
A Simple Circuit for Adding Complex Numbers 
 

JOHNNY GOODE†, TARIQ JAMIL‡, AND DALE CALLAHAN† 
 

†Department of Electrical and Computer Engineering,  
University of Alabama-Birmingham (USA) 

‡Department of Electrical and Computer Engineering,  
Sultan Qaboos University (OMAN) 

 
 

Abstract: - The important role of complex numbers in a wide range of engineering applications demands better 
and more efficient methods of handling arithmetic operations involving these numbers. Using base (-1+j), 
instead of base 2, to represent complex numbers in binary notation allows both real and imaginary parts of the 
number to be combined into single binary representation and facilitates reduction in the number of arithmetic 
operations. Design of a size-free adder circuit based on (-1+j)-base binary representation of complex numbers 
is presented in this paper. 
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1   Introduction 
Complex numbers play a very important role in 
engineering applications such as digital signal 
processing and image processing. Thus design of an 
efficient approach to handle complex arithmetic will 
result in better performance in such applications. 
These days, complex number operations involve, to 
a large extent, application of a “divide-and-conquer” 
technique, whereby a complex number is broken up 
into its real and imaginary parts. Operations are then 
carried out on each part as if it were a real part of the 
arithmetic. Finally, the overall result of the complex 
operation is obtained by accumulation of the 
individual results. For instance, addition of two 
complex numbers (a + jb) and (c + jd) requires two 
separate additions (one for the real parts and one for 
the imaginary parts) while multiplication of the 
same two complex numbers requires four 
multiplications, one subtraction, and one addition.  
This can be effectively reduced to just one complex 
addition or only one multiplication and addition 
respectively for the given cases if each complex 
number is represented as one unit instead of two 
individual units. Efforts in defining binary numbers 
with bases other 2, which facilitates one-unit 
representation of complex numbers, includes work 
by Knuth [1], Penney [2], and  Stepanenko [3]. 
Jamil et. al. [4] have presented a detailed analysis of 
(-1+j)-base complex binary number system and 
elaborated on how addition, subtraction, 
multiplication, and division of two such complex 
binary numbers can be accomplished. Designs of 
nibble-size adders for complex binary numbers, 
based on traditional minimum-delay and carry look-
ahead principles, and the performance of these 

circuits compared to base 2 adders have been 
presented in Ref.[5]. In continuation of these efforts, 
in this paper, we are presenting a novel design of a 
complex binary adder which does not impose any 
limit on the size of the operands. 
     This paper is organized as follows: In Section 2, 
we provide a review of the complex binary number 
system and describe how the addition of these 
complex binary numbers is accomplished. This is 
followed by our design of the complex binary adder 
in Section 3. In Section 4, we’ll present our 
conclusion and outline future work in this area of 
computer arithmetic.  
 
 
2 (-1+j)-Base Complex Binary Number  
The value of an n-bit binary number with base        
(–1+j) can be written in the form of a power series 
as follows: an-1(-1+j)n-1+an-2(-1+j)n-2+...+a1(-1+j)1+ 
a0(-1+j)0 where the coefficients an-1,an-2,an-

3,…,a2,a1,a0 are binary (either 0 or 1). This is 
analogous to the ordinary binary number system 
power series of: an-1(2)n-1+an-2(2)n-2+…+a1(2)1+       
a0 (2)0 except that the bases are different. Using the 
algorithms, given in Ref.[4], we are able to represent 
a given complex number with single complex binary 
number as shown below:  
 
2004 + j2004  
= 1110100000001110111001100000base(-1+j) 
This can be verified by computing the power series 
(-1+j)27 + (-1+j)26 + (-1+j)25 + (-1+j)23 + (-1+j)15 +     
(-1+j)14 + (-1+j)13 + (-1+j)11 + (-1+j)10 + (-1+j)9 +       
(-1+j)6 + (-1+j)5  =  2004 + j2004 



The binary addition of two complex binary 
numbers follows these rules: 0 + 0 = 0;0 + 1 = 1;     
1 + 0 = 1; 1 + 1 = 1100. If two numbers with 1s in 
position n are added, this will result in 1s in 
positions n+3 and n+2 and 0s in positions n+1 and n 
in the sum. Furthermore, 11 + 111 = 0 [Zero Rule]. 

