} \in \text{Dom } S$ is an output word;

(2) a₀...a_n(n ≥ k) is an output word if a₀...a_{n-1} is an output word and a_{n-k}...a_n ∈ S with a_n ∈ Σ.
(3) All output words are obtained by (1) and (2). Denote by OUT(M) the set of all output words.

Definition 2.3. A word a, of length n is generated by M if and only if a is an output word and $(a_{n-k} \dots a_{n-1}H \in S \text{ or } a_{n-k} \dots a_{n-1} \notin \text{Dom } S).$ An ω -word a is generated by M if and only if $a_0 \dots a_n$ is an output word of M for any $n \ge k$.

The ∞ -language generated by M is the set of all words and ω -words generated by M and is denoted by $L^{\infty}(M)$. ∞ -languages generated by IGmachines and IGk-machines are referred to as IGlanguages and IGk-language. Denote by $IGk(\Sigma)$ and $IG(\Sigma)$ the sets of all ∞ -languages generated by IGk-machines over Σ , and IG-machines over Σ .

The easiest way to introduce the notion of a finite automaton is perhaps to view it as a labeled digraph, where each edge is labeled by one or several letters of the alphabet Σ . Furthermore two subsets of nods are specified called the set of *initial* and *final* nods. We say that a word a over Σ is accepted by a finite automaton \mathcal{A} if there is a path from an initial node to a final node labeled by a. The language $L(\mathcal{A})$ accepted by \mathcal{A} is defined to be the set of all words accepted by \mathcal{A} . An infinite path is called an *omega*path. The ω -path is called successful if it begins from an initial node and passes infinitely many times through final nodes. For a finite automaton \mathcal{A} we define an ω -language $L_{\omega}(\mathcal{A})$ accepted by \mathcal{A} as $L_{\omega}(\mathcal{A}) =$ $\{a \in \Sigma^{\omega}; a \text{ is a label for some successful } \omega\text{-path } \}.$ Languages accepted by finite automata are called regular; ω -languages accepted by finite automata are referred to as ω -regular languages. A language obtained by a union of a regular and an ω -regular language is termed $\infty regular$. To an IG-machine $M = \langle \Sigma, H, k, S \rangle$ we can easily construct two finite automata \mathcal{A}_1 and \mathcal{A}_2 such that the ∞ -language generated by M is a union of $L(\mathcal{A}_1)$ and $L_{\omega}(\mathcal{A}_2)$. For example we construct \mathcal{A}_2 . let V denote the set of nods and E denote the set of arcs. Set $V = \text{Dom} S \cup$ Top S, and $E = \{ (a_0 \dots a_{k-1}, a_1 \dots a_k) ; a_0 \dots a_k \}$ $\in S$, $\}$. An arc $(a_0 \dots a_{k-1}, a_1 \dots a_k)$ is labelled by a_0 . Nods in Dom S are initial nods and every nod is a final nod. Hence every IG-language is also ∞ -regular. The converse is not true. For instance the ∞ -regular language $\{a^{2n}; n \geq 1\}$ is not generated by any IGmachine. The proof of the following lemma is left to the reader.

Lemma 2.4. Let $M = \langle \Sigma, H, k, S \rangle$ be an IGmachine. The following statements are true.

(i)
$$\lambda \notin L^{\infty}(M)$$
.
(ii) $m(L^{\infty}(M)) \ge k$.

(iii) $(\forall a \in OUT(M))(\exists x \in L^{\infty}(M))(a \in LF(x)).$

- (iv) $(\forall a \in L^{\infty}))(\forall x \in \Sigma^{\infty})(|a| > k \text{ and } a \in RF(x))$ $\Rightarrow a \in L^{\infty}(M)).$
- (v) $(\forall u, a, b, c, d \in \Sigma^{\infty})(|u| = k)$ $(aub \in L^{\infty}(M))$ and $cud \in L^{\infty}(M) \Rightarrow aud \in L^{\infty}(M)).$
- (vi) Let $a \in \Sigma^{\omega}$. If for every $i \in N$ there are $x^{(i)} \in \Sigma^*$, $y^{(i)} \in \Sigma^{\infty}$, such that $x^{(i)}a_i \dots a_{i+k}y^{(i)} \in L^{\infty}(M)$ then $a \in L^{\infty}(M)$.
- (vii) Let $a \in \Sigma^{\omega}$. If for every $i \in N$ there is $y^{(i)} \in \Sigma^{\infty}$, such that $a_0 \dots a_{i+k} y^{(i)} \in L^{\infty}(M)$ then $a \in L^{\infty}(M)$.

Proof. (i) and (ii) are trivial consequences of Definition 1.3. (iii) was proved in [10]. To prove (iv) let $ya = x \in L^{\infty}(M)$ for some $y \in \Sigma^*$. First, assume $\omega > |a| = n > k$. Hence a is an output word and $a_{n-k} \dots a_{n-1} H \in S$ or $a_{n-k} \dots a_{n-1} \notin \text{Dom } S$. Thus, $a \in L^{\infty}(M)$. Second, let $a \in \Sigma^{\omega}$. Since $ya \in L^{\infty}(M)$ we get $a_i \ldots a_{i+k} \in S$ for all $i \in N$, which implies $a \in L^{\infty}(M)$. (v). First we assume that $a = d = \lambda$. If, moreover, $b = \lambda$ then $aud = aub \in L^{\infty}(M)$. If $b \neq \lambda$ then $u \in \text{Dom} S$. Since $cu \in L^{\infty}(M)$ then $uH \in S$. Thus, $aud = u \in L^{\infty}(M)$. Second, we assume that $a \neq \lambda$ or $d \neq \lambda$. By Definition 1.3 $au \in OUT(M)$ provided $a \neq \lambda$, and $ud \in OUT(M)$ provided $d \neq \lambda$, and so $aud \in OUT(M)$. If d is an ω -word then obviously $aud \in L^{\infty}(M)$. Assume d is a word. Denote by $g = g_0 \dots g_{n-1}$ the word *aud*. Since |aud| > k then by 1.3 $g_{n-k} \dots g_{n-1} H \in S$ or $g_{n-k} \dots g_{n-1} \notin \text{Dom } S.$ Thus, again $aud \in L^{\infty}(M)$. (vi). Let $x^{(i)}a_i \dots a_{i+k}y^{(i)} \in L^{\infty}(M)$ for all $i \in N$. Then it holds $(a_i \dots a_{i+k} \in S)$ for all $i \in N$ and so $a \in L^{\infty}(M)$. (vii) is an immediate consequence of (vi) letting $x_0 = \lambda$ and $x^i = a_0 \dots a_{i-1}$.

