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Abstract: - The purpose of this plenary lecture is first to provide an introduction to “algebraic analysis”. This
fashionable though quite difficult domain of pure mathematics today has been pioneered by V.P. Palamodov, M.
Kashiwara and B. Malgrange around 1970, after the work of D.C. Spencer on the formal theory of systems of
partial differential equations. We shall then focus on its application to control theory in order to study linear mul-
tidimensional control systems by means of new methods from module theory and homological algebra. We shall
revisit a few basic concepts and prove, in particular, that controllability, contrary to a well established engineering
tradition or intuition, is an intrinsic “built in” property of a control system, not depending on the choice of inputs
and outputs among the control variables or even on the presentation of the control systems. Our exposition will
be rather elementary as we shall insist on the main ideas and methods while illustrating them through explicit
examples. Meanwhile, we want to stress out the fact that these new techniques bring totally striking results even
on classical control systems of Kalman type !.
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1 INTRODUCTION

Ordinary differential (OD) control theory studies in-
put/output relations defined by systems of ordinary
differential (OD) equations. In this case, with stan-
dard notations, if a control system is defined by in-

for three unknowns where a is a constant parameter:

gi-ay’ -9 =0 , Y -g*+9’ =0,

Whether we choose y' = z',y?> = 2%,y> = u or

put/state/output relations: y' = ', y? = u,y® = 2? while choosing in both cases
g = 2! —u, 22 = 2% — u, we get two quite different
& =Ax+ Bu y=Cz+ Du systems in Kalman form , though both are controllable

with dim(z) = n, this system is “controllable” if and only if a # 0 and a # 1.

if rk(B,AB,...,A" 'B) = n and “observable’ if
rk(C,AC, ..., A" 'C) = n where the tilde sign indi-
cates the transpose of a matrix [3]. Accordingly, the
so-called “dual system”:

Ty = —fixa — CN’ua , Yo = Ba?a + Dua

is controllable (observable) if and only if the given sys-
tem is observable (controllable). However, and despite
many attempts, such a dual definition still seems purely
artificial as one cannot avoid introducing the state. The
same method could be applied to delay systems with
constant coefficients.

Now, let us consider the system of two OD equations

Two problems are raised at once.

First of all, if the derivatives of the inputs do appear
in the control system, for example in the SISO system
£ —u = 0, not a word is left from the original functional
definition of controllability which is only valid for sys-
tems in “Kalman form” and the same comment can be
made for the corresponding duality.

Secondly, we understand from the above example that
controllability must be a structural property of a control
system, neither depending on the choice of the inputs
and outputs among the system variables, nor even on
the presentation of the system (change of the variables
eventually leading to change the order of the system).



More generally, “partial differential (PD) conirol
theory” will study input/output relations defined by
systems of partial differential (PD) equations. At first
sight, we have no longer a way to generalize the Kalman
form and not a word of the preceding approach is left
as, in most cases, the number of arbitrary parametric
derivatives playing the role of state could be infinite. We
also understand that a good definition of controllability
and duality should also be valid for control systems with
variable coefficients. A similar comment can be made
for the definition of the transfer matrix.

Keeping aside these problems for the moment, let us
now turn for a few pages to the formal theory of systems
of OD or PD equations.

In 1920, M. Janet provided an effective algorithm
for looking at the formal (power series) solutions of
systems of ordinary differential (OD) or partial differ-
ential (PD) equations [2]. The interesting point is that
this algorithm also allows to determine the compatibility
conditions Dyn = 0 for solving (formally again but this
word will not be repeated) inhomogeneous systems of
the form D¢ = n when D is an OD or PD operator
and ¢, n certain functions. Similarly, one can also deter-
mine the compatibility conditions Dy( = 0 for solving
Din = (, and so on. With no loss of generality, this
construction of a “differential sequence” can be done
in such a canonical way that we successively obtain
D1, Do, ...,Dy, from D and D,, is surjective when n is the
number of independent variables.

