
A Simple Circuit for Adding Complex Numbers

JOHNNY GOODE†, TARIQ JAMIL‡, AND DALE CALLAHAN†

†Department of Electrical and Computer Engineering,
University of Alabama-Birmingham (USA)

‡Department of Electrical and Computer Engineering,
Sultan Qaboos University (OMAN)

Abstract: - The important role of complex numbers in a wide range of engineering applications demands better
and more efficient methods of handling arithmetic operations involving these numbers. Using base (-1+j),
instead of base 2, to represent complex numbers in binary notation allows both real and imaginary parts of the
number to be combined into single binary representation and facilitates reduction in the number of arithmetic
operations. Design of a size-free adder circuit based on (-1+j)-base binary representation of complex numbers
is presented in this paper.

Key-Words: - Complex number, Complex binary number, Arithmetic, Adder, State machine, Token

1 Introduction
Complex numbers play a very important role in
engineering applications such as digital signal
processing and image processing. Thus design of an
efficient approach to handle complex arithmetic will
result in better performance in such applications.
These days, complex number operations involve, to
a large extent, application of a “divide-and-conquer”
technique, whereby a complex number is broken up
into its real and imaginary parts. Operations are then
carried out on each part as if it were a real part of the
arithmetic. Finally, the overall result of the complex
operation is obtained by accumulation of the
individual results. For instance, addition of two
complex numbers (a + jb) and (c + jd) requires two
separate additions (one for the real parts and one for
the imaginary parts) while multiplication of the
same two complex numbers requires four
multiplications, one subtraction, and one addition.
This can be effectively reduced to just one complex
addition or only one multiplication and addition
respectively for the given cases if each complex
number is represented as one unit instead of two
individual units. Efforts in defining binary numbers
with bases other 2, which facilitates one-unit
representation of complex numbers, includes work
by Knuth [1], Penney [2], and Stepanenko [3].
Jamil et. al. [4] have presented a detailed analysis of
(-1+j)-base complex binary number system and
elaborated on how addition, subtraction,
multiplication, and division of two such complex
binary numbers can be accomplished. Designs of
nibble-size adders for complex binary numbers,
based on traditional minimum-delay and carry look-
ahead principles, and the performance of these

circuits compared to base 2 adders have been
presented in Ref.[5]. In continuation of these efforts,
in this paper, we are presenting a novel design of a
complex binary adder which does not impose any
limit on the size of the operands.
 This paper is organized as follows: In Section 2,
we provide a review of the complex binary number
system and describe how the addition of these
complex binary numbers is accomplished. This is
followed by our design of the complex binary adder
in Section 3. In Section 4, we’ll present our
conclusion and outline future work in this area of
computer arithmetic.

2 (-1+j)-Base Complex Binary Number
The value of an n-bit binary number with base
(–1+j) can be written in the form of a power series
as follows: an-1(-1+j)n-1+an-2(-1+j)n-2+...+a1(-1+j)1+
a0(-1+j)0 where the coefficients an-1,an-2,an-

3,…,a2,a1,a0 are binary (either 0 or 1). This is
analogous to the ordinary binary number system
power series of: an-1(2)n-1+an-2(2)n-2+…+a1(2)1+
a0 (2)0 except that the bases are different. Using the
algorithms, given in Ref.[4], we are able to represent
a given complex number with single complex binary
number as shown below:

2004 + j2004
= 1110100000001110111001100000base(-1+j)
This can be verified by computing the power series
(-1+j)27 + (-1+j)26 + (-1+j)25 + (-1+j)23 + (-1+j)15 +
(-1+j)14 + (-1+j)13 + (-1+j)11 + (-1+j)10 + (-1+j)9 +
(-1+j)6 + (-1+j)5 = 2004 + j2004

The binary addition of two complex binary
numbers follows these rules: 0 + 0 = 0;0 + 1 = 1;
1 + 0 = 1; 1 + 1 = 1100. If two numbers with 1s in
position n are added, this will result in 1s in
positions n+3 and n+2 and 0s in positions n+1 and n
in the sum. Furthermore, 11 + 111 = 0 [Zero Rule].

