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Abstract: - In this paper we present new evolutionary algorithms to solve the Travelling Salesman Problem 
(TSP). The new hybrid algorithms combine classical representations of the TSP with two different crossover 
methods, namely Multiple Crossover Per Couple (MCPC) and Multiple Crossovers between Multiple Parents 
(MCMP). A genotypic termination condition was imposed in order to gain proper insight into some behavioural 
features. The performance analysis revealed that the MCPC algorithms with path representation lead to the best 
results. 
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1   Introduction 
In this work we analyse several variants of 
Evolutionary Algorithms (EAs) for the TSP. Interest 
on this problem arose due to the great diversity of its 
application fields. In particular, our research line is 
focused on the use of graph theory for process-plant 
instrumentation design [1] [2].  
Since various representations and genetic operators 
have been developed for the TSP, it became 
necessary to decide on the best algorithmic approach 
for our problem instance. In particular, a crucial 
aspect is the selection of the crossover method, which 
constitutes the main concern of this paper. In 
principle, the recombination technique may have 
significant influence on algorithmic performance for 
a given representation. In this article we have 
addressed two of the commonest chromosome 
structures for TSP, namely the ordinal and path 
representations. The former has already shown poor 
results [3], which could potentially be improved 
through adequate modifications in the crossover 
method. Besides, a new termination criterion was 
developed to detect possible premature convergence 
problems. In short, our end goal is to evaluate the 
impact of the application of different crossover 
methods for the TSP so as to analyse whether they 
outperform EAs with classic operators.  

The paper is organized as follows: in Section 2 the 
TSP is introduced, while the EAs are explained in 
Section 3; the relationship between the problem and 
the algorithms is discussed next; in Section 5 our 
implementations are presented and finally, the 
experiments, main results and conclusions are put 
forward. 
 
2   The Travelling Salesman Problem 
The Travelling Salesman Problem (TSP) is a classic 
combinatorial optimisation problem. Given a set of 
cities and the cost of travelling between each pair of 
them, the aim is to find the minimum-cost itinerary, 
provided every city is visited only once. One possible 
way of representing the cost is by associating it to the 
distance between cities. 
If there are n cities in the territory and any pair of 
cities is directly connected by a road, the size of the 
associated search space is n!, i.e. the number of 
permutations for those n cities. Any permutation 
leads to a feasible solution, and the optimum 
corresponds to the minimum-cost tour. In the 
Asymmetric TSP, the cost of going from city i to city 
j may differ from the cost of visiting city i after city j. 
By way of illustration let us consider the graph shown 
in Fig.1, which corresponds to n = 6, where the nodes 
represent cities and the numbers on each edge contain 
the cost of traveling from one place to the other.  



 
 
 
 
 
 
 

Fig.1: the TSP for n=6 
 

Fig.2 shows the permutations that correspond to 
possible paths, i.e. feasible solutions.  
 
Path 1: 
 
Path 2: 
 

Fig.2: Feasible solutions for the TSP with n = 6. 
 

The costs of travelling along Paths 1 and 2 amount to 
9 and 10 units, respectively. Therefore, Path 1 
constitutes the optimum solution. 
The TSP can be theoretically defined as follows: 
given n cities [c1, c2, .., cn] and an nxn distance matrix 
D, whose elements dij represent the distance between 
ci and cj, the objective is to find a tour, i.e. a 
permutation of those n cities, that minimizes the total 
length defined as the sum of the distances that 
constitute a closed tour. 
This problem can be applied to a wide variety of 
practical situations, such as vehicle routing, task 
scheduling or connection between several kinds of 
devices. It also represents an important issue in 
Complexity Theory since it has been proved to be 
NP-Hard [4]. This implies that the required time for 
finding the exact solution increases at least 
exponentially with the size of the considered 
instance. That is why it becomes necessary to use 
heuristics that find nearly optimal solutions in short 
times. 
 