 
3  Complex Binary Adder Design 
The design of the adder is based on using a state 
machine to store the logic details rather than 
designing the addition and carry operations with 
discrete components. This approach results in a very 
simple circuit implementation. The entire adder 
consists of a few gates to add single bits from the 
input numbers, memory to hold the state and output 
information, and a register to store the current state 
(in effect the carry to the next addition). Since 
operations are done bit by bit the adder itself 
imposes no limitations on the sizes of the numbers to 
be added. The state machine is not aware of the 
number of bits in the input numbers. The only 
requirement is to make sure that the inputs are 
sufficiently padded with high order zeros to allow 
for the carry from the addition of the high order bits 
of the input numbers. Depending on the carry-in 
from the previous addition and the values of the two 
current bits to be added, a carry of up to 8 bits may 
result. Consequently 8 bits of padding of high order 
zeros would be required to correctly complete the 
addition. An implementation of the adder was done 
in SystemView, a software modeling package. 
 
 
3.1  The State Machine 
The logic of the adder is stored in a state table. Each 
entry of the table contains the next state of the state 
machine and the output from the last addition 
operation. The table is organized into three sections, 
one for each state transition. A transition is 
determined by the result of the addition of the next 
two input bits. There are three results – (1) 0+0, (2) 
0+1 or 1+0, and (3) 1+1. The result selects the 
particular section of the state table to use for 
determining the next state and output. 

The input to the state machine is the sum of the 
current two binary bits to be added. The current 
state is composed of the carry out of the previous 
operation. The next state (and single bit output for 
the current addition) is found in the memory 
location formed by the concatenation of the input 
and current state bits as described above.   

The state table is shown in Table 1 and the state 
diagram is given in Fig.1. The state table was 
constructed by: (i) Starting with a sum of 0 and a 

carry in (current state) of 0. (ii) Adding 0, 1 or 2. 
(The sum of input bits A and B).  (iii) Shifting out 
the low order sum bit (The sum will be a single 
binary bit, 0 or 1 and a carry. The result of 0 plus 0 
is 0 with no carry, 0 plus 1 is 1 with no carry, and 1 
plus 1 is 0 with a carry of 110. ). (iv) Repeating the 
above until all possible results were produced. 

It can be seen that there are 15 states 
(representing carries from a previous operation) and 
3 inputs per state resulting in 45 state transitions. For 
each transition the output is 1 or 0. For the purposes 
of this implementation, an additional redundant state 
was added simply to fill the 16 memory locations 
that were available. This additional state serves no 
other purpose and could be deleted with no effect on 
the operation of the adder.  

It should be noted that the adder does not actually 
add inputs A and B to a previous carry operation. It 
only changes state based on the current input and 
current state. The states represent the result of 
addition operations. The actual result (0 or 1) of the 
addition of the two current input bits is stored in the 
state memory and output as the state changes. 

Following is a description of the columns of the 
State Table (Table 1): 

 
Column Number 
(1) Memory Location (Current State). Memory is 
arranged in three banks. Each bank contains 16 
locations, 00-15 representing the current state. In a 
physical implementation various combinations of 
memory sizes could be used. For example a single 
48-location memory or 3 16-location memories 
could be used. Column (1) is the memory location 
number in decimal. The location is shown only for 
the first bank of memory. There are three rows of 
data for each location. Each row corresponds to a 
bank of memory. For example for location ‘00’, the 
first row corresponds to location ‘00’ for bank 1, the 
second row to location ‘00’ for bank 2 and the third 
row to location ‘00’ for bank 3. 
(2) Contents (Hex). The contents of each memory 
location of each bank are shown in hexadecimal. For 
example, for memory location ‘06’, bank 1 contains 
x’04’ or binary 00000100. Bank 2 contains x’84’ or 
binary 10000100. These values represent the output 
and next state. The output bit is in the high order 
location (leftmost bit). The next state is in the 4 low 
order bits (4 rightmost bits). For example, memory 
location 13, bank1 contains x’8F’ or binary 
10001111. The high order bit is 1 and is the output 
bit when the current state is 13 and 0000 (see 
column 3 and 4 explanation) is added via input bits 
A and B (both A and B are 0). The four low order



 
Table 1.  Adder State Table

(1) (2) (3) (4) (5) (6) (7) (8) 
Memory 
Location 
(Current 
State) 

Contents 
(Hex) 