3 IG and IG*k*-Closures

This section introduces notions of IGk and IG-closures. We find necessary and sufficient conditions for the existence of the IGk-closure of a given ∞ -language. We also give an new characterization of IGk-languages.

Definition 3.1. Let L be an ∞ -language over Σ and $k \ge 1$. Define an IGk-machine $M(L,k) = \langle \Sigma, H, k, S(L,k) \rangle$, where $S(L,k) = \{a \in \Sigma^{k+1}; (\exists x \in L)(a \in F(x))\} \cup \{aH; a \in \Sigma^k \cap L\} \cup \{aH; (\exists x \in L)(a \in \Sigma^k \cap RF(x)) \text{ and } (\exists y \in L)(\exists a_k \in \Sigma)(aa_k \in F(y))\}.$

The following lemma is immediate.

Lemma 3.2. Let *L* be an ∞ -language. Let $a \in L^{\infty}(M(L,k))$, $|a| = n < \omega$. Then there is $x \in L$, such that $a_{n-k} \dots a_{n-1} \in RF(x)$.

Theorem 3.3. Let L be an ∞ -language, $1 \le k \le m(L)$. Then $L^{\infty}(M(L,k))$ is the least IGklanguage containing L (with respect to the set inclusion).

Proof. It is straightforward to verify that $L \subseteq$ $L^{\infty}(M(L,k))$. Let $L' \in IGk$ and assume $L \subseteq L'$. Denote by $M' = \langle \Sigma, H, k, S' \rangle$ the IG-machine that generates L'. We shall prove $L^{\infty}(M(L,k)) \subseteq L'$. First, let $a \in L^{\infty}(M(L,k)), |a| = k$. It holds $aH \in$ S(L,k). Since $L \subseteq L'$ then $a \in L'$ or $((\exists x \in L')(a \in L'))$ RF(x)) and $(\exists y \in L')(\exists a_k \in \Sigma)(aa_k \in F(y)))$. Assume the latter possibility holds true. Then $aa_k \in S'$ and there is $x' \in \Sigma^*$, such that $x = x'a \in L'$. Obviously $aa_k \in OUT(M')$ and by Lemma 1.5(iii) there is $z' \in \Sigma^{\infty}$, $aa_k z' \in L'$. By Lemma 1.5(v) $a \in L'$. Second, let $a \in L^{\infty}(M(L,k)), \omega > |a| = n > k$. By Definition 3.1 ($\forall i = 0, \ldots, n-k-1$) $(a_i \ldots a_{i+k} \in$ S(L,k)) and by Lemma 3.2 there exists $x \in L$ such that $a_{n-k} \ldots a_{n-1} \in RF(x)$. Since $L \subseteq L'$ then we deduce $(\forall i = 0, \dots, n-k-1) (\exists x^{(i)} \in L') (a_i \dots a_{i+k})$ $\in F(x^{(i)})$) and so $(\forall i = 0, \dots, n-k-1)(a_i \dots a_{i+k} \in$ S') and

 $a_{n-k} \dots a_{n-1} H \in S'$ or $a_{n-k} \dots a_{n-1} \notin \text{Dom}\,S'.$ (5)

It follows that $a \in L'$. Third, assume $a \in L^{\infty}(M(K, k))$, $|a| = \omega$. It holds $a_i \dots a_{i+k} \in S(L, k)$ for all $i \in N$. From Definition 3.1 it follows for all $i \in N$ there is $x^{(i)} \in L$, such that $a_i \dots a_{i+k} \in F(x^{(i)})$. Since $L \subseteq L'$, then $a_i \dots a_{i+k} \in S'$ and so $a \in L'$. We conclude that $L^{\infty}(M(L, k)) \subseteq L'$.

Definition 3.4. Let L be an ∞ -language, $k \ge 1$. If there is the least IGk-language containing L, then we call it the IGk-closure of L and denote it by \overline{L}^k .

Corollary 3.5. Let *L* be an ∞ -language. The *IGk*-closure \overline{L}^k of *L* exists if and only if $m(L) \ge k$. Moreover, $\overline{L}^k = L^{\infty}(M(L,k))$.

Proof. Consider the first statement. Assume IGkclosure \overline{L}^k of L exists. By Definition 3.4 $L \subseteq \overline{L}^k \in IGk$ and by Theorem 1.5(ii) $m(L) \ge m(\overline{L}^k) \ge k$. The reverse implication and the second statement follow readily from Theorem 3.3.

The following theorem gives a new characterization of IG-languages and generalizes the result of Kwasowiec [3], Theorem 1.

Theorem 3.6. Let L be an ∞ -language. Then the following statements (i), (ii) are equivalent:

- (i) $L \in IGk$.
- (ii) (1) $m(L) \ge k$.
 - (2) $(\forall x \in L)(\forall y \in \Sigma^{\infty})(|y| > k \text{ and } y \in RF(x))$ $\Rightarrow y \in L).$
 - (3) $(\forall u, a, b, c, d \in \Sigma^{\infty})(|u| = k)(aub \in L and$ $cud \in L \Rightarrow aud \in L).$

(4) Let a be an ω -word. If for every $i \in N$ there is $y^{(i)} \in \Sigma^{\infty}$, such that $a_0 \dots a_{i+k} y^{(i)} \in L$, then $a \in L$.