3   Evolutionary Algorithms 
Genetic Algorithms (GAs) are search algorithms 
based on the mechanics of the natural selection 
process (Darwin evolution). The most basic concept 
is that the strong individuals tend to adapt themselves 
and survive, while the weak ones tend to die out. In 
other words, optimization is based on evolution and 
the survival-of-the-fittest concept. 
GAs have the ability to create an initial population of 
feasible solutions and then recombine them so that 
their search is guided towards the most promising 
areas of the state space. Each feasible solution is 
encoded as a chromosome (string) also called a 
genotype, and each chromosome is given a measure 
of fitness via a fitness (evaluation or objective) 
function. The fitness of a chromosome determines its 

ability to survive and produce offspring. A finite 
population of chromosomes is maintained. 
GAs use probabilistic rules to make a population 
evolve from one generation to the next. The new 
generations are developed by means of the following 
three genetic recombination operators: 
Selection: its function is to select the fittest 
individuals for reproduction. 
Crossover: it combines parents’ chromosomes to 
produce children’s chromosomes. The operator 
makes use of the fittest chromosomes, thus 
transmitting the superior genes to the next generation. 
Mutation: it alters some genes in a chromosome. This 
operator ensures that the entire state-space will be 
searched sooner or later and leads the population 
away from local minima. 
The most important parameters in a GA are its 
population size, the evaluation function, the crossover 
method and its mutation rate. Determining the size of 
the population is a crucial factor. If an excessively 
small population size is chosen, the risk of 
converging prematurely to a local minimum increases 
significantly, because the population does not have 
enough genetic material to cover the whole search 
space adequately. In contrast, a sufficiently large 
population has greater chances of finding the global 
optimum at the expense of more CPU time. 
When the canonical (binary) representation of the 
individual is changed, new crossover and mutation 
operators need to be defined. In these cases, GAs 
become EAs. 
 
4  Evolutionary Algorithms for the TSP 
It has been shown that the TSP problem is NP-Hard. 
Therefore, it is unreasonable to employ brute-force 
methods to solve it for a large number of cities. In the 
last few decades some alternative methods have been 
proposed in order to find solutions that tend to the 
optimum. In this respect, the EAs [3][5] are gaining 
ground as one of the most promising techniques. 
There are various reasons why the TSP constitutes an 
important test problem for these heuristic methods 
[6]. First of all, its associated decision problem is 
considered representative in the class of NP-Hard 
problems. Besides, the problem has a long history 
and many heuristic approaches are a real challenge 
for the search of new methods. Big instances of the 
problem have been solved until optimality and are 
available either in the literature or through Internet. 
 
4.1 Our proposal 
In this work we present a comparison among EA 
variants based on two genetic representations 
(permutations and decoders) to solve the asymmetric 
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TSP. In both cases, instead of employing the 
traditional approach, we have applied the MCPC and 
MCMP crossover operators defined in Esquivel et al. 
[7] [8] because those operators have proved to exhibit 
very good performance for other applications  such as 
the job shop scheduling problem [9].  
Our hypothesis in this work was that the 
hybridization of simple GAs used on TSP with 
MCPC and MCMP would improve the behavior of 
the search process. In addition, we implemented a 
new genotypic convergence criterion so as to obtain 
information about possible premature convergence of 
the operators. 
 
5   EA Representation of Individuals 
for the TSP 
There are several different representations for the 
individuals in this problem. In this work we will 
focus on two of the most often used ones, namely 
decoders (ordinal representation) and permutations 
(path representation). 
 
