
Hybridization of Evolutionary Techniques for the TSP
with a Genotypic Termination Criterion

JESSICA A. CARBALLIDO, IGNACIO PONZONI, NÉLIDA B. BRIGNOLE

Grupo de Investigación y Desarrollo en Computación Científica (GIDeCC)
Departamento de Ciencias e Ingeniería de la Computación - Universidad Nacional del Sur

Av. Alem 1253 – 8000 - Bahía Blanca
ARGENTINA

Planta Piloto de Ingeniería Química (PLAPIQUI)
Universidad Nacional del Sur - CONICET

Complejo CRIBABB – Camino La Carrindanga km 7 – CC 717 – 8000 Bahía Blanca
ARGENTINA

Abstract: - In this paper we present new evolutionary algorithms to solve the Travelling Salesman Problem
(TSP). The new hybrid algorithms combine classical representations of the TSP with two different crossover
methods, namely Multiple Crossover Per Couple (MCPC) and Multiple Crossovers between Multiple Parents
(MCMP). A genotypic termination condition was imposed in order to gain proper insight into some behavioural
features. The performance analysis revealed that the MCPC algorithms with path representation lead to the best
results.

Key-Words: - TSP, Evolutionary Algorithm, Termination Criterion, Hybridization Methods, Multiple Crossover.

1 Introduction
In this work we analyse several variants of
Evolutionary Algorithms (EAs) for the TSP. Interest
on this problem arose due to the great diversity of its
application fields. In particular, our research line is
focused on the use of graph theory for process-plant
instrumentation design [1] [2].
Since various representations and genetic operators
have been developed for the TSP, it became
necessary to decide on the best algorithmic approach
for our problem instance. In particular, a crucial
aspect is the selection of the crossover method, which
constitutes the main concern of this paper. In
principle, the recombination technique may have
significant influence on algorithmic performance for
a given representation. In this article we have
addressed two of the commonest chromosome
structures for TSP, namely the ordinal and path
representations. The former has already shown poor
results [3], which could potentially be improved
through adequate modifications in the crossover
method. Besides, a new termination criterion was
developed to detect possible premature convergence
problems. In short, our end goal is to evaluate the
impact of the application of different crossover
methods for the TSP so as to analyse whether they
outperform EAs with classic operators.

The paper is organized as follows: in Section 2 the
TSP is introduced, while the EAs are explained in
Section 3; the relationship between the problem and
the algorithms is discussed next; in Section 5 our
implementations are presented and finally, the
experiments, main results and conclusions are put
forward.

2 The Travelling Salesman Problem
The Travelling Salesman Problem (TSP) is a classic
combinatorial optimisation problem. Given a set of
cities and the cost of travelling between each pair of
them, the aim is to find the minimum-cost itinerary,
provided every city is visited only once. One possible
way of representing the cost is by associating it to the
distance between cities.
If there are n cities in the territory and any pair of
cities is directly connected by a road, the size of the
associated search space is n!, i.e. the number of
permutations for those n cities. Any permutation
leads to a feasible solution, and the optimum
corresponds to the minimum-cost tour. In the
Asymmetric TSP, the cost of going from city i to city
j may differ from the cost of visiting city i after city j.
By way of illustration let us consider the graph shown
in Fig.1, which corresponds to n = 6, where the nodes
represent cities and the numbers on each edge contain
the cost of traveling from one place to the other.

Fig.1: the TSP for n=6

Fig.2 shows the permutations that correspond to
possible paths, i.e. feasible solutions.

Path 1:

Path 2:

Fig.2: Feasible solutions for the TSP with n = 6.

The costs of travelling along Paths 1 and 2 amount to
9 and 10 units, respectively. Therefore, Path 1
constitutes the optimum solution.
The TSP can be theoretically defined as follows:
given n cities [c1, c2, .., cn] and an nxn distance matrix
D, whose elements dij represent the distance between
ci and cj, the objective is to find a tour, i.e. a
permutation of those n cities, that minimizes the total
length defined as the sum of the distances that
constitute a closed tour.
This problem can be applied to a wide variety of
practical situations, such as vehicle routing, task
scheduling or connection between several kinds of
devices. It also represents an important issue in
Complexity Theory since it has been proved to be
NP-Hard [4]. This implies that the required time for
finding the exact solution increases at least
exponentially with the size of the considered
instance. That is why it becomes necessary to use
heuristics that find nearly optimal solutions in short
times.