Proof. (i) \Rightarrow (ii) holds true due to Lemma 1.5. (ii) \Rightarrow (i). By Theorem 3.5 \overline{L}^k exists and by Definition 3.4 $L \subseteq \overline{L}^k$. We shall prove the reverse inclusion. First, suppose $a \in \overline{L}^k$, |a| = k. By Theorem 3.5 $aH \in$ S(L,k) and from Definition 3.1 it follows that either $a \in L$ or there are $x, y \in \Sigma^*$ and $z \in \Sigma^\infty$, $z \neq \lambda$, such that $xa \in L$ and $yaz \in L$. Assume the latter possibility holds true. Then by (2) $az \in L$ and using (3) follows $a \in L$. Second, suppose $a \in \overline{L}^k$, $\omega > |a| = n >$ k. Hence $a_i \dots a_{i+k} \in S(L,k)$ for all $i = 0, \dots, n - k$ k-1. By Definition 3.1 there are $x^{(i)} \in \Sigma^*, y^{(i)} \in$ Σ^{∞} , such that $x^{(i)}a_i \dots a_{i+k}y^{(i)} \in L$ for every i =0,..., n-k-1. Applying (3) (n-k-1)-times we get $x^{(0)}a_0\ldots a_{n-1}y^{(n-k-1)} \in L$. From (2) follows $a_0\ldots a_{n-1}y^{(n-k-1)} \in L$. Using Lemma 3.2 observe that there is $x' \in \Sigma^*$, such that $x'a_{n-k} \ldots a_{n-1} \in$ L. Using again (3) we arrive at $a = a_0 \dots a_{n-1} \in$ L. Third, suppose $a \in \overline{L}^k$, $|a| = \omega$. Then $(\forall i \in$ $N(a_i \dots a_{i+k} \in S(L, k))$. By Definition 3.1 there exist $x^{(i)} \in \Sigma^*, y^{(i)} \in \Sigma^\infty$, such that $x^{(i)}a_i \dots a_{i+k}y^{(i)}$ $\in L$. By (2) $a_i \dots a_{i+k} y^{(i)} \in L$ and so applying (3) i-times we get $a_0 \ldots a_{i+k} y^{(i)} \in L$ for all $i \in N$. Consequently from (4) follows $a = a_0 a_1 a_2 \ldots \in L$. We conclude that $\overline{L}^k \subseteq L$.

Define the map c_r from the set of all ∞ -languages into itself by $c_r(L) = \{a \in L; |a| \ge r\}$, for an ∞ -language L. From Theorem 3.6 immediately follows the following theorem.

Lemma 3.7. Let $L \in IGk$, $r \geq k$. Then $c_r(L) \in IGr$.

We will now explicitly construct the IG-machine that for a given M generates $c_r(L^{\infty}(M))$. First we introduce the operation of overlaping catenation which is a generalization of the usual catenation operation. Let L, L' be ∞ -languages, $r \in N$. Define $L \cap L' = \{xuy; |u| = r, xu \in L, uy \in L'\}$. By $\bigcap_{k \leq i \leq n} L_i$ we abbreviate $L_k \cap L_{k+1} \cap \ldots \cap L_n$; we write $\bigcap_{k \leq i \leq n} L$ instead of $\bigcap_{k \leq i \leq n} L_i$ in case $L_k = L_{k+1} = \cdots = L_n = L$. Observe that the operation (r) is associative.

Let $M = \langle \Sigma, H, k, S \rangle$, $r \in N$. Define an IGmachine $M/r = \langle \sigma, H, k/r, S/r \rangle$ as follows:

$$k/r = \begin{cases} k, & \text{for } r \leq k \\ r, & \text{for } r > k , \end{cases}$$
$$S/r = \begin{cases} S, & \text{for } r \leq k \\ \{aH; a \in \&_{k \leq i \leq r-1} S \cap \Sigma^r, a_{r-k} \dots a_{r-1} \\ \notin \operatorname{Dom} S \} \cup \&_{k \leq i \leq r} S, & \text{for } r > k . \end{cases}$$

Lemma 3.8. Let $M = \langle \Sigma, H, k, S \rangle$ be an IGmachine, $r \in N$, $L = L^{\infty}(M)$. Then $c_r(L^{\infty}(M)) = L^{\infty}(M/r)$.

Proof: For $r \leq k$ the statement is straightforward. Assume the contrary. By Lemma 3.7 $c_r(L) = L^{\infty}(M(c_r(L), r))$. We shall prove that $M(c_r(L), r) = M/r$. Obviously $a \in S(c_r(L), r) \cap \Sigma^{r+1}$ if and only if there is $x \in c_r(L) \subseteq L$, such that $a \in F(x)$ if and only if $a \in \bigotimes_{k \leq i \leq r} S$ iff $a \in S/r$. Let $aH \in S(c_r(L), r)$. By Definition 3.1 there is $y \in c_r(L) \subseteq L$, such that $a \in RF(y)$. Hence $a_i \dots a_{i+k} \in S$ for all $i = 0, \dots, r-k-1$ and $(a_{r-k} \dots a_{r-1}H \in S \text{ or } a_{r-k} \dots a_{r-1}f \notin$ DomS). By Definition $a \in \bigotimes_{k \leq i \leq r-1} S$ and $aH \in S/r$. Hence either $aH \in \bigotimes_{k \leq i \leq r} S$ or $(a \in \bigotimes_{k \leq i \leq r-1} S$ and $a_{r-k} \dots a_{r-1} \notin$ DomS). In both cases $a \in L$ which implies $aH \in S(c_r(L), r)$.

Using Lemma 3.7 it is easy to see that if $1 \leq r \leq s \leq m(L)$, then $\overline{L}^s \subseteq \overline{L}^r$ and so

$$\overline{L}^1 \supseteq \overline{L}^2 \supseteq \cdots \supseteq \overline{L}^{m(L)}$$
 for $1 \le m(L) < m$,
and $\overline{L}^1 \supseteq \overline{L}^2 \supseteq \overline{L}^3 \supseteq \cdots$ for $m(L) = \omega$.

Definition 3.9. Let L be an ∞ -language. If there is the least IG-language containing L then we call it the IG-closure of L and denote it by \overline{L} .

Note that if $1 \leq m(L) < \omega$, then the IG-closure \overline{L} of L exists and $\overline{L} = \overline{L}^{m(L)}$.