5.1 Decoders 
The ordinal representation builds lists, known as 
decoders, which represent tours. For n cities, the ith 
element on each list is a natural number between 1 
and n-i+1. 
For instance, decoder d = (1 1 2 1 4 1 3 1 1) 
represents tour T = / 1 – 2 – 4 – 3 – 8 – 5 – 9 – 6 – 7 /. 
The decoder should be interpreted as follows:  
• It is assumed that R = / 1 – 2 – 3 – 4 – 5 – 6 – 7 – 
8 – 9/ is the reference tour. 
• The first element in d is 1. Therefore, the first city 
in R is taken as the first in the tour and it is 
eliminated from R, thus yielding the partial tour T = / 
1 /.  
• The next element in d is 1. So, the first city in R, 
which is now 2, is added to T and eliminated from R. 
Thus, T = / 1 – 2 /. 
• The following element in d is 2. So, the second 
city in R (city 4) is added to T and eliminated from 
R. At this point, T = / 1 – 2 – 4 / and R = / 3 – 5 – 6 – 
7 – 8 – 9/. 
• These steps are repeated until all the elements in d 
have been visited and all the cities in R have been 
eliminated, thus yielding a complete tour T.  
The main advantage of this representation is that it 
works well together with the classic one-point 
crossover function. 
 
5.2 Permutations 
The path representation is perhaps the most 
straightforward way of denoting a tour. For example, 

the tour T = / 5 – 1 – 7 – 8 – 9 – 4 – 6 – 2 – 3 / is 
simply indicated as (5 1 7 8 9 4 6 2 3).  
Three basic crossover methods have been defined for 
this representation: PMX (Partially Mapped 
Crossover), OX (Order Crossover) and CX (Cycle 
Crossover). In this work, the implementations were 
carried out with OX [10] because it has been 
experimentally shown that its performance on the 
TSP is 11% and 15% better than PMX’s and CX’s, 
respectively [11].  
The OX technique exploits the path-representation 
property that states that the main attribute is the order 
of the cities, not their locations. In accordance with 
this principle, the method builds the children by 
choosing a subsequence from a parent’s tour, while 
preserving the relative order of the cities in the other 
parent’s tour. 
As an example, let us start from parents p1 = (1 2 3 / 4 
5 6 7 / 8 9) and p2 = (4 5 2 / 1 8 7 6 / 9 3), where the 
slashes are split points. First, we obtain children h1 = 
(* * * 4 5 6 7 * *) and h2 = (* * * 1 8 7 6 * *), 
preserving the sub tour ranging between the two 
respective split points for p1 and p2. Then, starting 
from the second split point, the cities in p2 that are 
not present in h1 are taken in order to complete the 
cities in h1. In this case, the list of cities in p2 starting 
from the second split point is: 9 3 4 5 2 1 8 7 6, but if 
the cities already in h1 (i. e., 4 5 6 7) are eliminated, 
the tour becomes 9 3 2 1 8. These cities are added to 
h1, starting from the second split point. When the end 
is reached, the remaining ones are added at the 
beginning of h1. 
In short, h1 = (* * * 4 5 6 7 * *) => (* * * 4 5 6 7 9 *) 
=> (* * * 4 5 6 7 9 3) => (2 * * 4 5 6 7 9 3) => (2 1 * 
4 5 6 7 9 3) => h1 = (2 1 8 4 5 6 7 9 3). Likewise, h2 = 
(3 4 5 1 8 7 6 9 2) is obtained. 
All the traditional crossover methods work in a 
similar way. Two parents are selected; then, the 
method is applied once and two children are thus 
generated. This approach has been called Single 
Crossover Per Couple (SCPC). New alternatives, 
such as Multiple Crossover Per Couple (MCPC) and 
Multiple Crossover between Multiple Parents 
(MCMP), arose later in the search for better results. 
In the next section we will explain details on our 
MCPC and MCMP implementations and we will later 
describe the termination condition that was used in all 
cases. 
 
6   EA Variants: Convergence Criterion 
 
6.1 MCPC 
In MCPC the basic crossover method is applied 
several times to give birth to a variable amount of 



children, always keeping the size of the new 
population within pre-established limits. A variant is 
the MCPC with Fitness Proportional Couple 
Selection (MCPC-FPCS), where the parents’ pool is 
built with the help of a proportional selection 
criterion. A fitness value is assigned to each couple 
and the parents to be crossed over are chosen via 
proportional selection based on the couple’s fitness. 
This index may be calculated as either the average 
value of the individual fitness values for each parent 
(AF) or the distance between those two values (DA). 
 