3 Complex Binary Adder Design
The design of the adder is based on using a state
machine to store the logic details rather than
designing the addition and carry operations with
discrete components. This approach results in a very
simple circuit implementation. The entire adder
consists of a few gates to add single bits from the
input numbers, memory to hold the state and output
information, and a register to store the current state
(in effect the carry to the next addition). Since
operations are done bit by bit the adder itself
imposes no limitations on the sizes of the numbers to
be added. The state machine is not aware of the
number of bits in the input numbers. The only
requirement is to make sure that the inputs are
sufficiently padded with high order zeros to allow
for the carry from the addition of the high order bits
of the input numbers. Depending on the carry-in
from the previous addition and the values of the two
current bits to be added, a carry of up to 8 bits may
result. Consequently 8 bits of padding of high order
zeros would be required to correctly complete the
addition. An implementation of the adder was done
in SystemView, a software modeling package.

3.1 The State Machine
The logic of the adder is stored in a state table. Each
entry of the table contains the next state of the state
machine and the output from the last addition
operation. The table is organized into three sections,
one for each state transition. A transition is
determined by the result of the addition of the next
two input bits. There are three results – (1) 0+0, (2)
0+1 or 1+0, and (3) 1+1. The result selects the
particular section of the state table to use for
determining the next state and output.

The input to the state machine is the sum of the
current two binary bits to be added. The current
state is composed of the carry out of the previous
operation. The next state (and single bit output for
the current addition) is found in the memory
location formed by the concatenation of the input
and current state bits as described above.

The state table is shown in Table 1 and the state
diagram is given in Fig.1. The state table was
constructed by: (i) Starting with a sum of 0 and a

carry in (current state) of 0. (ii) Adding 0, 1 or 2.
(The sum of input bits A and B). (iii) Shifting out
the low order sum bit (The sum will be a single
binary bit, 0 or 1 and a carry. The result of 0 plus 0
is 0 with no carry, 0 plus 1 is 1 with no carry, and 1
plus 1 is 0 with a carry of 110.). (iv) Repeating the
above until all possible results were produced.

It can be seen that there are 15 states
(representing carries from a previous operation) and
3 inputs per state resulting in 45 state transitions. For
each transition the output is 1 or 0. For the purposes
of this implementation, an additional redundant state
was added simply to fill the 16 memory locations
that were available. This additional state serves no
other purpose and could be deleted with no effect on
the operation of the adder.

It should be noted that the adder does not actually
add inputs A and B to a previous carry operation. It
only changes state based on the current input and
current state. The states represent the result of
addition operations. The actual result (0 or 1) of the
addition of the two current input bits is stored in the
state memory and output as the state changes.

Following is a description of the columns of the
State Table (Table 1):

Column Number
(1) Memory Location (Current State). Memory is
arranged in three banks. Each bank contains 16
locations, 00-15 representing the current state. In a
physical implementation various combinations of
memory sizes could be used. For example a single
48-location memory or 3 16-location memories
could be used. Column (1) is the memory location
number in decimal. The location is shown only for
the first bank of memory. There are three rows of
data for each location. Each row corresponds to a
bank of memory. For example for location ‘00’, the
first row corresponds to location ‘00’ for bank 1, the
second row to location ‘00’ for bank 2 and the third
row to location ‘00’ for bank 3.
(2) Contents (Hex). The contents of each memory
location of each bank are shown in hexadecimal. For
example, for memory location ‘06’, bank 1 contains
x’04’ or binary 00000100. Bank 2 contains x’84’ or
binary 10000100. These values represent the output
and next state. The output bit is in the high order
location (leftmost bit). The next state is in the 4 low
order bits (4 rightmost bits). For example, memory
location 13, bank1 contains x’8F’ or binary
10001111. The high order bit is 1 and is the output
bit when the current state is 13 and 0000 (see
column 3 and 4 explanation) is added via input bits
A and B (both A and B are 0). The four low order

Table 1. Adder State Table

(1) (2) (3) (4) (5) (6) (7) (8)
Memory
Location
(Current
State)

Contents
(Hex)