Theorem 3.10. Let $m(L) = \omega$. Then the following three conditions are equivalent:

- (1) The IG-closure of L exists.
- (2) There exists $r \ge 1$ such that for all $s > r, \overline{L}^r = \overline{L}^s$. Moreover, $\overline{L} = \overline{L}^r$.
- (3) $\bigcap_{k=1}^{\omega} \overline{L}^k \in IG.$ Moreover, $\bigcap_{k=1}^{\omega} \overline{L}^k = \overline{L}.$

Proof. (1) \Rightarrow (2). Let \overline{L} exists. Then $\overline{L} \in IGr$ for some $r \geq 1$ and so $\overline{L} = \overline{L}^r \supseteq \overline{L}^{r+1} \supseteq \overline{L}^{r+2} \supseteq \dots$. Hence $\overline{L}^r = \overline{L}^{r+1} = \overline{L}^{r+2} = \dots$ (2) \Rightarrow (3) is immediate. (3) \Rightarrow (1). Denote $\bigcap_{k=1}^{\omega} \overline{L}^k$ by L_0 . Obviously $L \subseteq L_0$. Consider an arbitrary IG-language L', $L \subseteq L'$. Then there is $r \geq 1$, such that $L' \in IGr$. By definition $L_0 \subseteq \overline{L}^r \subseteq L'$ and so L_0 is the IG-closure of L.

Example 3.11. Consider an ω -regular language $L = \{ba^{\omega}\} \cup \{a^n b^{\omega}; n > 0\}$. By Definition 3.1

$$S(L,k) = \{ba^k, a^{k+1}, a^k b, a^{k-1}b^2, \dots, ab^k, b^{k+1}\}\$$

Hence $ba^k b^\omega \in \overline{L}^k$. Assume $ba^k b^\omega \in \overline{L}^{k+1}$. Then $ba^k b \in S(L, k+1)$. Thus, $ba^k b$ is a factor or some ω -word of L. This yields a contradiction and so we conclude that $\overline{L}^k \neq \overline{L}^{k+1}$ for all $k \ge 1$. By Theorem 3.10 IG-closure of L does not exist.

4 Inclusion and Equivalence

In this section we solve the inclusion and equivalence problems for IG-languages.

Theorem 4.1. Let $M = \langle \Sigma, H, k, S \rangle$, $M' = \langle, \Sigma, H, k, S' \rangle$. Then the following statements (i),(ii) are equivalent:

(i)
$$L^{\infty}(M) \subseteq L^{\infty}(M')$$

(ii) $S \subseteq S'$ and $Dom S' \cap Top S \subseteq \{a; aH \in S'\}$.

Proof. (i) \Rightarrow (ii). First, assume $a \in S \cap \Sigma^{k+1}$. Hence $a \in \text{OUT}(M)$. By Lemma 1.5(iii) there exists $x \in L^{\infty}(M)$, such that $a \in LF(x)$. Using (i) we get $x \in L^{\infty}(M')$ and by Definition 1.3 $a \in S'$. Second, if $aH \in S$, then it holds $a \in L^{\infty}(M) \subseteq L^{\infty}(M')$, which implies $aH \in S'$ and so we conclude that $S \subseteq S'$. Now assume that $a \in \text{Dom } S' \cap \text{Top } S$. By Definition 1.3 there is $b \in \Sigma$, $ba \in S$ and $a \notin \text{Dom } S$ and so $ba \in L^{\infty}(M)$. By (i) $ba \in L^{\infty}(M')$. Due to $a \in \text{Dom } S'$ we obtain $aH \in S'$. (ii) \Rightarrow (i). First,

let $a \in L^{\infty}(M)$, |a| = k. Then $aH \in S \subseteq S'$ which implies $a \in L^{\infty}(M')$. Second, let $a \in L^{\infty}(M)$, $\omega > \omega$ |a| = n > k. Hence $a_i \dots a_{i+k} \in S \subseteq S'$, for all $i = 0, \ldots, n-k-1$ and $(a_{n-k} \ldots a_{n-1}H \in S \subseteq S'$ or $a_{n-k} \dots a_{n-1} \notin \text{Dom } S$). If $a_{n-k} \dots a_{n-1} H \in S \subseteq S'$ or $a_{n-k} \ldots a_{n-1} \notin \text{Dom}\, S'$ then $a \in L^{\infty}(M')$. Assume the contrary, i.e. $a_{n-k} \dots a_{n-1} H \notin S$ and $a_{n-k} \dots a_{n-1} \in \text{Dom } S'$. Then $a_{n-k} \dots a_{n-1} \in \text{Top } S$ and $a_{n-k} \dots a_{n-1} H \in S'$ and so $a \in L^{\infty}(M')$. Third, let $a \in L^{\infty}(M)$, $|a| = \omega$. It holds $(\forall i \geq 0)(a_i \dots a_{i+k})$ $\in S \subseteq S'$) and so $a \in L^{\infty}(M')$.

Theorem 4.2. Let $M = \langle \Sigma, H, k, S \rangle$, $M' = \langle \Sigma, H, k, S \rangle$ k', S', $r = \max(k, k')$. Then the following statements (i),(ii) are equivalent:

- (i) $L^{\infty}(M) \subseteq L^{\infty}(M')$.
- (ii) (1) $S/_r \subseteq S'/_r$ and

(2) $Dom(S'/_r) \cap Top(S/_r) \subseteq \{a; aH \in S'/_r\}$ and

(3)
$$m(L^{\infty}(M)) \ge r.$$

Proof. (i) \Rightarrow (ii) By Lemma 3.7. $L^{\infty}(M/r) = c_r(L^{\infty}(r))$ $(M)) \subseteq c_r(L^{\infty}(M')) = L^{\infty}(M'/_r).$ By Theorem 4.1 the conditions (1),(2) are satisfied. Let $a \in L^{\infty}(M)$. Then $|a| \geq k$. Since $L^{\infty}(M) \subseteq L^{\infty}(M')$ then also $|a| \ge k'$. Consequently $|a| \ge r$. (ii) \Rightarrow (i) From (1),(2), using theorem 4.1, it follows $L^{\infty}(M/_r) \subseteq L^{\infty}(M'/_r)$. By Lemma 3.7. $c_r(L^{\infty}(M)) \subseteq c_r(L^{\infty}(M'))$ and by $(3) L^{\infty}(M) = c_r(L^{\infty}(M)) \subseteq c_r(L^{\infty}(M')) \subseteq L^{\infty}(M') \subseteq L^{\infty}(M') \subseteq \mathbb{Z} = \{a\}.$ It is easy to see $IG(\{a\}) = \{\emptyset, \{a^{\omega}\}\} \cup \mathbb{Z}$

The following statement is a straightforward consequence of Theorem 4.2.