6.2 MCMP 
In MCMP a couple pool (cp) is generated based on 
population (pop), where each element is selected with 
a Fitness Proportional Selection (FPS) criterion. The 
size of cp amounts to one half of pop’s dimension. 
An average fitness is calculated for every element in 
cp and two couples are selected using FPS. Thus, four 
parents are obtained and crossed to get four children, 
as shown in Fig.3. 

 
Fig.3: Four-Parent Combination 

 

These children are not inserted in the new population 
in a direct way. Only two of them are selected 
instead, in accordance with their fitness. We will 
briefly explain below how the crossover is carried 
out, according to the type of representation. 
Ordinal Representation – One Point Crossover 
In this case, it is possible to graphically see how the 
children are built (see Fig.4). The one-point crossover 
builds each child by assigning to it the cities that are 
on one side of the cut point of one of the parents, 
together with the cities that are on the other side of 
another parent’s. In the case of four parents, this idea 
is maintained, but the combination shown in Fig.3 is 
taken into account in order to choose the parents.  
 
 
Parents 
 
Children 
 

Fig.4: Four parent combination for one point 
crossover. 
 
6.2.1   Path Representation - OX 
OX builds every child by selecting a sub tour of one 
of the parents, while preserving the relative order of 
the other parent’s cities. A sub tour is a succession of 

cities that fall into two cut points. In the four-parent 
case this idea remains, but the parents for each child 
are selected as shown in Fig.3. 
 
6.3 Convergence Criterion 
The termination condition proposed in this paper is 
based on the schema concept. A schema is a template 
that helps to establish similarities between 
chromosomes. In the binary-representation case, a 
schema is represented by a string of symbols in the 
set (0, 1, #), where # is a wildcard. For example, 
string 011001 is an instance of schema 01##0#. When 
the possible values for the alleles vary between 1 and 
N, the set of symbols is (1, 2, .. , N, #). 
As stated in Radcliffe [12], when two parents are 
instances of the same schema, the child will also be 
an instance of that schema. In particular, when a 
schema carries good fitness to its instances, the whole 
population will tend to converge over the bits defined 
by that schema. As convergence is reached, all the 
offspring will be instances of the schema. Then, if the 
method that solves the problem is effectively 
implemented, the solution will also be an instance of 
that schema. Therefore, our convergence criterion 
analyses the individuals genotypes until a high 
percentage of them become instances of the same 
schema. This method can be explained through the 
following algorithm: 
 
Input: population p of m individuals with n genes; α 
% of individuals that coincide in a β % of the genes. 
Auxiliary information: ratio vector r of length n  
Output: 1- convergence was reached,  

0- convergence was not reached 
1- Initialise i with 1. 
2- Analyse the i-th allele of the whole population, i.e. 
from p[1, i] to p[m, i], getting the number ri of times 
that appears the value of allele that is repeated more 
times in p. 
3- Increment i. 
4- If i > n {all the genes were seen}  
      then Go to step 5.  
      else  Go to step 2. 
5- Count qs, the quantity of elements in r that are 
greater than α. 
6- If qs represents a % greater than β  
    then Return 1(convergence criterion was satisfied). 
    else Return 0.  
 
This control can be made either on each generation, 
or after a fixed number of generations. The algorithm 
can be applied to the canonical (binary) 
representation in a direct way but when the 
representation changes, some special considerations 
have to be taken into account. For the ordinal 

Parent 2 Parent 3 Parent 1 Parent 4 

Child 2 Child 3 Child 1 Child 4 Child 4 

Parent 1

Cut Point 



representation the individual alleles are not used 
directly. A transformation needs to be carried out in 
order to convert the decoder into the corresponding 
path, and a reordering is required to keep city 1 as the 
initial point of the tour. The alleles of this “new 
genotype” are the ones analysed by the algorithm. As 
to the path representation, the procedure is equivalent 
to the second part of the method explained above. All 
these modifications are introduced so as to regard 
those individuals that represent the same tour as 
equal, while starting from different cities. 
 