Previous
Carry

Add Result After
Shift

Next
State

Output

00 00
80
01

0000 0000
0001
1100

0000
0001
1100

000
000
110

00
00
01

0
1
0

01 02
82
05

0110 0000
0001
1100

0110
0111
111010

011
011
11101

02
02
05

0
1
0

02 83
04
84

0011 0000
0001
1100

0011
1110
1111

001
111
111

03
04
04

1
0
1

03 80
01
81

0001 0000
0001
1100

0001
1100
1101

000
110
110

00
01
01

1
0
1

04 82
05
85

0111 0000
0001
1100

0111
111010
111011

011
11101
11101

02
05
05

1
0
1

05 86
00
80

11101 0000
0001
1100

11101
0000
0001

1110
000
000

06
00
00

1
0
1

06 04
84
07

1110 0000
0001
1100

1110
1111
111010010

111
111
11101001

04
04
07

0
1
0

07 88
09
89

11101001 0000
0001
1100

11101001
0100
0101

1110100
010
010

08
09
09

1
0
1

08 0A
8A
0B

1110100 0000
0001
1100

1110100
1110101
1000

111010
111010
100

10
10
11

0
1
0

09 03
83
04

0010 0000
0001
1100

0010
0011
1110

001
001
111

03
03
04

0
1
0

10 05
85
0D

111010 0000
0001
1100

111010
111011
111010110

11101
11101
11101011

05
05
13

0
1
0

11 0C
8C
0E

100 0000
0001
1100

0100
0101
111000

010
010
11100

12
12
14

0
1
0

12 03
83
04

0010 0000
0001
1100

0010
0011
1110

001
001
111

03
03
04

0
1
0

13 8F
02
82

11101011 0000
0001
1100

11101011
0110
0111

1110101
011
011

15
02
02

1
0
1

14 06
86
00

11100 0000
0001
1100

11100
11101
0000

1110
1110
000

06
06
00

0
1
0

15 8A
0B
8B

1110101 0000
0001
1100

1110101
1000
1001

111010
100
100

10
11
11

1
0
1

Fig.1. Adder State Diagram

bits ‘1111’ are the next state. The next state is shown
in decimal in column 7. It corresponds to the four
low order bits of column 2.
(3) Previous Carry. This column shows the carry
from the result of the addition of the previous two
bits. The memory location in column 1 is the
representation of this value. The addition of input
numbers A and B and the previous carry is done in
the adder by considering the previous carry as the
current state and the sum of A and B as selecting the
particular state transition from the current state.
(4) Add. This column shows the sum of input bits A
and B that is added to the previous carry. The sum
actually results in a selection of the memory bank to
use for finding the next state. If the sum is 0000
(both A and B are 0), bank 1 is used. If the sum is
0001 (either A or B is one), bank 2 is used. If the
sum is 1100 (both A and B are 1), bank 3 is used.
The value of the previous state is used to access the
memory location of the selected bank to get the next
state and output bit.
(5) Result. The result of adding columns (4) and (3)
is shown. This addition is not actually performed by
the adder. This result after shifting right one bit is
assigned a state number to be used for the next
operation. The result after shifting is in column (6).
The state number is shown in column (7).
(6) After Shift. This column shows the result of
shifting column 5 right one bit. This is the operation
that would be performed to get ready to add the next
two values of input bits A and B. The value is
assigned a state number (column 7) that is the next
state (column 1).
(7) Next State. This number represents the value in
column (6). It is the memory location that is used in
the next decoding operation. The sum of input bits A
and B select the memory bank to use. Column (6)
addresses the location within the bank.
(8) Output. This is the bit that is output as a result of
adding A, B and the carry operation from the
previous addition operation.

Using the diagram to add 1 and 1 will be
instructive. Assuming the initial state is 0, the
addition of input bit A=1 and B=1 results in an input
of 2 base 10, output of 0 and next state of 1. The next
values of A and B are 0, so the next input is 0,
output is 0 and next state is 2. Again A and B are 0,
the input is 0, the output now is 1 and the next state
is 3. Again A and B are 0, the input is 0, the output
is again 1 and the next state is 0. (The output to this
point is 1100 base -1+j which is 2 base 10 as it should be).
A and B are 0 for the rest of the 32 bit sequence. The
input is 0, the output is 0 and the next state is 0 for
all remaining input bits. The same sequence can be
followed in the state table.