With no reference to the above work, D.C. Spencer
developed, from 1965 to 1975, the formal theory of sys-
tems of PD equations by relating the preceding results
to homological algebra and jet theory [19]. However, this
tool has been largely ignored by mathematicians and,
“a fortiori’, by engineers or even physicists. There-
fore, the module theoretic counterpart, today known as
“algebraic analysis”, which has been pioneered around
1970 by V.P. Palamodov for the constant coefficient
case [10], then by M. Kashiwara [4] and B. Malgrange
[7] for the variable coefficient case, as it heavily depends
on the previous difficult work and looks like even more
abstract, has been totally ignored within the range of
any application before 1990, when U. Oberst revealed
its importance for control theory [9].

The purpose of this lecture will essentially be to re-
pare this gap by explaining, in a self-contained way on
a few explicit examples, what is the powerfulness of this
new approach for understanding both the structural and
input/output properties of linear PD control systems,
also called multidimensional or simply n-dimensional.
Meanwhile, the reader will evaluate the price to pay for
such a better understanding. Needless to say that many
results obtained could not even be imagined without

this new approach, dating back to 1986 when we gave
for the first time the formal definition of controllability
of a control system [11] but now largely acknowledged
by the control community [20,21].

As we always use to say, the difficulty in studying
differential modules is not of an algebraic nature but
rather of a differential geometric nature. This is the
reason for which the study of algebraic analysis is at
once touching delicate points of jet theory, the main one
being formal integrability. We now explain this concept
on a tricky motivating example.

Motivating Example 1: With two independent vari-
ables (z!,2?), one unknown y and standard notations,
we consider the following third order system of PD equa-
tions with second member (u,v):

{PyE
Qy =

We check the identity QP — PQ = 1 and obtain easily:

da2oy + 2%y
doy + dvy

=Uu
=0

y = Qu — Pv = doyu + diu — dogov — 2%v

Substituting in the previous PD equations, we should
obtain the generating 6t*-order compatibility conditions
for (u,v) in the form:

(41

These two compatibility conditions are differentially de-
pendent as we check at once QA — PB = 0. Finally,
setting u = 0,v = 0, we notice that the preceding ho-
mogeneous system can be written in the form Dy = 0
and admits the only solution y = 0.

PQu — P?>v—u
Q*u — QPv —v

=0
=0

Motivating Example 2: Again with two independent
variables (2!, z?) and one unknown y, let us consider the
following second order system with constant coefficients:

{Pyz
Qy =

We obtain at once:

da2y =u

di2y—y =v
y=dnu—dpv—v

and could hope to obtain the 4*"-order generating com-
patibility conditions by substitution, that is to say:

e

However, in this particular case, we notice that there is
an unexpected unique second order generating compat-
ibility condition of the form:

=0
=0

di1220 — dy222v — doov — U
di112u — diiu — di122v

CEd12U—u—d22U:0



as we have indeed A = d;2C + C and B = di,C, a
result leading to C' = dyaB — d12 A + A. Accordingly,
the systems A = 0, B = 0 on one side and C' = 0 on the
other side are completely different though they have the
same solutions in u,v.

2 ALGEBRAIC ANALYSIS

It becomes clear that there is a need for classifying the
properties of systems of PD equations in a way that
does not depend on their presentations and this is the
purpose of algebraic analysis.

We recall a few basic facts from jet theory [13,14].

Let X be a manifold of dimension n with local co-
ordinates z = (z!,...,2") and E be a vector bundle
over X with local coordinates (2%, y*), where i = 1,...,n
for the independent variables, £ = 1,...,m for the de-
pendent variables, and projection (z,y) — z. A (lo-
cal) section £ : X — E : z — (x,&(z)) is defined
locally by y* = ¢¥(z). Under any change of local co-
ordinates (z,y) — (Z = ¢(z),§ = A(z)y) the section
changes according to ' = & (z) in such a way that
E(p(z)) = Al (z)¢¥(z) and we may differentiate succes-
sively each member in order to obtain, though in a more
and more tedious way, the transition rules for the deriva-
tives £F (), 0;€% (), 0;;€%(x), ... up to order ¢. As usual,
we shall denote by J,(F) and call q-jet bundle the vector
bundle over X with the same transition rules and local
jet coordinates (x,y,) with y, = (yk,yf,yfj, ...) or, more
generally yl’j with 1 <] p |< ¢ where p = (p1, .., fin)
is a multi-index of length |u |= w1 + ... + p, and
B+ 1L = (p’la ey i1,y i+ 17Mi+17 7/J’n) The reader
must not forget that the above definiions are standard
ones in physics or mechanics because of the use of ten-
sors in electromagnetism or elasticity.