3 Evolutionary Algorithms
Genetic Algorithms (GAs) are search algorithms
based on the mechanics of the natural selection
process (Darwin evolution). The most basic concept
is that the strong individuals tend to adapt themselves
and survive, while the weak ones tend to die out. In
other words, optimization is based on evolution and
the survival-of-the-fittest concept.
GAs have the ability to create an initial population of
feasible solutions and then recombine them so that
their search is guided towards the most promising
areas of the state space. Each feasible solution is
encoded as a chromosome (string) also called a
genotype, and each chromosome is given a measure
of fitness via a fitness (evaluation or objective)
function. The fitness of a chromosome determines its

ability to survive and produce offspring. A finite
population of chromosomes is maintained.
GAs use probabilistic rules to make a population
evolve from one generation to the next. The new
generations are developed by means of the following
three genetic recombination operators:
Selection: its function is to select the fittest
individuals for reproduction.
Crossover: it combines parents’ chromosomes to
produce children’s chromosomes. The operator
makes use of the fittest chromosomes, thus
transmitting the superior genes to the next generation.
Mutation: it alters some genes in a chromosome. This
operator ensures that the entire state-space will be
searched sooner or later and leads the population
away from local minima.
The most important parameters in a GA are its
population size, the evaluation function, the crossover
method and its mutation rate. Determining the size of
the population is a crucial factor. If an excessively
small population size is chosen, the risk of
converging prematurely to a local minimum increases
significantly, because the population does not have
enough genetic material to cover the whole search
space adequately. In contrast, a sufficiently large
population has greater chances of finding the global
optimum at the expense of more CPU time.
When the canonical (binary) representation of the
individual is changed, new crossover and mutation
operators need to be defined. In these cases, GAs
become EAs.

4 Evolutionary Algorithms for the TSP
It has been shown that the TSP problem is NP-Hard.
Therefore, it is unreasonable to employ brute-force
methods to solve it for a large number of cities. In the
last few decades some alternative methods have been
proposed in order to find solutions that tend to the
optimum. In this respect, the EAs [3][5] are gaining
ground as one of the most promising techniques.
There are various reasons why the TSP constitutes an
important test problem for these heuristic methods
[6]. First of all, its associated decision problem is
considered representative in the class of NP-Hard
problems. Besides, the problem has a long history
and many heuristic approaches are a real challenge
for the search of new methods. Big instances of the
problem have been solved until optimality and are
available either in the literature or through Internet.

4.1 Our proposal
In this work we present a comparison among EA
variants based on two genetic representations
(permutations and decoders) to solve the asymmetric

F E

B

D

C

A

2 5
2

3
1 1

1

1

1

3

3

3

2
2

A B C E D F A

A B C D F AE

TSP. In both cases, instead of employing the
traditional approach, we have applied the MCPC and
MCMP crossover operators defined in Esquivel et al.
[7] [8] because those operators have proved to exhibit
very good performance for other applications such as
the job shop scheduling problem [9].
Our hypothesis in this work was that the
hybridization of simple GAs used on TSP with
MCPC and MCMP would improve the behavior of
the search process. In addition, we implemented a
new genotypic convergence criterion so as to obtain
information about possible premature convergence of
the operators.

5 EA Representation of Individuals
for the TSP
There are several different representations for the
individuals in this problem. In this work we will
focus on two of the most often used ones, namely
decoders (ordinal representation) and permutations
(path representation).

5.1 Decoders
The ordinal representation builds lists, known as
decoders, which represent tours. For n cities, the ith
element on each list is a natural number between 1
and n-i+1.
For instance, decoder d = (1 1 2 1 4 1 3 1 1)
represents tour T = / 1 – 2 – 4 – 3 – 8 – 5 – 9 – 6 – 7 /.
The decoder should be interpreted as follows:
• It is assumed that R = / 1 – 2 – 3 – 4 – 5 – 6 – 7 –
8 – 9/ is the reference tour.
• The first element in d is 1. Therefore, the first city
in R is taken as the first in the tour and it is
eliminated from R, thus yielding the partial tour T = /
1 /.
• The next element in d is 1. So, the first city in R,
which is now 2, is added to T and eliminated from R.
Thus, T = / 1 – 2 /.
• The following element in d is 2. So, the second
city in R (city 4) is added to T and eliminated from
R. At this point, T = / 1 – 2 – 4 / and R = / 3 – 5 – 6 –
7 – 8 – 9/.
• These steps are repeated until all the elements in d
have been visited and all the cities in R have been
eliminated, thus yielding a complete tour T.
The main advantage of this representation is that it
works well together with the classic one-point
crossover function.