Previous 
Carry 

Add Result After 
Shift 

Next 
State 

Output 

00 00 
80 
01 

0000 0000 
0001 
1100

0000 
0001 
1100 

000 
000 
110 

00 
00 
01 

0 
1 
0 

01 02 
82 
05 

0110 0000 
0001 
1100

0110 
0111 
111010 

011 
011 
11101 

02 
02 
05 

0 
1 
0 

02 83 
04 
84 

0011 0000 
0001 
1100

0011 
1110 
1111 

001 
111 
111 

03 
04 
04 

1 
0 
1 

03 80 
01 
81 

0001 0000 
0001 
1100

0001 
1100 
1101 

000 
110 
110 

00 
01 
01 

1 
0 
1 

04 82 
05 
85 

0111 0000 
0001 
1100

0111 
111010 
111011 

011 
11101 
11101 

02 
05 
05 

1 
0 
1 

05 86 
00 
80 

11101 0000 
0001 
1100

11101 
0000 
0001 

1110 
000 
000 

06 
00 
00 

1 
0 
1 

06 04 
84 
07 

1110 0000 
0001 
1100

1110 
1111 
111010010

111 
111 
11101001 

04 
04 
07 

0 
1 
0 

07 88 
09 
89 

11101001 0000 
0001 
1100

11101001 
0100 
0101 

1110100 
010 
010 

08 
09 
09 

1 
0 
1 

08 0A 
8A 
0B 

1110100 0000 
0001 
1100

1110100 
1110101 
1000 

111010 
111010 
100 

10 
10 
11 

0 
1 
0 

09 03 
83 
04 

0010 0000 
0001 
1100

0010 
0011 
1110 

001 
001 
111 

03 
03 
04 

0 
1 
0 

10 05 
85 
0D 

111010 0000 
0001 
1100

111010 
111011 
111010110

11101 
11101 
11101011 

05 
05 
13 

0 
1 
0 

11 0C 
8C 
0E 

100 0000 
0001 
1100

0100 
0101 
111000 

010 
010 
11100 

12 
12 
14 

0 
1 
0 

12 03 
83 
04 

0010 0000 
0001 
1100

0010 
0011 
1110 

001 
001 
111 

03 
03 
04 

0 
1 
0 

13 8F 
02 
82 

11101011 0000 
0001 
1100

11101011 
0110 
0111 

1110101 
011 
011 

15 
02 
02 

1 
0 
1 

14 06 
86 
00 

11100 0000 
0001 
1100

11100 
11101 
0000 

1110 
1110 
000 

06 
06 
00 

0 
1 
0 

15 8A 
0B 
8B 

1110101 0000 
0001 
1100

1110101 
1000 
1001 

111010 
100 
100 

10 
11 
11 

1 
0 
1 

 



 

 
 
 

Fig.1. Adder State Diagram 
 



bits ‘1111’ are the next state. The next state is shown 
in decimal in column 7. It corresponds to the four 
low order bits of column 2. 
(3) Previous Carry. This column shows the carry 
from the result of the addition of the previous two 
bits. The memory location in column 1 is the 
representation of this value. The addition of input 
numbers A and B and the previous carry is done in 
the adder by considering the previous carry as the 
current state and the sum of A and B as selecting the 
particular state transition from the current state. 
(4) Add. This column shows the sum of input bits A 
and B that is added to the previous carry. The sum 
actually results in a selection of the memory bank to 
use for finding the next state. If the sum is 0000 
(both A and B are 0), bank 1 is used. If the sum is 
0001 (either A or B is one), bank 2 is used. If the 
sum is 1100 (both A and B are 1), bank 3 is used. 
The value of the previous state is used to access the 
memory location of the selected bank to get the next 
state and output bit. 
(5) Result. The result of adding columns (4) and (3) 
is shown. This addition is not actually performed by 
the adder. This result after shifting right one bit is 
assigned a state number to be used for the next 
operation. The result after shifting is in column (6). 
The state number is shown in column (7). 
(6) After Shift. This column shows the result of 
shifting column 5 right one bit. This is the operation 
that would be performed to get ready to add the next 
two values of input bits A and B. The value is 
assigned a state number (column 7) that is the next 
state (column 1). 
(7) Next State. This number represents the value in 
column (6). It is the memory location that is used in 
the next decoding operation. The sum of input bits A 
and B select the memory bank to use. Column (6) 
addresses the location within the bank. 
(8) Output. This is the bit that is output as a result of 
adding A, B and the carry operation from the 
previous addition operation. 