Definition 1: A system of PD equations on E is a vec-
tor sub-bundle R, C J;(E) locally defined by a constant
rank system of linear equations A" (ar)y,’j =0.

Substituting the derivatives of a section in place of
the corresponding jet coordinates, then differentiating
once with respect to z and substituting the jet coor-
dinates, we get the first prolongation Ryy1 C Jyp1(E),
defined by the previous equations and by the new equa-
tions Ap¥(x)yh 1, + 0; A (2)yk = 0, and, more gener-
ally, the r-prolongations Ry, C Jy1,(E) which need
not be vector bundles (zy, —y = 0 = zy,, = 0).

Definition: R, is said to be formally integrable if the
R,4, are vector bundles and all the generating PD
equations of order ¢ + r are obtained by prolonging R,
exactly r-times only, Vr > 0.

We now specify the correspondence:

SYSTEM <« OPERATOR
< MODULE

in order to show later on that certain concepts, which
are clear in one framework, may become quite obscure
in the others and conversely (check this for the formal
integrability and torsion concepts for example !).

Having a system of order ¢, say R, C J,(E), we
can introduce the canonical projection ® : J,(E) —
Jy(E)/Ry = F and define a linear differential operator
D:E — F:&(z) — n7(z) = A" (2)0,"(z). When
D is given, the compatibility conditions for solving
DE = n can be described in operator form by Din = 0
and so on. In general (see the preceding examples),
if a system is not formally integrable, it is possible to
obtain a formally integrable system, having the same
solutions, by “saturating” conveniently the given PD
equations through the adjunction of new PD equations
obtained by various prolongations and such a procedure
must absolutely be done before looking for the compati-
bility conditions.

In order to study differential modules, for simplicity
we shall forget about changes of coordinates and con-
sider trivial bundles. Let K is a differential field with n
commuting derivations 0y, ..., 9, (say Q, Q(z',...,z") or
Q(a) in the previous examples). If dy, ..., d, are formal
derivatives (pure symbols in computer algebra packages
1) which are only supposed to satisfy d;a = ad; + 0;a
in the operator sense for any a € K, we may con-
sider the (non-commutative) ring D = K[di, ..., dy] of
differential operators with coefficients in K. If now
y = (y',...,y™) is a set of differential indeterminates,
we let D act formally on y by setting dﬂyk = yl’j and set
Dy = Dy' + ... + Dy™. Denoting simply by DDy the
subdifferential module generated by all the given OD or
PD equations and all their formal derivatives, we may
finally introduce the D-module M = Dy/DDy. Here we
recall that M is a module over a ring A or an A-module
ifVae A,Vm,ne M = am,m+n € M.

Example: In the Motivating Examples, we get M = 0.

Before entering the heart of the paper, we need a few
technical definitions and results from homological alge-
bra [5,8,14,18].

First of all, we recall that a sequence of modules and
maps is exact if the kernel of any map is equal to the
image of the map preceding it.

If A is a noetherian integral domain, we denote by
K = Q(A) the quotient field of A and we have the short
exact sequence:

0—A—K-—K/A—0



If now M is a left A-module, we may tensor this se-
quence by M on the right with A ® M = M but we
do not get in general an exact sequence. The defect of
exactness on the left is nothing else but the torsion sub-
module t(M) ={m € M |30 #a € A,am =0} C M
and we have the long exact sequence:

0 —t(M) —> M — K@M — K/A®AM — 0

as we may describe the central map as follows:

m—>1®m:g®m:%®am , VYa#0
Such a result based on the so-called localization tech-
nique allows to understand why controllability has to
do with the so-called “simplification” of the transfer
matriz but this is out of our scope [14,16]. In particular,
a module M is said to be a torsion module if t(M) = M
and a torsion-free module if t(M) = 0.