5.2 Permutations
The path representation is perhaps the most
straightforward way of denoting a tour. For example,

the tour T = / 5 – 1 – 7 – 8 – 9 – 4 – 6 – 2 – 3 / is
simply indicated as (5 1 7 8 9 4 6 2 3).
Three basic crossover methods have been defined for
this representation: PMX (Partially Mapped
Crossover), OX (Order Crossover) and CX (Cycle
Crossover). In this work, the implementations were
carried out with OX [10] because it has been
experimentally shown that its performance on the
TSP is 11% and 15% better than PMX’s and CX’s,
respectively [11].
The OX technique exploits the path-representation
property that states that the main attribute is the order
of the cities, not their locations. In accordance with
this principle, the method builds the children by
choosing a subsequence from a parent’s tour, while
preserving the relative order of the cities in the other
parent’s tour.
As an example, let us start from parents p1 = (1 2 3 / 4
5 6 7 / 8 9) and p2 = (4 5 2 / 1 8 7 6 / 9 3), where the
slashes are split points. First, we obtain children h1 =
(* * * 4 5 6 7 * *) and h2 = (* * * 1 8 7 6 * *),
preserving the sub tour ranging between the two
respective split points for p1 and p2. Then, starting
from the second split point, the cities in p2 that are
not present in h1 are taken in order to complete the
cities in h1. In this case, the list of cities in p2 starting
from the second split point is: 9 3 4 5 2 1 8 7 6, but if
the cities already in h1 (i. e., 4 5 6 7) are eliminated,
the tour becomes 9 3 2 1 8. These cities are added to
h1, starting from the second split point. When the end
is reached, the remaining ones are added at the
beginning of h1.
In short, h1 = (* * * 4 5 6 7 * *) => (* * * 4 5 6 7 9 *)
=> (* * * 4 5 6 7 9 3) => (2 * * 4 5 6 7 9 3) => (2 1 *
4 5 6 7 9 3) => h1 = (2 1 8 4 5 6 7 9 3). Likewise, h2 =
(3 4 5 1 8 7 6 9 2) is obtained.
All the traditional crossover methods work in a
similar way. Two parents are selected; then, the
method is applied once and two children are thus
generated. This approach has been called Single
Crossover Per Couple (SCPC). New alternatives,
such as Multiple Crossover Per Couple (MCPC) and
Multiple Crossover between Multiple Parents
(MCMP), arose later in the search for better results.
In the next section we will explain details on our
MCPC and MCMP implementations and we will later
describe the termination condition that was used in all
cases.

6 EA Variants: Convergence Criterion

6.1 MCPC
In MCPC the basic crossover method is applied
several times to give birth to a variable amount of

children, always keeping the size of the new
population within pre-established limits. A variant is
the MCPC with Fitness Proportional Couple
Selection (MCPC-FPCS), where the parents’ pool is
built with the help of a proportional selection
criterion. A fitness value is assigned to each couple
and the parents to be crossed over are chosen via
proportional selection based on the couple’s fitness.
This index may be calculated as either the average
value of the individual fitness values for each parent
(AF) or the distance between those two values (DA).

6.2 MCMP
In MCMP a couple pool (cp) is generated based on
population (pop), where each element is selected with
a Fitness Proportional Selection (FPS) criterion. The
size of cp amounts to one half of pop’s dimension.
An average fitness is calculated for every element in
cp and two couples are selected using FPS. Thus, four
parents are obtained and crossed to get four children,
as shown in Fig.3.

Fig.3: Four-Parent Combination

These children are not inserted in the new population
in a direct way. Only two of them are selected
instead, in accordance with their fitness. We will
briefly explain below how the crossover is carried
out, according to the type of representation.
Ordinal Representation – One Point Crossover
In this case, it is possible to graphically see how the
children are built (see Fig.4). The one-point crossover
builds each child by assigning to it the cities that are
on one side of the cut point of one of the parents,
together with the cities that are on the other side of
another parent’s. In the case of four parents, this idea
is maintained, but the combination shown in Fig.3 is
taken into account in order to choose the parents.

Parents

Children

Fig.4: Four parent combination for one point
crossover.

