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Abstract: Fuzzy rules have a simple structure within a multidimensional vector space and they are produced by 
dismembering this space into fuzzy subspaces. The most efficient way to produce fuzzy partitions in a vector 
space is the use of fuzzy clustering analysis. This paper proposes a fuzzy clustering-based algorithm, which 
generates fuzzy rules from a set of input-output data. The algorithm is based on the assumption that, with an 
input fully matching with the premise part of a specific fuzzy rule, the corresponding output should completely 
participate in the consequent part. In order to accomplish this, certain conditions are derived. The application of 
the algorithm to a test case, which has been considered as a benchmark in fuzzy modeling applications, shows 
that the produced models are of compact size, while their performances are very efficient. 
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1. Introduction 
The basic issue in fuzzy modeling is the 
identification procedure that is employed. Fuzzy 
model identification consists of structure 
identification and parameter estimation. Structure 
identification is directly related to the determination 
of the appropriate number of rules [1,2]. On the other 
hand, parameter estimation concerns the calculation 
of the appropriate model parameter values that 
provide an accurate system description. Structure 
identification and parameter estimation are usually 
carried out via a training procedure. So far, a wide 
spectrum of methods has been proposed to train 
fuzzy systems. Many of these methods use heuristic 
approaches [3], self-learning and adaptive schemes 
[4,5], or gradient descent algorithms [6].  
One of the most efficient fuzzy modeling procedures 
is the utilization of fuzzy clustering analysis. Fuzzy 
clustering provides a certain advantage over other 
approaches, since the partition of the input (or the 
product) space is obtained as a direct result [7]. The 
method developed in [8] use fuzzy clustering analysis 
to detect multidimensional reference fuzzy areas, 
where the number of rules is determined by reducing 
the model parameters, based on a system 
performance index. In [9] it is proposed an algorithm 
that yields clusters in the mapping space by 
incorporating the nature of the functional 
relationships into an objective function. In [10] the 
structure identification is obtained via hyper-
ellipsoidal clustering with simultaneous use of 
human intuition, while in [11] the hyper-ellipsoidal 
subspaces have been replaced by spherical fuzzy 

areas where the membership functions determine the 
structure of the rules. 
In this paper, a novel fuzzy clustering-based method 
is proposed for system identification. The proposed 
algorithm is based on decomposing the input space 
into a certain number of subspaces (clusters), each of 
which is assigned to a specific fuzzy rule. Then, the 
output space is relationally dismembered into the 
same number of clusters in such a way, that certain 
conditions have to be satisfied.  
 
2. The Proposed Algorithm 
In this section the proposed algorithm is analyzed in 
details. The algorithm is able to efficiently generate 
fuzzy rules based on a set of n input-output data pairs 
of the form . The basic design 
issues of the proposed method are described within 
the next subsections.  
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2.1 Partitioning the Input Space by Using  
      Fuzzy Clustering Analysis 
A major issue in fuzzy modeling is the reduction of 
the computational complexity, and since simplified 
fuzzy models use less parameters their usefulness is 
considerable. In our approach we adopt the simplified 
fuzzy model introduced in [3], which is described by 
the following fuzzy rules, 
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where p is the number of inputs, c in the number of 
rules, are fuzzy sets, and b)1;1( pjciX i

j ≤≤≤≤ i are 
real numbers. The above fuzzy model can 
approximate any nonlinear function to arbitrary 
accuracy on a compact set [3].   
Based on fuzzy reasoning, it is evident that even 
when an input linguistic variable is not appearing in 
the premise part of one rule, a fuzzy set can be 
assigned to it with a firing degree of unity. This 
remark suggests a uniform structure of the premise 
part of the rule base, where all the input linguistic 
variables participate in all of the fuzzy rules. In 
addition to that, a more credible fuzzy rule base can 
be created by assuming that the output variable 
participates in each rule with a normal fuzzy set, 
meaning that there is at least one element belonging 
to the fuzzy set with membership degree of unity. By 
considering that c fuzzy rules are needed to describe 
a nonlinear system, the uniform structure of the 
premise part of the rule base enables us to partition 
the input space X into c fuzzy subspaces 