We now introduce the extension functor in an
elementary manner, using the standard notation
homa(M,A) = M*. First of all, by a free resolution of
an A-module M, we understand a long exact sequence:

Ly R M0

where Fp, F1,...are free modules, that is to say mod-
ules isomorphic to powers of A and M = coker(d;) =
Fy/im(dy). We may take out M and obtain the deleted
sequence:

d d
—2>F1—1>F0—)0

which is of course no longer exact. If N is any other
A-module, we may apply the functor hom (e, N) and
obtain the sequence:

o homa(Fy, N) < homa(Fp, N) ¢— 0
in order to state:

Definition: ezt (M, N) = ker(d}) = hom (M, N),
ext'y(M,N) = ker(dy_,)/im(d}),Vi > 1

One can prove that the extension modules do not
depend on the resolution of M chosen and have the
following two main properties, the first of which only is
classical [14,17,18].

PROPOSITION: If 0 - M' - M - M" - 0is a
short exact sequence of A-modules, then we have the
following connecting long exact sequence:

0 = homa(M",N) — hom(M,N)
— homs(M',N) — exty(M",N) — ...

of extension modules.

PROPOSITION: exti,(M,A) is a torsion module,
Vi > 1.

Proof: Let F' be a maximal free submodule of M. From
the short exact sequence:

0—F —M-—M/F—0

where M/F is a torsion module, we obtain the long ex-
act sequence:

o = ext H(FA) — ext! (M/F, A)
— exty, (M, A) — exty, (F,A) — ...

From the definitions, we obtain ext!, (F, A) = 0,Vi > 1
and thus ext’, (M, A) ~ ext,(M/F, A),Vi > 2. Now it
is known that the tensor by the field K of any exact
sequence is again an exact sequence. Accordingly, we
have from the definition:

K®aext’y(M/F, A) ~ exty(M/F,K)
~extl (KQAM/F,K)=0,Vi>1

and we finally obtain from the above sequence
K®aextl (M, A) = 0 = exti, (M, A) torsion, Vi > 1.
Q.E.D.
As we have seen in the Motivating Examples, the
same module may have many very different presenta-
tions. In particular, we have [5,14]:

Schanuel Lemma: If F] o, Fy - M — 0 and

dll
F! — F) — M — 0 are two presentations of M,
there exists a presentation F; 2% Fy — M — 0 of M
projecting onto the preceding ones.

Definition: An A-module P is projective if there exists
a free module F' and another (thus projective) module
Q@ such that P ® @ ~ F. Any free module is projective.

Definition: A short exact sequence
0— M L ML M7 — 0

splits if M ~ M' ® M" or, equivalently, if one can find
a lift w : M — M' such that wo f = id), or a lift
v:M" — M such that gov =idy.

Proposition: The above short exact sequence splits
whenever M" is projective.

Proposition: When P is a projective module and N is
any module, we have ezt (P, N) = 0,Vi > 1.

3 PROBLEM FORMULATION

Though it seems that we are very far from any possible
application, let us now present three problems which,
both with the previous examples, look like unrelated
with what we already said and between themselves.



Problem 1: Let a rigid bar of length L be able to slide
horizontally and attach at the end of abcissa = (resp.
x + L) a pendulum of length I; (resp. l2) with mass
my (resp. ms2), making an angle 6; (resp. 62) with
the downwards vertical axis. Projecting the dynamical
equations on the perpendicular to each pendulum in or-
der to eliminate the respective tension, we get:

m1 (Zcosf + 110"1) +migsinf; =0

where g is the gravity. When 6; and 65 are small, we get
the following two OD equations that only depend on Iy
and [/, but no longer on m; and ms:

=0

{ 5é+l1é1+901
=0

i+ l2Bs + gbs

Now it is easy to check experimentally that, when l; #
l5, it is possible to bring any small amplitude motion
01 = 61(t),0> = 05(¢) of the two pendula back to equi-
librium #; = 0,6 = 0, just by choosing a convenient
x = x(t) and the system is said to be controllable. On
the contrary, if [; = I and unless 0, (t) = 62(t), then it is
impossible to bring the pendula back to equilibrium and
the system is said to be uncontrollable. A similar ques-
tion can be asked when I3 = l1(t),l> = l5(t) are given,
the variation of length being produced by two small en-
gines hidden in the bar [14].

