
The JMS message processing using the Java Connector Architecture 1.5

BEOM-SU SEO0, SEUNG-WOOG JUNG, SUNG-HOON KIM, JOONG-BAE KIM
Internet Computing Department

Electronics and Telecommunications Research Institute
161 Gajeong-dong, Yuseong-gu, Deajeon, 305-350, SOUTH KOREA

Abstract: - The JCA(Java Connector Architecture) 1.5 is the specification for integrating a J2EE application server
with legacy systems such as DBMS, ERP, JMS, etc. Speaking of a message system, the EJB 2.0 recommending
JCA 1.0 supported only the JMS system, but in the EJB 2.1 with JCA 1.5 many kinds of message systems are able
to be integrated by virtue of the work management contract and the message inflow contract of the JCA 1.5. An
application server performs special works on behalf of a resource adapter like communicating a network endpoint
or monitoring a socket port to intercept an incoming message. In this paper, I briefly introduce what the JCA 1.5 is
and discuss how to process JMS messages using the JCA 1.5 with the implementation of the work management
contracts and the message inflow contract

Key-Words: - JCA, EJB, JMS, J2EE

1 Introduction

The JCA(Java Connector Architecture)[4,5] pro-
vides the formal method to integrate J2EE[1]
compatible application servers with EIS(Enterprise
Information System)s such as DBMS, ERP, message
service, etc. The JCA is a direct method using API. As
a result, it is not for inter-enterprise integration but for
intra-legacy integration which should be merged in an
enterprise for instance.

Basically, the JCA 1.0[4] provides the API sets for
a J2EE application server to communicate with legacy
systems using three kinds of contracts. First, it
provides the APIs for the connection management
contract to determine how to get the connection from
data source. Secondly, it defines the security
management contract to access a connection in secure
manner along with the connection management
contract. Finally it presents the transaction
management contract to guarantee the ACID
properties of a transaction using JTA[6].

The next version, JCA 1.5[5], had been proposed
as final draft so that it was released in January, 2004.
In the JCA 1.5, many new aspects are added such as
the resource adapter(the object that takes the
responsibility for legacy systems) life cycle
management contract, the work management contract
with which an application server can pool threads and
assign a thread for executing specific works a resource
adapter submits. And the message inflow contract is
proposed to process incoming messages from external
message provider. The EJB 2.0[2] limited a message

provider to the JMS(Java Message Service)[7] for a
message driven bean to be a consumer only for the
JMS. With this contract, the EJB 2.1[3] provides
message provider pluggability that means any types of
message providers(mail, socket, etc.) can be plugged
in an application server in a same manner.

The JCA 1.5 categorizes these contracts into
outbound and inbound communication contracts. The
outbound communication contracts include the
connection, the security and the transaction
management contract. On the other hand, if a message
provider sends a message to a specific JMS queue or
topic, a listener accepts the message and passes it to a
message bean container located in an application
server. The inbound communication contracts treat
this process and define the required environments. The
resource manager of an application server creates a
resource adapter and initiates the inbound/outbound
communication facilities with the BootstrapConext
object which includes the WorkManager reference for
the work management contract. An application server
manages the resource adapter’s lifecycle calling
start(BootstarpContext) and stop() methods.

A resource adapter can try to monitor a specific
network port or control an application’s resources
using a thread. But it could be very dangerous for an
application server to abdicate a thread control to a
resource adapter actually provided by external
resource adapter vendors. And it could not be an
efficient and effective way to manage system
resources. So, if a resource adapter wants to do a job

using a thread, it should create a work to access the
system resources and submit the work to the
WorkManager in an application server. Then the
application server chooses a thread for executing the
work to let the resource adapter avoid creating new
thread. This is the main purpose of the work
management contract.

Using this work mechanism, the message inflow
contract can be implemented. The resource adapter
creates the work for eventually listening specific a
topic or queue described in the resource adapter
deployment descriptor. The application server chooses
a thread to process the work. If a message client sends
a message, the work receives the message and
delegates it to the proper message container which
selects a message bean instance and calls the bean’s
method with the received message.

There is another important contract I’ve not
mentioned; the transaction inflow contract. According
to this contract, a resource adapter starts a transaction
and propagates it with a message into an application
server. The application server acts like one of
participant of 2PC protocol. The resource adapter has
to provide a XAResource and be able to convert a
transaction context into that of the application server.
But in this paper, I don’t talk about the transaction
inflow contract in this paper.

I discuss the implementation of the work man-
agement contract and the message inflow contract to
process a JMS message in the following sections.