3.2 Implementation and Performance
A functional diagram of the adder is shown in Fig. 2.
Data are input by storing two complex binary base
numbers in the input memories. The numbers are
shifted serially, least significant bit first into the
single bit adder section. As discussed previously the
adder merely selects a memory bank to use based on
the values of the input bits (00, 01 or 10, or 11). The
'state and output' memory holds the state values and
output for a given state transition. The result is
shifted into the output shift registers and the carry is
saved in a register for addition to the next two input
bits. A master clock synchronizes all operations. An
implementation (summarized below) allows addition
of two 32-bit numbers. No provision was made for
carries beyond 32 bits. In the earlier discussion of
the adder state machine it was noted that a carry out
value could be up to 8 bits. So, if the input numbers
are limited to 24 bits, a maximum size carry could
always be handled.

Fig.2. Adder Functional Diagram

Addition of numbers of any length could be
accommodated by expanding the input memory and
output shift register length. The adder itself is a
single bit adder. An actual implementation in a
digital computing system would use some other
form of input and output such as general-purpose
registers. Also, provision for carry beyond the
maximum register length would be made. Other
specialized subsystems for doing multiplication,
division and floating point operations could of
course be designed. In short there is no limitation to
the length of numbers that can be added other than
that imposed by the input and output devices.

An implementation of the adder was
accomplished using SystemView[6], a modeling and
simulation tool that provides tokens representing
memories, gates and other devices from which
systems may be constructed.

The results of output operations can be plotted
using 'sink' tokens. For example the display of the
results of an addition shifted into the output shift
register is shown in Fig. 3. On the plot of Token 57
data, the results are read right to left (least
significant bit of the sum on the left). The time scale
of course is arbitrary.

In a physical implementation of the circuit, the
main component of delay and thus a limit on
performance would typically be the time required to
address the memory with the results of the addition
operation and store the result in the 'current state'
register. Otherwise the addition speed would be
limited only by the speed of the logic gates at input
and output.

Fig. 3. Addition result shifted into

output shift registers

3.3 Operation
In the SystemView implementation numbers to be
added (for example 2 and -j base 10) are placed in the
input memories. In base(-1+j), 2 is 1100 or xC in
hexadecimal. In base(-1+j), -j is 111 or x7 in
hexadecimal. So, xC is entered in one memory and
x7 is entered in the other. The result can be viewed
from the plot of Token 57 (Fig.3). Reading from
right to left the result is 111011base -1+j. An expansion
of this number as coefficients of powers of (-1+j)
shows it to be 2-j.

4 Conclusion and Future Research
Despite their usefulness in a wide range of
engineering applications, operations involving
complex numbers have been carried out inefficiently
for a long time. A number of schemes have been
proposed to allow a one-unit representation of
complex numbers but design of a size-free adder
unit based on any of those schemes has not yet been
implemented. In this paper, we have presented
design and implementation of a size-free adder
based on (-1+j)-base complex binary number
system. Work needs to be continued in this arena to
compare the performance and speed of this adder
with the base-2 adder designs so that, based on the
application desired for a given processor, a suitable
type of adder unit can be designed within the
system.

References:
[1] D. Knuth: ‘An Imaginary Number System’,

Communications of the ACM, pp. 245-
247,1960.

[2] W. Penney:, ‘A Binary System for Complex
Numbers’, Journal of the ACM, pp. 247-248,
April 1965.

[3] V. Stepanenko: ‘Computer Arithmetic of
Complex Numbers’, Cybernetics and System
Analysis, Vol. 32, No. 4, pp. 585-591, 1996.

[4] T. Jamil, N. Holmes, and D. Blest:`Towards
Implementation of a Binary Number System for
Complex Numbers’, Proceedings of the IEEE
SoutheastCon 2000, Nashville, Tennessee
(USA), pp. 268-274, April 2000.

[5] T.Jamil, B. Arafeh, and A. AlHabsi: ‘Hardware
Implementation and Performance Evaluation of
Complex Binary Adder Designs,” Proceedings
of the 7th World Multiconference on Systemics,
Cybernetics, and Informatics (SCI 2003),
Orlando, Florida (USA), Vol. II, pp. 68-73, July
2003.

[6] http://www.elanix.com