Hence, a much more general question concerns the con-
trollability of control systems defined by systems of OD
or PD equations as well, like in gasdynamic or magne-
tohydrodynamic.

In our case, setting x1 = x + 1101, 25 = = + [265, we get:

{ i1+ (9/l)z — (g/l)r =0

Z2 + (g/l2)x2 — (g/la)r =0

and may set 1 = x3,Z2 = x4 in order to bring the
preceding system to Kalman form with 4 first order OD
equations. The controllability condition is then easily
seen to be l; # Iy but such a result not only seems to
depend on the choice of input and output but cannot
be extended to PD equations.

Problem 2: Any engineer knows about the first set of
Maxwell equations:

. . OB
E+ — =
VANE+ it 0

and the fact that any solution can be written in the form:

V.B =0,

— =

B=VAA,

for an arbitrary vector A and an arbitrary function V.

According to special relativity, these equations can be
condensed on space-time by introducing a 1-form A for
the potential and a 2-form F for the field in order to dis-
cover that the above Mawell equations can be written

in the form dF = 0 and admit the “generic” solution
dA = F where d is the exterior derivative. Hence, we
have “parametrized’ the field equations by means of
a “potential’, that is the field equations generate the
compatibility conditions of the inhomogeneous system
allowing to express the field (right member) by means
of the potential (left member).

Similarly, in 2-dimensional elasticity theory, if we
want to solve the stress equations with no density of
force, namely:

810’114-820'21 =0 s 81012+82022 =0

we may use the first PD equation to get:

Jo , ot =0 , o*=-0p
and the second PD equation to get:

Jp, o2 =—8hp , o2 =0
Now, o2 =02l =3¢, p=0p , Y=01¢

and we finally get the generic parametrization by the
Airy function:

o'l = 0229 o'’ =0 = —012¢ o”? = O o
The reader will have noticed that such a specific com-
putation cannot be extended in general, even to 3-
dimensional elasticity theory.

In 1970 J. Wheeler asked a similar question for Ein-

stein equations in vacuum and we present the linearized
version of this problem.
Indeed, if w = (dz')? + (dz?)? + (dz3)? — (dz*)? with
z* = ct, where c is the speed of light, is the Minkowski
metric of space-time, we may consider a perturbation
Q of w and the linearized Einstein equations in vacuum
become equivalent to the following second order system
with 10 equations for 10 unknowns:

wrs(dijgrs + drsQij - driQsj - dszri)
—wij(WrPW"dy s Qyy — W WV dr s Qyp) =0

Surprisingly, till we gave the (negative) answer in 1995
[15], such a problem had never been solved before.
More generally, if one considers a system of the form
Din = 0, the question is to know whether one can
parametrize or not the solution space by D¢ = g
with arbitrary potential-like functions &, in such a way
that Din = 0 just generates the compatibility condi-
tions of the parametrization. The problem of multiple
parametrizations may also be considered, as an inverse
to the construction of differential sequences. For exam-
ple, in vector calculus, the div operator is parametrized
by the curl operator which is itself parametrized by the
grad operator (See [4,10,14] for more details).



Problem 3: When M is an A-module, there is a
canonical morphism € = ey : M — M** given by
e(m)(f) = f(m),Ym € M,Vf € M* and M is said to be
torsionless if € is injective and reflexive if € is bijective.
Any finitely projective module is reflexive but a reflexive
module may not be projective. We have t(M) C ker(e)
because, if m € M is a torsion element for a # 0, then
af(m) = f(am) = f(0) = 0 = f(m) = 0,Yf € M* as
before and ¢ fails to be injective. Hence, it just remains
to study whether this inclusion is strict or not.