. Each of these subspaces is 
assigned to only one fuzzy rule. Therefore, the fuzzy 
rule in (1) can be modified as, 
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where  and  with 

. Since our model is described 
by fuzzy rules of the form (2), we can produce a 
constrained fuzzy c-partition of the input space X by 
applying the well-known fuzzy c-means algorithm on 
the input training data set. The fuzzy c-means is 
based on the minimization of the following objective 
function [12], 
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under the next equality constraint, 
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where n is the number of training data vectors, c is 
the number of clusters,  is the membership degree 
of the k-th training vector to the i-th cluster, 

 is a factor to adjust the membership degree 

weighting effect, x

iku

pℜ
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k are the input training data 

vectors, and v

∈
p

i  are the cluster centers. The 
cluster centers and the respective membership 

degrees that solve the above constrained optimization 
problem are respectively given by the following 
equations [12], 
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The eqs (7) and (8) constitute an iterative 
optimization procedure.  
By applying the above minimization procedure to the 
input training data vectors, these vectors are classified 
into c fuzzy clusters, where the i-th cluster 
corresponds to the i-th fuzzy subspace. Since a single 
fuzzy subspace corresponds to a specific fuzzy rule, 
the number of clusters coincides with the total 
number of fuzzy rules. Eventually, the membership 
degree of the training vector xk to the i-th fuzzy 
subspace Xi is the membership degree uik. In the rest 
of the paper, the word «fuzzy cluster» will replace the 
word «fuzzy subspace», meaning that these two 
words are referred to the same concept.  
 
2.2 Model Parameter Initialization 
Based on the analysis presented in the previous 
section, the premise part of each rule consists of 
multidimensional fuzzy clusters, the membership 
functions of which are given in eq (6). The form of 
this equation indicates that the membership function 
is interpreted as the membership degree that is 
assigned to the input vector xk by the center element 
vi of the cluster X i. Thus, the width of the cluster Xi 
is not included in the membership function and 
therefore, it is not taken into account in the parameter 
estimation either. Another important issue is the 
presence of the parameter m. This parameter controls 
the fuzziness of the resulted partition and thus, it 
affects the overlapping degree between the 
multidimensional fuzzy clusters. More specifically, as 
this parameter increases, the overlapping degree also 
increases. This means that for a specific value of the 
parameter m the overlapping degree between the 
clusters is known, and therefore, the locations of the 
cluster centers indicate the distances between the 
clusters. Thus, the premise parameter identification 
only concerns the estimation of the appropriate 
cluster centers. To this end, the premise parameter 
estimation is based on iteratively applying the eqs (5) 



and (6) to the input training data, where the resulted 
cluster centers provide the fuzzy rule premise 
parameters and the respective membership degrees 
provide the firing degrees of the fuzzy rules. 
Therefore, the output of the fuzzy model can be 
calculated as, 
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Taking into account the eq (4), the above equation is 
modified as follows, 
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With the fuzzy c-partition of the input space 
introduced, the output space should be partitioned in 
a similar way. Moreover, this partition should be 
based on the following conditions [11, 12], 
 
Condition 1: If in the i-th fuzzy rule the vector xk is 
the center element of the cluster X i then the output yk 
should satisfy the rule’s consequence by concluding a 
truth degree equal to unity. 
  
Condition 2: If in the i-th fuzzy rule the vector xk is 
not the center element of the cluster Xi then the 
output yk should satisfy the rule’s consequence by 
concluding a truth degree less than unity. 
 
The above conditions are referred to the matching 
degree between the premise and the consequent part 
of each fuzzy rule. One feasible way to satisfy these 
two conditions is to perform clustering analysis in the 
product space (i.e. the input-output space) and then 
induce fuzzy sets by projecting the resulted clusters 
on each dimension. Such kinds of approaches are 
investigated in [7,8,9]. However, the main drawback 
of these approaches is that the consequent parameters 
are not calculated by the use of an optimizing 
criterion. In order to solve this problem, we introduce 
the following condition, 
 
Condition 3: The consequent parameters should be 
estimated by minimizing the sum of the square errors 
(SSE) criterion. 
 