Theorem 4.3. Let $M = \langle \Sigma, H, k, S \rangle$, $M' = \langle \Sigma, H, k, S \rangle$ $k', S'\rangle, k \leq k'$. Then the following statements (i),(ii) are equivalent:

(i)
$$L^{\infty}(M) = L^{\infty}(M')$$
.

(ii)
$$S/_{k'} = S'$$
 and $m(L^{\infty}(M)) \ge k'$.

In particular if k' = k Theorem 4.3 has the following simple form.

Theorem 4.4. Let $M = \langle \Sigma, H, k, S \rangle$, $M' = \langle \Sigma, H, k, S \rangle$ k, S'. Then the following statements (i) (ii) are equivalent:

(i)
$$L^{\infty}(M) = L^{\infty}(M').$$

(ii) $S = S'.$

Boolean Operations 5

n this section we study the closure properties of IGlanguages under Boolean operations. We show that the classes of IGk/languages and IG-languages are closed under finite intersection but, in general, they are not closed under infinite intersection, finite union and difference.

Theorem 5.1. The sets $IGk(\Sigma)$ and $IG(\Sigma)$ are closed under finite intersection.

Proof. Let $L_1, L_2 \in IGk(\Sigma)$. One can easily verify that the conditions (1),(2) (3) and (4) in Theorem 3.6 are satisfied for $L_1 \cap L_2$. for example we prove that condition (4) is satisfied. Let a be an ω -word and for every $i \in N$ let there be $y^{(i)} \in \Sigma^{\infty}$, such that $a_0 \dots a_{i+k} y^{(i)} \in L_1 \cap L_2$. Then $a \in L_1$ and $a \in L_2$ and so $a \in L_1 \cap L_2$. Thus $L_1 \cap L_2 \in IGk(\Sigma)$. Let $L_i \in IGk_i(\Sigma), i = 1, 2$ and assume $k_1 \geq k_2$. Then $L_1 \cap L_2 - c_{k_2}(L_1) \cap L_2$. The theorem now follows from its firs part.

Theorem 5.2. The set $IG(\Sigma)$ is not closed under infinite intersection with the only exception when $Card(\Sigma) = 1$.

Proof. Let $a, b \in \Sigma$ and $a \neq b$. Consider the language L from Example 3.11. We have $\overline{L}^k \in IG(\Sigma)$ for all $k \geq 1$ and we know that IG-closure of L does not exist, hence by Lemma 3.10 $\bigcap_{k=1}^{\omega} \overline{L}^k \notin IG$. Let $\{\{a^k\}; k \ge 1\} \cup \{\{a^n; n \ge k\} \cup \{a^{\omega}\}; k \ge 1\}.$ Consider an infinite sequence $L_i \in IG(\{a\}), i \in N$. If there is $n \in N$, such that $Card(L_n) = 1$ or $L = \emptyset$, then $\bigcap_{i \in N} L_i$ equals L_n or \emptyset which both are in $IG(\{a\})$. Assume the contrary. Then there are k_i , such that $L_i = \{a^n; n \ge k_i\} \cup \{a^\omega\}$ for all $i \in N$. Thus,

$$\bigcap_{i\in N} L_i = \{a^n; \ n \ge \sup\{k_i; i\in N\}\} \cup \{a^\omega\}$$

which again is in $IG(\{a\})$.

Theorem 5.3. The classes $IGk(\Sigma)$ and $IG(\Sigma)$ are not closed under union and difference.

Proof. If $a \in \Sigma$, then $\{a^k\}, \{a^\omega\}, L = \{a^n; n \geq 0\}$ $k \} \cup \{a^{\omega}\} \in IGk(\Sigma)$. One easily observes that $\{a^k\} \cup \{a^k\} \cup \{a^k\} \in IGk(\Sigma)$. $\{a^{\omega}\} \notin IG, L - \{a^{\omega}\} = \{a^n; n \geq k\} \notin IG$ and $\{a,b\}^{\omega} - \{a^{\omega}\} \notin IG.$

Let $L_i \in IG$, for $1 \leq i \leq n$. We now explicitly

construct the IG-machine that generates $\bigcap_{i=1}^{n} L_i$.

Lemma 5.4. Let $M_i = \langle \Sigma, H, k, S_i \rangle$, i = 1, 2. Then $Top(S_1 \cup S_2) \subseteq Top S_1 \cup Top S_2$.

Proof. Let $aH \in \operatorname{Top}(S_1 \cup S_2)$. Then there is $b \in \Sigma$, such that $baH \in S_1 \cup S_2$. Hence $baH \in S_1$ or $baH \in S_2$ and so $aH \in \operatorname{Top} S_1$ or $aH \in \operatorname{Top} S_2$. Let $a \in \operatorname{Top}(S_1 \cup S_2) \cap \Sigma^k$. Hence $a \notin Dom(S_1 \cup S_2)$ and there is $b \in \Sigma$, $ba \in S_1 \cup S_2$. So $a \notin Dom S_i$ for i = 1, 2 and $ba \in S_1$ or $ba \in S_2$. Thus, $a \in \operatorname{Top} S_1$ or $a \in \operatorname{Top} S_2$.