2. The lifecycle management contract

This contract defines the interface to create and
remove a resource adapter. Using this contract, an
application server can manage the lifecycle of a
resource adapter. An application server creates an
resource adapter instance and calls its
start(BootstrapContext) and stop() method to control
it. Calling start(BootstrapContext) method, it delivers
an BootstrapContext object for the resource adapter to
access a WorkManager to submit specific jobs to an
application server. An resource adapter may initialize
its own local objects or variables in
start(BootstrapContext) method and finalize these
objects in stop() method

.

3. The implementation of the work
management contract

A resource adapter can use threads to wait data
incoming through a specific network endpoint or
communicate other network peer. The JCA 1.5
provides the work management contract with which an
application server can allocate threads for a resource
adapter and manage them.

There are three types of methods related with a
work submission depending on whether a resource
adapter waits or not.
(1) doWork() method : A resource adapter has to wait

until an application server completes the work.
(2) startWork() method : A resource adapter waits just

until an application starts the work. The start point
means that the application server selects a thread
and assigns the work to it but doesn’t call the
work’s run() method. In a run() method, the work
can do its own job.

(3) scheduleWork() method : A resource adapter
waits just unit an application server accepts the
work. The accept point means that an application
server selects a thread but doesn’t assign the work
to the thread. An application server just selects the
work from the work queue for processing.
Fig 1 shows the detail process about the creation of

the work manager in our implementation. The work
manager creates thread pools to store the Work-
Threads. It also creates the WorkDispatcher and the
WorkQueue to keep a submitted work. The
WorkDispatcher dispatches a work in the WorkQueue
monitoring the queue.

Fig 1. The initialization of the
WorkManager

After the resource adapter submits a work using

WorkManager’s methods, the work manager wraps it
with an InternalWork and then puts the InternalWork
into the WorkQueue. In each object, local variables of

WorkManager WorkQueue
5. create

WorkDispatcher

(implement WorkQueueListener)

4. create

6. listen

ThreadPoolManager

1. create (Singleton)

ThreadPool

ThreadPool

ThreadPool

2. create

hashas 3. create

WorkThread

an InternalWork are used to keep the status and the
time for submission, rejection, acceptance and
completion. The WorkThread changes the status and
the WorkManager uses the changed status to suspend
or resume the main thread. To execute the work,
(1) A resource adapter submits a Work to the

WorkManager in a BootstrapContext object.
(2) The WorkManager wraps the Work with an

InternalWork.
(3) The WorkManager puts the InternalWork into the

WorkQueue.
(4) The WorkQueue sets the acceptance time of the

InternalWork and informs the acceptance to the
resource adapter using WorkListener provided
with a submission method parameter.

(5) The WorkQueue notifies the arrival of the new
work to the WorkDispatcher which monitors the
WorkQueue.

(6) The WorkDispatcher gets a new WorkThread
from a ThreadPool.

(7) The WorkDispatcher gets the submitted
InternalWork and assign it to the WorkThread. Fig
2 describes this process

Fig 2. Work submission and thread allocation

(8) Along with three types of methods, the
WorkManager is blocked and waits for other
thread’s notify() method on the IntrenalWork. If
an InternalWork isn’t allocated, WorkThread is
blocked.

(9) After the InternalWork is allocated, the run()
method of the WorkThread is started to execute.

(10) In the run() method, the WorkThread may
send a start notification using WorkListener to the
resource adapter. And it calculates the submission
time and start time to determine whether the work

started within a given time the resource adapter
specified as a submission method parameter or
not.

(11) The WorkThread wakes up the WorkManager
blocked in the submission methods on the
InternalWork.wait() method to resume the main
thread calling the InternalWork.notify() method.

(12) The WorkThread calls the run() method of the
original Work to execute a work the resource
adapter wants to do.

(13) After the work completion, the WorkThread
may send the completion notification using
WorkListener to the resource adapter with a
WorkEvent object.

(14) The WorkThread nullifies the internalWork
and pushes itself into the ThreadPool.

(15) The ThreadPool waits another request.

4. The JMS message processing

The inbound resource adapter is responsible for
receiving a message, checking its type and doing other
jobs like transaction process or delegating it to the
container. A message resource adapter submits the
work which monitors the specific message
destination(JMS topic or queue, socket port) and
message clients send a message to the destination.
Then the work receives it and processes it using a
special object; so called MessageEndpoint. Although a
message driven bean finally processes a message, a
MessageEndpoint intercepts a message to do
transaction related jobs or user defined jobs. A
MessageEndpoint object is an application server side
proxy equivalent to a message driven bean existed in a
message driven container. A resource adapter has to
provide an environment object; i.e. ActivationSpec.
An application server creates a message driven
container and activates a message endpoint using an
ActivationSpec to verify configured information
provided in the deployment descriptor of a message
driven container. After each container is created and
applications are deployed, the resource manager
located in an application server creates a Mes-
sageEndpointFactoty which is responsible for creating
a message endpoint(i.e. a proxy) object and an
ActivationSpec object. The resource manager
demands the resource adapter to activate an endpoint.
Fig 3 depicts this process. In this paper, even though I
explain the implementation of the message inflow
contract in case of the JMS message, but similar
structure could be adapted in other message types. A

ResourceAdapter WorkManager

InternalWork

1.submit

2.create

WorkQueue

3. put work

4

WorkDispatcher

5.itemPushed

WorkThreadPool

6. get

WorkThread

7

8.get

InternalWork

9

10.setWork(internalWork)

11

message container doesn’t have any specific
information but only does take from an Activation-
Spec and a deployment descriptor including a message
type itself. Because even a message type is decided
dynamically in the execution time, any types of
message could be possible in EJB 2.1.