The above condition has to be satisfied together with 
the conditions 1 and 2. The SSE criterion is given as,  
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With the premise parameters known, the respective 
consequent parameters can be obtained by 
minimizing the J1 over the n input-output data pairs. 
Using eq. (7), eq. (8) gives that, 
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One feasible way to minimize J1 is to employ the 
well-known least squares algorithm. However, the 
utilization of this algorithm does not guarantee that 
the conditions 1 and 2 will be satisfied. Therefore, we 
introduce the following procedure. 
 
Theorem 1 
If  then the objective function J+→1m 1, given in eq. 
(9) can be calculated as, 
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Proof 
For and , from eq. (6) we obtain 
that, 

ci ≤≤1 nk ≤≤1
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Thus, as  the membership degrees in the input 
space are given as follows, 

+→1m
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where  is a crisp partition of  
X.                                         
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From eq. (11) it follows that, there are k1 input data 
vectors that belong to the cluster X1, k2 data vectors 
that belong to the cluster X2, …., and kc data vectors 
that belong to the cluster Xc, such that, 
 

nkkk c =+++ ...21                                                 (12) 
 
Therefore, the following relation holds, 
 

∑
=

−=−
c

i

l
klk

i
ikk

i
i

buybuy
1

22 )()(  

                                               (13) 22 )()( i
i

l
kkl byu −=



where the index li corresponds to the crisp cluster 
 at which the xilX k belongs to. Based on eqs (11), 

(12), and (13) the objective function in (9) can be 
modified as follows, 
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which means that, 
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The i-th crisp cluster Xi includes ki training vectors 
and therefore the rest (n-ki) training data vectors are 
assigned by Xi membership degrees equal to zero. 
Therefore, the following relation holds, 
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Replacing eq. (15) into eq. (14) we can derive the eq. 
(10). This completes the proof of theorem 1. 
 
 
The next theorem provides the values of the 
consequent parameters that minimize the objective 
function in (10). 
 
Theorem 2  
 
For ; If the values of the membership 
degrees  are fixed, then the values of 
the consequent parameters b

ci ≤≤1
(uik )1 nk ≤≤

i that minimize the 
objective function J1, given in eq. (10), are calculated 
as,  
 

∑

∑

=

== n

k
ik

n

k
kik

i

u

yu
b

1

2

1

2

)(

)(
                                                  (16) 

 
Proof 

Setting the partial derivative ibJ ∂∂ 1 equal to zero, 
and solving with respect to bi, we can easily derive 
the eq. (16). This completes the proof of theorem 2.  
 
 
Summarizing, the premise parameters are calculated 
by the eq (5) and the consequent parameters by the 
eq. (16). 
 
2.3 Fine Tuning of the Model Parameters 
In this section the model parameters, obtained in the 
previous step, are further tuned by using a gradient 
descent approach. The objective function that is used 
for this purpose is given as, 
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By substituting eq. (7) into the above function we 
obtain that, 
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In order to minimize J2 the premise parameters have 
to be adjusted as follows, 
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where, based on (6), the partial derivative is given as, 
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Relationally, the learning rule for the consequent 
parameters is as follows, 
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In the above equations, the parameters β1 and β2 are 
the gradient descent learning parameters.  
 
2.4 The Identification Algorithm 
Based on the previous analysis, the proposed fuzzy 
modeling algorithm is now given as follows. 
 



The Proposed Algorithm  
Suppose we are given n input-output data pairs of the 
form  . Initially   select   a   small  )1();( nkykk ≤≤x
value for the parameter m, which is close to unity. 
Set the number of rules c=2, and select a value for 
the terminal condition parameters ε1 and ε2.   
 
Step 1).   Randomly, initialize the premise parameters 

 and the consequent parameters 

.   
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Step  2).   For ; Use the 
eq (6) to calculate the membership degrees u
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Step 3).  For i=1, 2, …, c; Update the premise 
parameters vi using the eq. (5). 
 
Step   4).   For i=1, 2, …, c; Calculate the consequent 
parameters using the eq. (16). 
 
Step 5).  Calculate the distance ||  where 

and b

||pbb −
Tcbbb ]...,,,[ 21=b p the previous state of b.  