The striking result of this lecture is to prove that
THESE THREE PROBLEMS ARE IDENTICAL !

4 PROBLEM SOLUTION

The main but highly not evident trick will be to intro-
duce the adjoint operator D = ad(D) by the formula of
integration by part:

<\, DE >=< DX, & > +div( )

where X is a test row vector and <> denotes the usual
contraction. The adjoint can also be defined formally, as
in computer algebra packages, by setting ad(a) = a,Va €
K,ad(d;) = —d;,ad(PQ) = ad(Q)ad(P),YP,Q € D.
Denoting by N the differential module defined from
ad(D) exactly like M was defined from D, we have
[4,10,14,15,20]:

Theorem: The following statements are equivalent:

e A control system is controllable.

e The corresponding operator is simply (doubly)
parametrizable.

e The corresponding module is torsion-free (reflexive).

Proof: Let us start with a free presentation of M:

LY B s M—0

By definition, we have M = coker(d;) = N =
coker(df) and we may exhibit the following free reso-
lution of N:

*

dy ds d*
0¢— N+ F} <~ F} +> F*, « F*,

where M* = ker(d}) = im(d) ~ coker(d*,). The

deleted sequence is:
* dT * ds * dil *
O0¢— F «— Fy «— F*| <— F*,

Applying hom 4 (e, A) and using the canonical isomor-
phism F** ~ F for any free module F', we get the se-
quence:

0—Fm-Y% B 2 p, S3F,
{ )
M = M*
{ )
0 0

Denoting as usual a coboundary space by B, a cocy-
cle space by Z and the corresponding cohomology by
H = 7/B, we get the commutative and exact diagram:

00— By — Fp — M —0
+ I Le
00— Zy — Fp — M*

An easy chase provides at once Hy = Zy/By =
exty (N, A) ~ ker(e). It follows that ker(e) is a tor-
sion module and, as we already know that t(M) C
ker(e) C M, we finally obtain t(M) = ker(e). Also,
as B_; = im(e) and Z_y ~ M** we obtain H_; =
Z_1/B_1 = ext}(N,A) ~ coker(e). Accordingly, a
torsion-free (reflexive) module is described by an opera-
tor that admits a single (double) step parametrization.
Q.ED.

This proof also provides an effective test for appli-
cations by using D and ad instead of A and x in the
differential framework. In particular, a control system
is controllable if it does not admit any “autonomous
element”, that is to say any finite linear combination of
the control variables and their derivatives that satisfies,
for itself, at least one OD or PD equation. More pre-
cisely, starting with the control system described by an
operator Dy, one MUST construct D; and then D such
that D generates all the compatibility conditions of D;.
Finally, M is torsion-free if and only if D; generates all
the compatibility conditions of D. Though striking it
could be, this is the true generalization of the standard
Kalman test.

Example: If D; : (o't 02 = 02,0%?) — (O10'! +
002t 0101 + 020%%) is the stress operator, then
Dy : (6,8 = (1€ = e11,3(018% + 0s€Y) = enz =
€91,0€% = €22) is half of the Killing operator. The
only compatibility condition for the strain tensor e is
256 =0 & 011629 + Oane11 — 2012612 = 0 and D describes
the Airy parametrization.

Of course, keeping the same module M but changing
its presentation or even using an isomorphic module M’
(2 OD equations of order 2 or 4 OD equations of order
1 as in the case of the double pendulum), then N may
change to N'. The following result, totally unaccessi-
ble to intuition, justifies “a posteriori’ the use of the
extension functor by proving that the above results are
unchanged and are thus “intrinsic” [15,17].

Theorem: N and N’ are projectively equivalent, that
is to say one can find projective modules P and P’ such
that N@& P~ N'® P'.

Proof: According to Schanuel lemma, we can always
suppose, with no loss of generality, that the resolution



of M projects onto the resolution of M'. The kernel se-
quence is a splitting sequence made up with projective
modules because the kernel of the projection of F; onto
F] is a projective module P; for i = 0,1. Such a prop-
erty still holds when applying duality. Hence, if C is the
kernel of the epimorphism from P; to Py induced by d;,
then C is a projective module, C* is also a projective
module and we obtain N ~ N’ & C*.
Q.E.D.