Theorem 5.5. Let $M_i = \langle \Sigma, H, k, S_i \rangle$, $L_i = L^{\infty}(M_i)$ for $1 \le i \le n$. Then $M = \langle \Sigma, H, k, S \rangle$, $L^{\infty}(M) = \bigcap_{i=1}^n L_i$, where $S = \bigcup_{S' \in \Theta} S'$ where $S' \in \Theta$ if and only if the following two conditions are satisfied:

(1)
$$S' \subseteq \bigcap_{i=1}^{n} S_i$$
 and

(2)
$$Top S' \subseteq \bigcap_{i=1}^{n} (Top S_i \cup \{a; aH \in S_i\})$$

Proof. By Theorem 5.1 there is an IG=machine $M = \langle \Sigma, H, k, S \rangle$, such that $L^{\infty}(M) = \bigcap_{i=1}^{n} L_i$.

<u>Claim 1.</u> $S \in \Theta$. Since $L^{\infty}(M) \subseteq L^{\infty}(M_i)$, then by Theorem 4.1 $S \subseteq S_i$ for all $1 \leq i \leq n$. Hence condition (1) holds for S. Let $aH \in \text{Top } S$. Then there is $b \in \Sigma$, $baH \in S$. By (1) $baH \in S_i$ for all $1 \leq i \leq n$, and so $aH \in \text{Top } S_i$ for all $1 \leq i \leq n$. If $a \in \text{Top } S \cap \Sigma^k$, then there is $b \in \Sigma$, such that $ba \in S$ and so $ba \in \bigcap_{i=1}^n L_i$. Assume $a \notin \text{Top } S_i$. Since $ba \in L_i$, then $a \in Dom S_i$ and so $aH \in S_i$. Consequently (2) holds for S.

<u>Claim 2.</u> If $S' \in \Theta$ then $L^{\infty}(M') \subseteq \bigcap_{i=1}^{n} L_i$ where $M' = \langle \Sigma, H, k, S' \rangle$. By (2) Dom $S_i \cap \text{Top } S' \subseteq \text{Dom } S_i \cap (\text{Top } S_i \cup \{a; aH \in S_i\}) = \{a; aH \in S_i\}$. From Theorem 4.1 follows $L^{\infty}(M') \subseteq L^{\infty}(M_i) = L_i$.

<u>Claim 3.</u> If $S', S'' \in \Theta$, then also $S' \cup S'' \in \Theta$. The claim follows easily from Lemma 5.4.

From claims 2 and 3 follow that Θ has the greatest element, namely $\bigcup_{S'\in\Theta} S'$.By claim $2 L^{\infty}(M') \subseteq L^{\infty}(M)$ for any $S' \in \Theta$ and so by Theorem 4.1 $S' \subseteq S$. By claim $1 S \in \Theta$ and so S is the greatest element of Θ .

We now provide an algorithm for constructing

S. Denote

$$\Delta = \bigcap_{i=1}^{n} (\operatorname{Top} S_i \cup \{a; aH \in S_i\}).$$

Define recursively the sequence

$$S^{(0)} = \bigcap_{i=1}^{n} S_i,$$

$$S^{(m+1)} = S^{(m)} - \{ba; \ b \in \Sigma, a \in \text{Top}\,S^{(m)} - \Delta\}$$

Whenever Top $S^{(m)} \subseteq \Delta$ we claim that $S^{(m)} = S$.

To prove this we first observe that $S^{(0)}$ is finite, $S^{(m+1)} \subseteq S^{(m)}$ and $\operatorname{Top} S^{(m)} \subseteq \Delta$ if and only if $S^{(m)} = S^{(m+1)}$. Thus, there is m_0 such that $S^{(m_0)} =$ $S^{(m_0+1)} = S^{(m_0+2)} = \dots$ We shall now prove that $S \subseteq S^{(m)}$ for every $m \in N.$ By Theorem 5.5 $S \subseteq$ $S^{(0)}$. Proceeding inductively we assume $S \subseteq S^{(m)}$. By contraposition assume $\overset{\circ}{S} \not\subset S^{(m+1)}$. Hence there is $a \in S - S^{(m+1)}$. By assumption $a \in S^{(m)} - S^{(m+1)}$. First, assume a is of the form bH, $b = b_0 \dots b_{k-1}$. For all $bH \in S^{(m)}$ follows $b \in L_i$ which implies $bH \in S_i$ for all $1 \leq i \leq n$. Hence $b_1 \dots b_{k-1} H \in \text{Top } S_i$ for all $1 \leq i \leq n$ and so $b_1 \dots b_{k-1} H \in \Delta$. Thus, a = $bH \in S^{(m+1)}$ which yields a contradiction. Second, assume $a \in \Sigma^{k+1}$. By the definition of $S^{(m+1)}$ we obtain $a_1 \dots a_k \notin \Delta$ and $a_1 \dots a_k \in \text{Top } S^{(m)}$ and so $a_1 \ldots a_k \notin \text{Dom}\, S^{(m)}$. Since $S \subseteq S^{(m)}$, then also $a_1 \ldots a_k \notin \text{Dom } S$. Hence $a_1 \ldots a_k \in \text{Top } S$. By the definition of S, Top $S \subseteq \Delta$ and so $a_1 \ldots a_k \in \Delta$. This yields a contradiction. We have proved $S \subseteq S^{(m)}$ for all $m \in N$. If $S^{(m)} = S^{(m+1)}$, then $S^{(m)} \subseteq \Delta$ and so $S^{(m)} \in \Theta$. S is the greatest element of Θ and consequently $S = S^{(m)}$.

Theorem 5.6. Let $M_i = \langle \Sigma, H, k_i, S_i \rangle$, $L_i = L^{\infty}(M_i)$ for $1 \leq i \leq n$. Put $k = \max\{k_i; 1 \leq i \leq n\}$. There is $M = \langle \Sigma, H, k, S \rangle$, such that $L^{\infty}(M) = \bigcap_{i=1}^{n} L_i$ and $S = \bigcup_{S' \in \Theta} S'$ where $S' \in \Theta$ if and only if the following two conditions are satisfied:

(1)
$$S' \subseteq \bigcap_{i=1}^{n} S_i/k,$$

(2)
$$\operatorname{Top} S' \subseteq \bigcap_{i=1}^{n} (\operatorname{Top}(S_i/k) \cup \{a; aH \in S_i/k\}).$$

Proof. Observe that $\bigcap_{i=1}^{n} L_i = \bigcap_{i=1}^{n} c_k(L_i)$. By Lemma 3.7 $c_k(L_i) = L^{\infty}(M_i/k) \in IGk$. The Theorem now follows from Theorem 5.5.