6.2.1 Path Representation - OX
OX builds every child by selecting a sub tour of one
of the parents, while preserving the relative order of
the other parent’s cities. A sub tour is a succession of

cities that fall into two cut points. In the four-parent
case this idea remains, but the parents for each child
are selected as shown in Fig.3.

6.3 Convergence Criterion
The termination condition proposed in this paper is
based on the schema concept. A schema is a template
that helps to establish similarities between
chromosomes. In the binary-representation case, a
schema is represented by a string of symbols in the
set (0, 1, #), where # is a wildcard. For example,
string 011001 is an instance of schema 01##0#. When
the possible values for the alleles vary between 1 and
N, the set of symbols is (1, 2, .. , N, #).
As stated in Radcliffe [12], when two parents are
instances of the same schema, the child will also be
an instance of that schema. In particular, when a
schema carries good fitness to its instances, the whole
population will tend to converge over the bits defined
by that schema. As convergence is reached, all the
offspring will be instances of the schema. Then, if the
method that solves the problem is effectively
implemented, the solution will also be an instance of
that schema. Therefore, our convergence criterion
analyses the individuals genotypes until a high
percentage of them become instances of the same
schema. This method can be explained through the
following algorithm:

Input: population p of m individuals with n genes; α
% of individuals that coincide in a β % of the genes.
Auxiliary information: ratio vector r of length n
Output: 1- convergence was reached,

0- convergence was not reached
1- Initialise i with 1.
2- Analyse the i-th allele of the whole population, i.e.
from p[1, i] to p[m, i], getting the number ri of times
that appears the value of allele that is repeated more
times in p.
3- Increment i.
4- If i > n {all the genes were seen}
 then Go to step 5.
 else Go to step 2.
5- Count qs, the quantity of elements in r that are
greater than α.
6- If qs represents a % greater than β
 then Return 1(convergence criterion was satisfied).
 else Return 0.

This control can be made either on each generation,
or after a fixed number of generations. The algorithm
can be applied to the canonical (binary)
representation in a direct way but when the
representation changes, some special considerations
have to be taken into account. For the ordinal

Parent 2 Parent 3 Parent 1 Parent 4

Child 2 Child 3 Child 1 Child 4 Child 4

Parent 1

Cut Point

representation the individual alleles are not used
directly. A transformation needs to be carried out in
order to convert the decoder into the corresponding
path, and a reordering is required to keep city 1 as the
initial point of the tour. The alleles of this “new
genotype” are the ones analysed by the algorithm. As
to the path representation, the procedure is equivalent
to the second part of the method explained above. All
these modifications are introduced so as to regard
those individuals that represent the same tour as
equal, while starting from different cities.

7 Experiments and Results
An auxiliary algorithm of Exhaustive Search (ES)
was implemented to obtain reference optima. This
algorithm uses the same fitness function as the EA,
applying it to the whole search space.
The study cases were divided in two groups: sc1, sc2
and sc3 constitute Group 1, while sc4, sc5 and sc6
make up Group 2 (representing 8 and 10 city tours,
respectively). The tours were represented by matrixes
with random costs for the edges. The following
parameters were employed:

Mutation probability: 0.2 %
Crossover probability: 0.8 %
Selection method: fitness proportional selection.
Popsize size: 15% of the total size of the search
space.

The following performance variables were analysed:
• EBest: the difference between the optimum and

the best value that could be obtained, divided by
the optimum.

• GBest: the generation where the best value was
obtained.

• GOpt: the generation where the optimum was
obtained.

• GConv: the generation where convergence was
achieved.

• Hit Ratio: the percentage of times the optimum
was reached.

The reported values correspond to the average of 100
algorithmic runs for each group. The main results are
shown in Tables 1-4, where:
• CEA refers to the results of the classic

evolutionary algorithm (with SCPC).
• MCPC refers to the results of the MCPC variant.
• MCMP refers to the results of the MCMP variant.

The Hit-Ratio and EBest values show that in all cases
the MCPC outperforms the other two crossover
operators. MCMP exhibits poor performance and it is

clear from the Gconv values that this operator
presents premature convergence problems. By
comparing Tables 1 and 2 with Tables 3 and 4, it can
be deduced that the path representation still works
better that the ordinal one, even with the performance
improvement of the last one with MCPC.