Accordingly, using the properties of the extension
functor, we get:
Corollary: ext!,(N, A) ~ ext',(N', A) Vi> 1.

We finally apply these results in order to solve the
three preceding problems.

Solution 1: As the operator D of the control system is
surjective, it follows that the map d; of the presentation
is injective. When K = R and n = 1, then D can be
identified with a polynomial ring in one indeterminate
and is therefore a principal ideal domain (any ideal can
be generated by a single polynomial). In this case, it is
well known [1,18] that any torsion-free module is indeed
free and thus projective. The short exact sequence of the
presentation splits, with a similar comment for its dual
sequence. Accordingly, M is torsion-free if and only if
N =0 and it just remains to prove that D is injective.
We have to solve the system:

r — 5\1 + 3\2 =0
01 — l1->-\1 + g>\1 =0
02 — l2A2 + gA2 =0

Multiplying the second OD equation by I3, the third by
l; and adding them while taking into account the first
OD equation, we get:

loA1 + 1122 =0

Differentiating this OD equation twice while using the
second and third OD equations, we get:

(I /1A + (11 /1) A2 + 0

The determinant of this linear system for A\; and X, is
just I; — I5, hence the system is controllable if and only
if Iy # Is.

Conversely, if [y = o = [, the corresponding module
has torsion elements. In particular, setting 6 = 6; — 6,
and substracting the second dynamic equation from the
first, we get 16 + g# = 0. Hence 6 is a torsion element
which is solution of an autonomous OD equation, that
is an OD equation for itself which cannot therefore be
“controlled” by any means.

Solution 2: After a short computation left to the reader
as an exercise, one checks easily that the Einstein opera-
tor is self-adjoint because the 6 terms are just exchanged
between themselves. Then, it is well known that the
compatibility condition is made by the standard diver-
gence operator and its adjoint is the Killing operator
(Lie derivative of the Minkowski metric) which admits
the linearized Riemann curvature (20 PD equations) as
compatibility conditions and not the Einstein equations
(10 PD equations only). Hence, the Einstein operator
cannot be parametrizable and it follows that Einstein
equations cannot be any longer considered as field equa-
tions (For a computer algebra solution, see [21]).

Solution 3: It has already been provided by the pre-
ceding theorems.

Remark: Writing a Kalman type system in the form
—& 4+ Az + Bu = 0 and multiplying on the left by a
test row vector A, the kernel of the adjoint operator is
defined by the system:

A+ A4 =0, AB =0

Differentiating the second equations, we get:
AB=0= A MB=0= \’B=0= ...

and we discover that the Kalman criterion just amounts
to the injectivity of the adjoint operator. Hence, in
any case, controllability only depends on formal inte-
grability. Comparing with the Motivating Examples,
we notice that, when a constant coefficient operator is
injective, the fact that we can find differentially inde-
pendent compatibility conditions is equivalent to the
Quillen-Suslin theorem saying roughly that a projec-
tive module over a polynomial ring is indeed free (See
[5,18] for details). More generally, by duality we ob-
tain at once t(M) ~ exty (N, A) & t(N) ~ extl (M, A)
and this result is coherent with the introduction of this
lecture provided we say that a control system is “ob-
servable” if ext! (M, A) = 0.

5 CONCLUSION

We hope to have convinced the reader that the results
presented are striking enough to open a wide future for
applications of computer algebra. The systematic use
of the adjoint operator has allowed to relate together
results as far from each other as the Quillen-Suslin the-
orem in module theory and the controllability criterion
in control theory. A similar criterion for projective mod-
ules does exist and relies on the possibility to have finite
length differential sequences [14,15]. We believe that
the corresponding symbolic packages will be available
in a short time. It will thus become possible to classify
(differential) modules, having in mind that such a clas-
sification always describes hidden but deep concepts in
the range of applications.
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