Using the diagram to add 1 and 1 will be 
instructive. Assuming the initial state is 0, the 
addition of input bit A=1 and B=1 results in an input 
of 2 base 10, output of 0 and next state of 1. The next 
values of A and B are 0, so the next input is 0, 
output is 0 and next state is 2. Again A and B are 0, 
the input is 0, the output now is 1 and the next state 
is 3. Again A and B are 0, the input is 0, the output 
is again 1 and the next state is 0. (The output to this 
point is 1100 base -1+j which is 2 base 10 as it should be). 
A and B are 0 for the rest of the 32 bit sequence. The 
input is 0, the output is 0 and the next state is 0 for 
all remaining input bits. The same sequence can be 
followed in the state table. 

3.2  Implementation and Performance 
A functional diagram of the adder is shown in Fig. 2. 
Data are input by storing two complex binary base 
numbers in the input memories. The numbers are 
shifted serially, least significant bit first into the 
single bit adder section.  As discussed previously the 
adder merely selects a memory bank to use based on 
the values of the input bits (00, 01 or 10, or 11). The  
'state and output' memory holds the state values and 
output for a given state transition. The result is 
shifted into the output shift registers and the carry is 
saved in a register for addition to the next two input 
bits. A master clock synchronizes all operations. An 
implementation (summarized below) allows addition 
of two 32-bit numbers. No provision was made for 
carries beyond 32 bits. In the earlier discussion of 
the adder state machine it was noted that a carry out 
value could be up to 8 bits. So, if the input numbers 
are limited to 24 bits, a maximum size carry could 
always be handled. 

 
 

Fig.2. Adder Functional Diagram 
 

Addition of numbers of any length could be 
accommodated by expanding the input memory and 
output shift register length. The adder itself is a 
single bit adder. An actual implementation in a 
digital computing system would use some other 
form of input and output such as general-purpose 
registers. Also, provision for carry beyond the 
maximum register length would be made. Other 
specialized subsystems for doing multiplication, 
division and floating point operations could of 
course be designed. In short there is no limitation to 
the length of numbers that can be added other than 
that imposed by the input and output devices. 

An implementation of the adder was 
accomplished using SystemView[6], a modeling and 
simulation tool that provides tokens representing 
memories, gates and other devices from which 
systems may be constructed. 



The results of output operations can be plotted 
using 'sink' tokens. For example the display of the 
results of an addition shifted into the output shift 
register is shown in Fig. 3. On the plot of Token 57 
data, the results are read right to left (least 
significant bit of the sum on the left). The time scale 
of course is arbitrary. 

In a physical implementation of the circuit, the 
main component of delay and thus a limit on 
performance would typically be the time required to 
address the memory with the results of the addition 
operation and store the result in the 'current state' 
register. Otherwise the addition speed would be 
limited only by the speed of the logic gates at input 
and output. 

 
Fig. 3. Addition result shifted into 

output shift registers 
 

 
3.3 Operation 
In the SystemView implementation numbers to be 
added (for example 2 and -j base 10) are placed in the 
input memories. In base(-1+j), 2 is 1100 or xC in 
hexadecimal. In base(-1+j), -j is 111 or x7 in 
hexadecimal. So, xC is entered in one memory and 
x7 is entered in the other. The result can be viewed 
from the plot of Token 57 (Fig.3). Reading from 
right to left the result is 111011base -1+j. An expansion 
of this number as coefficients of powers of  (-1+j) 
shows it to be 2-j. 

 

4  Conclusion and Future Research 
Despite their usefulness in a wide range of 
engineering applications, operations involving 
complex numbers have been carried out inefficiently 
for a long time. A number of schemes have been 
proposed to allow a one-unit representation of 
complex numbers but design of a size-free adder 
unit based on any of those schemes has not yet been 
implemented. In this paper, we have presented 
design and implementation of a size-free adder 
based on (-1+j)-base complex binary number 
system. Work needs to be continued in this arena to 
compare the performance and speed of this adder 
with the base-2 adder designs so that, based on the 
application desired for a given processor, a suitable 
type of adder unit can be designed within the 
system. 
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