Table 1: Average results for 8 city tours with ordinal
representation

 CEA MCPC MCMP

Hit Ratio 50% 65% 45%
GBest 71.28 8.94 9.02
GOpt 88.71 8.89 9.22

GConv 171.1 33.1 30.2
EBest 0.0008473 0.000583 0.13417

Table 2: Average results for 10 city tours with ordinal
representation

 CEA MCPC MCMP

Hit Ratio 65% 73% 46%
GBest 91.85 11.72 14.3
GOpt 94 11.9 8.49

GConv 222.95 36.25 12.595
EBest 0.000543 0.000351 0.00598

Table 3: Average results for 8 city tours with path
representation

 CEA MCPC MCMP
Hit Ratio 97% 100% 37%

GBest 147.71 31.17 6.06
GOpt 150.29 31.17 6.39

GConv 550.95 - 21.9
EBest 0.0000225 0 0.0008105

Table 4: Average results for 10 city tours with path
representation

 CEA MCPC MCMP

Hit Ratio 56% 99% 29%
GBest 151.76 144.7 13.54
GOpt 153 147.7 17.96

GConv 726.07 - 51.1
EBest 0.00031 0.00001 0.00089

A null (-) value in GConv means that the algorithm
did not stop due to convergence control, but because
the preset limit of generations (1000) had been
reached. This indicates excellent levels of population
diversity in this method.

8 Conclusions
In this work we modified the traditional TSP GAs ,
with either ordinal or path representations, by

changing the crossover methods and applying a new
convergence criterion. Six variants were implemented
and analysed. In our experiments, path representation
proved to be better because its crossover operator
always preserves the relative order of the cities,
instead of keeping a random portion of the parent.
The best performance was achieved with the MCPC
path representation version, which showed excellent
Hit Ratio figures together with high convergence-
generation values. This means that, in our study
cases, the approach regularly finds the solution while
maintaining population diversity. Since MCPC
exhibited the best results with both representations,
this approach is eligible for its future employment in
process-plant instrumentation-design applications.

References:
[1] Ponzoni I., Sánchez M.C., Brignole N.B, A New

Structural Algorithm for Observability
Classification, Industrial & Engineering
Chemistry Research, Vol. 38, No. 8, 1999, pp.
3027-3035.

[2] Ponzoni I., Sánchez M.C., Brignole N.B., CDHG:
a New Partitioning Algorithm based on the
Detection of Cycles in Hypergraphs, Latin
American Applied Research, Vol. 28, Nº1/2,
1998, pp.31-36.

[3] Greffenstette J.J., Gopal R., Rosmaita B. and Van
Gucht D., Genetic Algorithm for the TSP,
Laurence Erlbaum Associates, Hillsdale, NJ,
1985.

[4] Garey M. and Jonson D., Computers and
Interactability, W. H. Freeman, San Francisco,
1979.

[5] Jog P., Suh J.Y. y Gucht, D.V., The Effects of
Population Size, Heuristic Crossover, and Local
Improvement on a Genetic Algorithm for the
Travelling Salesman Problem, Proceedings of the
Third International Conference on Genetic
Algorithms, San Mateo, CA, 1989.

[6] Moscato P. and Tinetti F., Blending Heuristics
with a Population Based Approach: A Memetic
Algorithm for the Travelling Salesman Problem,
1992.

[7] Esquivel S., Leiva A., Gallard R., Multiple
Crossover per Couple in genetic algorithms,
Proceedings of the Fourth IEEE International
Conference on Evolutionary Computation (ICEC’
97), Indianapolis, USA, April 1997, pp. 103-106.

[8] Esquivel S., Leiva A., Gallard R., Multiple
Crossovers between Multiple Parents to improve
search in evolutionary algorithms, Presentation in
the 1999 Congress on Evolutionary Computation
IEEE, Washington DC, 2001 (in press).

[9] Esquivel S., Ferrero S., Gallard R., Salto C.,
Alfonso H., Schutz M., Enhanced Evolutionary
ALgorithms for single and multiobjective
optimization in the job shop scheduling problem,
Knowledge-Based Systems, Vol. 15, 2002, pp. 13-
25.

[10] Davis L., Applying Adaptive Algorithms to
Epistatic Domains, Proceedings of the
International Joint Conference on Artificial
Intelligence, 1985, pp. 162-164.

[11] Oliver, I. M., Smith, D. J., and Holland, J.R.C.,
A Study of Permutation Crossover Operators on
the Traveling Salesman Problem, Proceedings of
the Second International Conference on Genetic
Algorithms, 1987, pp.224-230.

[12] Radcliffe N. J., Equivalence Class Analysis of
Genetic Algorithms, Complex Systems, Vol. 5,
1991, pp. 183- 205.