7   Experiments and Results 
An auxiliary algorithm of Exhaustive Search (ES) 
was implemented to obtain reference optima. This 
algorithm uses the same fitness function as the EA, 
applying it to the whole search space. 
The study cases were divided in two groups: sc1, sc2 
and sc3 constitute Group 1, while sc4, sc5 and sc6 
make up Group 2 (representing 8 and 10 city tours, 
respectively). The tours were represented by matrixes 
with random costs for the edges. The following 
parameters were employed: 
 
Mutation probability: 0.2 % 
Crossover probability: 0.8 % 
Selection method: fitness proportional selection. 
Popsize size: 15% of the total size of the search 
space. 
 
The following performance variables were analysed: 
• EBest: the difference between the optimum and 

the best value that could be obtained, divided by 
the optimum. 

• GBest: the generation where the best value was 
obtained. 

• GOpt: the generation where the optimum was 
obtained. 

• GConv: the generation where convergence was 
achieved. 

• Hit Ratio: the percentage of times the optimum 
was reached.  

 
The reported values correspond to the average of 100 
algorithmic runs for each group. The main results are 
shown in Tables 1-4, where: 
• CEA refers to the results of the classic 

evolutionary algorithm (with SCPC). 
• MCPC refers to the results of the MCPC variant. 
• MCMP refers to the results of the MCMP variant. 
 
The Hit-Ratio and EBest values show that in all cases 
the MCPC outperforms the other two crossover 
operators. MCMP exhibits poor performance and it is 

clear from the Gconv values that this operator 
presents premature convergence problems. By 
comparing Tables 1 and 2 with Tables 3 and 4, it can 
be deduced that the path representation still works 
better that the ordinal one, even with the performance 
improvement of the last one with MCPC. 
 
Table 1: Average results for 8 city tours with ordinal 
representation 

 CEA MCPC MCMP 

Hit Ratio 50% 65% 45% 
GBest 71.28 8.94 9.02 
GOpt 88.71 8.89 9.22 

GConv 171.1 33.1 30.2 
EBest 0.0008473 0.000583 0.13417 

 
Table 2: Average results for 10 city tours with ordinal 
representation 

 CEA MCPC MCMP 

Hit Ratio 65% 73% 46% 
GBest 91.85 11.72 14.3 
GOpt 94 11.9 8.49 

GConv 222.95 36.25 12.595 
EBest 0.000543 0.000351 0.00598 

 
Table 3: Average results for 8 city tours with path 
representation 

 CEA MCPC MCMP 
Hit Ratio 97% 100% 37% 

GBest 147.71 31.17 6.06 
GOpt 150.29 31.17 6.39 

GConv 550.95 - 21.9 
EBest 0.0000225 0 0.0008105

 
Table 4: Average results for 10 city tours with path 
representation 

  CEA MCPC MCMP 

Hit Ratio 56% 99% 29% 
GBest 151.76 144.7 13.54 
GOpt 153 147.7 17.96 

GConv 726.07 - 51.1 
EBest 0.00031 0.00001 0.00089 

 
A null (-) value in GConv means that the algorithm 
did not stop due to convergence control, but because 
the preset limit of generations (1000) had been 
reached. This indicates excellent levels of population 
diversity in this method. 
 
8   Conclusions 
In this work we modified the traditional TSP GAs , 
with either ordinal or path representations, by 



changing the crossover methods and applying a new 
convergence criterion. Six variants were implemented 
and analysed. In our experiments, path representation 
proved to be better because its crossover operator 
always preserves the relative order of the cities, 
instead of keeping a random portion of the parent. 
The best performance was achieved with the MCPC 
path representation version, which showed excellent 
Hit Ratio figures together with high convergence-
generation values. This means that, in our study 
cases, the approach regularly finds the solution while 
maintaining population diversity. Since MCPC 
exhibited the best results with both representations, 
this approach is eligible for its future employment in 
process-plant instrumentation-design applications. 
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