Theorem 5.6 yields an algorithm for constructing the IG-machine M which generates $\bigcap_{i=1}^{n} L_i$: To each IG-machine M_i we construct the IGk-machine M_i/k . Then we apply the above algorithm.

6 Poset Structures

Let (P, \leq) be partially ordered set and S a subset of P. If the partial ordering \leq of the set P is known, we formally identify P with (P, \leq) to simplify the notation. This simplification will be commonly used throughout this section. We say that an element $a \in P$ is a *join*, resp., *meet* of S if a is the least upper, resp., the greatest lower bound of SA partially ordered set in which every pair of elements has a join, resp., meet is called an upper, resp., *lower semilattice*. A partially ordered set in which every pair of elements has a join and meet is called a *lattice*.

Lemma 6.1. Let $M_i = \langle \Sigma, H, k, S_i \rangle$, $L_i = L^{\infty}(M_i)$, $1 \leq i \leq n$. Consider the IGk-machine $M = \langle \Sigma, H, k, S \rangle$, where

$$S = \bigcup_{i=1}^{n} S_i \cup \{aH; \ a \in (\bigcup_{i=1}^{n} \operatorname{Top} S_i) \cap \operatorname{Dom}(\bigcup_{i=1}^{n} S_i)\}$$

Then $L^{\infty}(M) = \overline{\bigcup_{i=1}^{n} L_i}^k$.

Proof. Using Definition 3.1 one easily verifies that $S = S(\bigcup_{i=1}^{n} L_i, k)$. Since $m(\bigcup_{i=1}^{n} L_i) \ge k$ the lemma follows from Corollary 3.5.

Theorem 6.2. The set $IGk(\Sigma)$ is a lattice with meet $L_1 \cap L_2$ and join $\overline{L_1 \cup L_2}^k$. The least element of $IGk(\Sigma)$ is \emptyset and the greatest element is $\Sigma^{\infty} - \bigcup_{n=0}^{k-1} \Sigma^n$.

Proof. Consider the first statement. By Theorem 5.1 the set $IGk(\Sigma)$ is closed under finite intersection. Obviously $L_1 \cap L_2$ is a meet of $\{L_1, L_2\}$. By Theorem 3.5 $\overline{L_1 \cup L_2}^k$ is a join of $\{L_1, L_2\}$. The second statement is immediate.

Example 6.3. We give an example of an T ω language over a two letter alphabet which is the union of two IG1-languages and for which IG-closure does not exist. Consider two IG ω -machines $M_i = \langle \Sigma, H, 1, S_i \rangle$, i = 1, 2, where $S_1 = \{a^2, ab, b^2\}$, $S_2 = \{b^2, ba, a^2\}$. Define $L = L^{\infty}(M_1) \cup L^{\infty}(M_2) = \{a^n b^{\omega}, b^n a^{\omega}; n \in N\}$. Let $k \geq 1$. Then by Definition 3.1 $a^k b$, $a^{k-1}b^2$, ..., ab^k , $b^k a$, $b^{k-1}a^2$, ..., $ba^k \in S(L, k)$. Hence $(a^k b^k)^{\omega} \in \overline{L}^k$. Assume $\overline{L}^k = \overline{L}^{k+1}$ for some $k \geq 1$. Then $ab^k a \in S(L, k+1)$. By Definition 3.1 S(L, k+1) consists of all factors of length k + 2 of ω -words in L. Obviously $ab^k a$ is not a factor of any ω -word in L. This yields a contradiction. We conclude $\overline{L}^k \neq \overline{L}^{k+1}$ for all $k \geq 1$. By Lemma 3.10 IG-closure of L does not exist.

Theorem 6.4. If $Card(\Sigma) \geq 2$, then the set $IG(\Sigma)$ is a lower semilattice, with the meet $L_1 \cap L_2$, but not lattice. For $Card(\Sigma) = 1$ the set $IG(\Sigma)$ is a lattice. In both cases the least element of $IG(\Sigma)$ is \emptyset ; the greatest element of $IG(\Sigma)$, is $\Sigma^{\infty} - \{\lambda\}$.

Proof. Consider the first statement. It is immediate from Theorem 5.1 that $IG(\Sigma)$ is a lower semilattice. Let $a, b \in \Sigma$. Consider the two IG1-languages $L_1 = \{a^n b^\omega; n \in N\}, L_2 = \{b^n a^\omega; n \in N\}$ from Example 6.3 and assume that the join of $\{L_1, L_2\}$ exists. Hence there is the least IG-language containing $L_1 \cup L_2$ and so IG-closure of $L_1 \cup L_2$ exists. This yields a contradiction with Example 6.3. It is easy to see that $IGX(\{a\})$ is a lattice. The last statement is obvious.

7 Enumeration Results

Let (P, \leq) be partially ordered set and S a subset of P. If S is a subset of P with the property that any two elements in P are comparable, resp., noncomparable, then set S is called a *chain*, resp., *antichain*. The *length* of the chain S is Card(S) - 1. P is said to be of *length* n, in symbols l(P) = n, if there is a chain of length n and all the chains are of length $\leq n$. The width of P is n, in symbols w(P) = n, if there is an antichain of n elements and all antichains have $\leq n$ elements. From Theorem 4.4 immediately follows $Card(IGk(\Sigma)) = 2^{n^k(n+1)}$.

Theorem 7.1. If $Card(\Sigma) = n$, then $l(IGk(\Sigma)) = n^k(n+1)$.