Fig 3. Initialization of the Inbound Resource
Adapter

4.1 JMS MessageEndpointActivationWork

submission
After receiving an activation request in fig 3, a

resource adapter creates the work to listen a message
destination and submits it to the WorkManager of an
application server. In our implementation, the
JMSEndpointActivationWork takes charge of
receiving a message. If developers try to adapt other
message type, they have to write their own work to
handle other message type.

4.2 JMS message reception

The JMSEndpointActivationWork internally
creates javax.jms.MessageListener implementation
object and registers it to a TopicSubscriber or
QueueReceiver object monitoring a topic or queue. At
this point, an ActivationSpec object and the
deployment descriptor xml provide lots of information
for a MessageListener object to receive a message
such as JMS destination name, message selector,
acknowledge mode, durability and transacted value,
etc. Fig 4 describes the creation of a message listener
that a TopicSubscriber or QueueReceiver has. If
TopicSubscriber or QueueReceiver receives a
message, it calls the listener’s onMessage() method to
delegate the message

Fig 4. JMS message listening

4.3 JMS message processing

If the MessageListenerImpl object in fig 4 receives
a message, it calls the JMSEndpointActivation-
Work.invok() method with the message. Then, the
JMSEndpointActivationWork requests a message
endpoint object calling the createEndpoint() method
of MessageEndpointFactory set by the resource
adapter in the initialization step. The message end-
point object is a proxy object which could be cast as a
message listener type that the resource adapter has to
support (javax.jms.MessageListener in this implemen-
tation) and javax.resource.spi.endpoint.MessageEnd-
point interface. In case of a container managed
transaction, a message could be processed within a
transaction to execute the whole processing as a part of
the transaction. To participate in the transaction, the
resource adapter should provide a XAResource object
that the message endpoint proxy would enlist within
the transaction. In a transaction commit or rollback
phase, the XAResource would be used to commit or
rollback the transaction using 2PC protocol. Speaking
of intervention of a message delivery, the JCA 1.5
suggests two options shown fig 5 and fig 6.

In option A, an application server takes control
over a transaction so that there is no room for a
resource adapter to intervene in the middle of message
delegation. In option B, on the other hand, a resource
adapter can intercept a message before delegation to
do some jobs calling beforeDelivery() method and
finalize the delivery calling afterDelivery() method of
the MessageEndpoint interface. It means that a
resource adapter can control the transaction scope,
which gives more flexibility to a resource adapter and
an application server. The proxy must have listener’s
methods(in case of JMS, the listener method is
onMessage() defined in javax.jms.MessageListener

EJB21ResourceManagerImplDeployer

ResourceAdapter

as : ActivationSpec

mef : MessageEndpointFactory

1. initInboundResourceAdapter

2.create

3.create

4.endpointActivation(mef, as)

JMSEndpointActivationWork

TopicSubscriber/QueueReceiver

JMSMessageListener

2. create

MessageListenerImpl
5. has

3.create

4.setMessageListener

Topic

Queue

listen

1.create

interface) for option A, and MessageEndpoint
methods (beforeDelivery() and afterDelivery()
methods) for option B. In fact, because a message
listener type written in the deploy descriptor xml is
determined in an execution time, to support option A
and B, an application server should provide a static
code implementing a special listener and Mes-
sageEndpoint interface in compile time or create a
dynamic code(i.e. dynamic proxy) in execution time.

Fig 5. Transacted message delivery : Option A

Fig 6. Transacted message delivery : Option B

For the purpose of a dynamic proxy, Java provides

some reflection methods like java.lang.reflect.Proxy
and java.lang.reflect.InvocatonHandler. A proxy ob-
ject is created using Proxy.newInstance(ClassLoader,