 
Step 6).     If  || then go to step 7; else go 
to step 2. 

1p || ε≤−bb

 
Step 7).    Employ the gradient descent approach to 
minimize J2, where the model parameter learning 
rules are given by the eqs (18) and (20). 
 
Step 8).  Calculate the performance index of the 

model: nyyPI
n

k
kk∑
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Else set   c= c+1 and go to step 1.   
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The final result of the above iterative optimization is 
that, with an input fully matching with one of rules’ 
premise part, the corresponding output satisfies the 
consequence completely, meaning that the truth 
degree of each fuzzy rule is equal to unity. Thus, the 
eq. (7) can be used for inference of the output from a 
specific input data vector.   
 
3. Simulation Study 
In this subsection the proposed algorithm is applied 
to the well-known Box and Jenkins data set [2], 
which consists of 296 input-output measurements of 
a gas-furnace process, obtained using a sampling 
ratio of 9 s. At each sampling time k the input x(k) of 
this process is the gas flow rate and the output y(k) is 
the output CO2 concentration. The proposed method 
was  used  to  design  a  fuzzy model  for this process  
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Figure 1: Original and predicted values for the training  
               data set of the  Box and Jenkins system (Case 1). 
 
with 6 inputs: x(k), x(k-1), x(k-2), y(k-1), y(k-2), y(k-
3) and one output:  y(k). In order to compare our 
method with other approaches, we performed two 
experimental cases namely, case 1 and case 2. 
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Figure 2: Original and predicted values for the test data set  
                of the Box and Jenkins system (Case 1). 
 
In case 1 we used the first 148 input-output data as 
training data to build the fuzzy model and the last 148 
as test data to validate its performance. The terminal 
conditions were selected as ε1=10-4 and ε2=10-2, and 
the learning rates for the gradient descent method 
were: β1 = β2= 0.55. The final number of rules was 
equal to c=3.The predicted and the original output 
values for the training data are given in Fig.1, where 
the corresponding Mean Square Error (MSE) was 
equal to 0.045. Fig. 2 shows the predicted and the 
actual values  for  the  validation data for which, the 
MSE was equal to 0.251. The MSEs, which were 
obtained for the same case study by the method 
developed in [14] were 0.071 for that training data, 
and 0.261 for the test data, meaning that our model 
performs better than this method.  
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Figure 3: Original and predicted values for the Box  
                and Jenkins system (Case 2). 
 
In case 2 we used all the data set to build the fuzzy 
model and to validate its performance. The terminal 
conditions were selected as ε1=10-4 and ε2=10-2, and 
the learning rates for the gradient descent method 
were: β1 = β2= 0.3. The final number of rules was 
equal to c=4. Fig.3 depicts the predicted and the 
actual values, where the MSE was equal to 0.1398. 
Table 4 compares the performance of the produced 
fuzzy model to other models that can be found in the 
literature. From this table we can easily notice that 
our model achieves the best performance. 
 
Table 4: Comparison results for the Box-Jenkins example          
              (Case 2) 

 
Model 

Number 
of rules 

 
MSE 

Box and Jenkins[13] --- 0.2020 
Chen et al. [11] 3 0.2678 
Sugenoand Yasukawa [3] 6 0.1900 
Xu and Lu [5] 25  0.3280 
Gomez-Skarmeta et al. [8] 2 0.1570 
Kroll [8] 2 0.1495 
Our Model 4 0.1398 

 
 
4. Conclusions 
In this paper we have proposed a novel method to 
train fuzzy models. The method is developed so that 
emphasis is given on both the accuracy and the size 
of the produced model. In order to achieve these 
targets, the method follows a number of steps, which 
are independent each other, so that the result of each 
step becomes the input of the next step. The basic 
design issue of the algorithm is that both the premise 
and the consequent parts appear an equal contribution 
to the firing degree of each rule. In order to 
accomplish this, certain conditions are taken into 
account. The application of the algorithm to a test 
case shows that the algorithm is able to achieve a 

very efficient performance, while keeping the size of 
the model within reasonable and acceptable levels.      
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