Proof. Consider an arbitrary chain $L_0 \subset L_1 \subset \cdots \subset L_m$ of elements of $IGk(\Sigma)$. Denote by $M_i = \langle \Sigma, H, k, S_i \rangle$ the IG*k*-machine over Σ that generates L_i . By Theorem 4.1 $S_0 \subset S_1 \subset \cdots \subset S_m \subseteq \Sigma^k \times$

 $(\Sigma \cup \{H\})$. Hence $m \leq n^k (n+1)$. To end the proof we shall construct a chain of IGk-languages over Σ of length $n^k (n+1)$. Assume a linear ordering on $\Sigma^k = \{x_1, \ldots, x_{n^k}\}$ and $\Sigma^{k+1} = \{y_1, \ldots, y_{n^{k+1}}\}$. Define recursively $S_0 = \emptyset$, $S_i = S_{i-1} \cup \{x_iH\}$ for $1 \leq i \leq n^k$, $S_i = S_{i-1} \cup \{y_{i-n^k}\}$ for $n^k + 1 \leq i \leq n^k (n+1)$. Put $M_i = \langle \Sigma, H, k, S_i \rangle$. By Theorem 4.1 $L^{\infty}(M_i) \subset L^{\infty}(M_{i+1})$. Thus, $L^{\infty}(M_0) \subset L^{\infty}(M_1) \subset \cdots \subset L^{\infty}(M_{n^k(n+1)})$ is the chain we sought.

Theorem 7.2. If $Card(\Sigma) = n$, then

$$w(IGk(\Sigma)) \ge \begin{pmatrix} n^k(n+1)\\ \frac{n^k(n+1)}{2} \end{pmatrix}$$

Proof. We shall construct an antichain in $IGk(\Sigma)$ of $\binom{n^k(n+1)}{\frac{n^k(n+1)}{2}}$ elements. Consider the set $A^{(m)} = \{L^{\infty}(M); M = \langle \Sigma, H, k, S \rangle, \text{Card}(S) = m\}$. By Theorem 4.1 elements of $A^{(m)}$ are noncomparable and $\text{Card}(A^{(m)}) = \binom{n^k(n+1)}{m}$. To end the proof put $m = \frac{n^k(n+1)}{2}$.

The set $A^{\left(\frac{n^k(n+1)}{2}\right)}$ is the greatest set (with respect to cardinality) of all $A^{(m)}$, $0 \le m \le n^k (n+1)$. Notice that, unlike the case of Gk-languages, the set $A^{(m)}$ is not always an antichain of maximal length in $IGk(\Sigma)$ and this is why the argument used by Mezník in [9] does not apply in the above case. hence instead obtaining the width of $IGk(\Sigma)$ we only obtain the lower bound on width. Indeed, consider $\Sigma = \{a, b\}, n = k = m = 2 \text{ and } S = \{abb, bba, bab\},\$ $M = \langle \Sigma, H, k, S \rangle$. Then $L^{\infty}(M) = RF((abb)^{\omega}) = L$. We shall prove that L is non-comparable with all elements of $A^{(2)}$. Arguing indirectly assume the contrary, i.e that there is $L' = L^{\infty}(M'), M' = \langle \Sigma, H, 2, \rangle$ S', Card(S)' = 2 such that $L \subseteq L'$ or $L' \subseteq L$. Since $\operatorname{Card}(S) = 3$ then $S \not\subseteq S'$ and so by Theorem 4.1 $L \not\subseteq L'$. Thus, $L' \subseteq L$ and by definition $L' \neq \emptyset$. Hence L' contains at least one of the words $(abb)^{\omega}$, $(bba)^{\omega}, (bab)^{\omega}$. In either case $abb, bba, bab \in S'$ which is a contradiction. Thus, $A^{(2)}$ is not a maximal antichain in $IGk(\Sigma)$.

References

 J. R. Büchi, On Decision Method in Restricted second order arithmetic Proc. of the Int. Cong. on Logic, Methodology and Philosophy of Sciences 1960, Stanford Univ. Press, Stanford, California.

- [2] R. S. Cohen and A. Y. Gold, Theory of ω-languages a study of various models of ω-type generation and recognition, J. Comput. System Sci 15, 1977, pp. 185–206.
- [3] W. Kwasowiec, Generable sets, Information and Control 17, 1970, pp.257–264.
- W. Kwasowiec, *Relational Machines*, Bull. Acad. Polon. Sci. Ser. Sci. Math. Astronom. Phys. 18, 1970, pp. 245–249.
- [5] R. McNaughton, Testing and Generating Infinite Sequences by a Finite Automaton, Information and Control 9, 1966 pp. 521–530.
- [6] I. Mezník, G-Machines and Generable Sets, Information and Control 20, 1972, pp. 499–509.
- [7] I. Mezník, On Lattice properties of Generable Languages, Rev. Roum. Math. Pures et Appl. 8,1974, pp. 1037–1040.
- [8] I. Mezník, On finite [k]-machines and their languages, Kniž. Odb. a Věd. Spisu VUT Brno B-56, 1975, pp. 203–216.
- [9] I. Mezník, itfont On some structural properties of a subclass of ∞-regular languages, Discrete Applied Mathematics 18, 1987, pp. 315–319.
- [10] I. Mezník, A new class of ∞-regular languages Kniž.Odb. a Věd.Spisu VUT Brno B-119, 1988, pp. 187–196.
- [11] M. Nivat, Mots infinis engendres par une grammaire algebrique, RAIRO Inform. Theor. 11, 1977, 311–327.
- [12] M. Nivat, Infinite words, infinite trees, infinite computations, Foundations of Computer Science III, J. W. De Bakker and J. Van Leeuwen, eds., Mathematisch Centrum, Amsterdam, 1979, pp. 5–52.
- [13] D. Niwinski, Fixed-point characterization of context-free ∞-languages, Inform. and Control 61, 1984, pp. 247–276.
- [14] M. Novotný, Sets constructed by acceptors, Inform. and Control 26, 1974, pp. 116–133.
- [15] Z. Pawlak, Maszyny programowane, Algorytmy 10, 1969, pp. 7–22.
- [16] L. Staiger, Hierarchies of recursive ω-languages, Elektron. Informationsverarb. Kybern. 22, 1986, pp. 219–241.
- [17] P. Wolper, M. Y. Vardi and A. P. Sistla Rea soning about computation paths, Proc. 24th Ann. Symp. on Foundation of Computer Science, Arizona 1983, IEEE Computer Soc. Press, Silver Spring, MD, pp. 185–193.