Class[], InvocationHandler). The Class[] array con-
tains MessageEndpoint.class and javax.jms.Message-
Listener.class in this implementation. The latter may
be changed depending on a message provider type.
Every method call of MessageEndpoint and
MessageListener interface over the created proxy is
delivered to InvocationHandler.invoke(proxy, method,
args) method. In option B, beforeDelivery() and
afterDelivery() of a MessageEndpoint could be called
compared with the method parameter. In case of
MessageListener method, the invocation handler
delegates the call to the JMSInvocationHandler that
delivers a message to a message driven container. The
JMSEndpointActivationWork requests a proxy object
to the MessageEndpointFactory and casts it with
MessageEndpoint or MessageListener depending on
the proper option. Fig 7 shows a part of the
JMSEndpointActivationWork how to cast and call
methods depending on the options

Fig 7. JMSEndpointAtcivationWork

Fig 8 describes the message delivery. The
MessageEndpointInvoker is the implementation
object of InvocationHandler interface. The
MessageEndpointFactory’s createEndpoint() method
creates a proxy instance with a message listener class
and a MessageEndpoint class.
(1) A client sends a message to a topic or queue.
(2) A message listener receives the message
(3) The listener delivers it to a JMSEndpointActiva-

tionWork calling invoke() method.
(4) The JMSEndpointActivationWork requests a

message endpoint proxy to a MessageEndpoint-
Factory.

(5) The MessageEndpointFactory creates a
MessageEndpoint proxy with MessageLis-

public invoke(Method method, Object[] args) {
…
MessageListener ep = (MessageListener)
msgEpFactory.
 createEndpoint(xaResource);
if (optionA)

 ep.onMessage((Message) args[0]);
else { // option B
((MessageEndpoint)ep).beforeDelivery(method);

 ep.onMessage((Message) args[0]);
 ((MessageEndpoint)ep).afterDelivery();
…
}

tener.class and MessageEndpoint.class as
parameters of Proxy’s newInstance() method. An
ActivationSpec from a xml descriptor provides a
listener interface for the proxy so that a dynamic
proxy creation would be possible.

(6) Actually, the MesssageEndpointFactory creates a
MessageEndpointInvoker as a invocation handler
to intercept every method of the listener and the
MessageEndpoint interface on its invoke()
method.

(7) The JMSEndpointActivationWork calls
beforeDeliver()(afterDelivery()) or listener’s
method(onMessage() in JMS) depending on the
option.

(8) The MessageEndpointInvoker, an actual
invocation handler, delivers the message to a
JMSInvocationHandler which has a reference
about a message driven container. In fact, in the
implementation of the EJB 2.0, the JMSInvoca-
tionHandler receives directly a message from a
message listener and delegates it to a message
driven container.

(9) The JMSInvocationHandler calls a message
driven container and the message driven container
selects a message bean from a pool to process the
incoming message.

\

Fig 8. Message Delivery

5. Conclusion

The JCA1.5 is resource integration contracts
within the EJB 2.1 proposed by SUN, which is
supported by many major companies such as IBM,

Oracle, BEA, HP, Fujitsu, SAP and so on. It
re-categorizes the three contracts in JCA
1.0(connection, security, transaction management
contract) as outbound communication contracts and
defines inbound communication contracts with
message inflow contract, transaction inflow contracts.
To give a thread execution to a resource adapter and
control a resource adapter, it provides the work
management and the lifecycle contract.

If a resource adapter tries to wait a message from a
destination, JCA 1.5 enables an application server to
allocate a thread for a work on behalf of a resource
adapter and execute the work to receive a message. In
this paper, I introduced the implementation of the
work management contract and the message inflow
contract focused on JMS. I didn’t discuss the
transaction inflow contract which will be implemented
in the near future.

References :
[1] JavaTM 2 Platform Enterprise Edition

Specification, v1.4 Public Draft, SUN Microsys-
tems, July 15, 2002

[2] Linda G. Demichiel, "Enterprise Javabeans
Specification, Version 2.0," Sun Microsystems,
2001

[3] Linda G. Demichiel, "Enterprise Javabeans
Specification, Version 2.1," Proposed Final Draft,
Sun Microsystems, 2002

[4] J2EE Connector Architecture, Final Release
version 1.0, Sun Microsystems, 2001

[5] J2EE Connector Architecture, version 1.5
Proposed Final Draft 2, Sun Microsystems, 2002

[6] Susan Cheung, "Java Transaction API (JTA)
Version 1.0.1," Sun Microsystems, 1999

[7] Java Message Service Specification, version 1.1,
April 12, 2002

Client Topic/Queue MessageListenerImpl

JMSEndpointActivationWork

MessageEndpointFactory

javax.lang.reflect.Proxy

javax.lang.reflect.InvocationHandler
javax.jms.MessageListener

Javax.resource.spi.endpoint.

MessageEndpoint

MessageEndpointInvoker

JMSInvocationHandler

Message Container

ActivationSpec
MBean

1. send msg 2

3.invoke(msg)

4.createEndpoint()

5.newInstance()

6

implements

7. (beforeDelivery())

onMessage(msg)

(afterDelivery())
8 9

10Class[]

