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Abstract: This paper introduces a new method for fuzzy modeling based on set of input-output data pairs. The 
method consists of a sequence of steps aiming towards developing a Sugeno-type fuzzy model of optimal 
structure. In the first place, the algorithm uses the fuzzy c-means to classify all the input training data vectors 
into a predefined number of clusters. The centers of these clusters are further processed by using optimal fuzzy 
clustering, which is based on the weighted fuzzy c-means algorithm. The resulted optimal fuzzy partition 
defines the number of fuzzy rules and provides an initial estimation for the system parameters, which are 
further tuned using the gradient-descend algorithm. The proposed method is successfully applied to a time 
series prediction problem, where its performance is compared to the performances of other methods found in 
the literature. 
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1. Introduction 
Fuzzy model identification consists of structure 
identification and parameter estimation [1,2]. 
Usually, the structure identification is concerned with 
the determination of the appropriate number of fuzzy 
rules. Fuzzy model identification is carried out via a 
training process. One of the most common 
approaches to train fuzzy systems is the use of fuzzy 
clustering analysis. Many authors [3,4] use clustering 
analysis to detect clusters in the product space and 
then induce fuzzy partitions in the input space by 
cluster projections. Kroll [5] employs clustering 
analysis to generate multidimensional reference 
fuzzy areas and then obtains a fuzzy model, with 
reduced number of parameters, by using a specific 
performance measure. Hirota et al [6] developed an 
algorithm that produces clusters in the mapping 
space, where the nature of the functional 
relationships is incorporated into a minimization 
procedure of an efficient objective function. Also, the 
use of hyper-ellipsoidal clusters [7] has been proven 
to be very efficient.  
In most of the above clustering approaches, the 
algorithms are randomly initialized many times in 
order to obtain a desired local minimum. However, 
random initialization may give sub-optimal results. 
Therefore, the development of clustering algorithms 
that depend less on initialization is of main 
importance. To accomplish this, Wang [8] used 
nearest neighbor clustering. However, the final fuzzy 
partition that is produced by this approach may not 

correspond to the optimal fuzzy partition, which is 
directly related to the real data structure. One feasible 
way to accommodate nearest neighbor search is to 
perform cluster merging [9]. However, neither this 
approach will guarantee the optimal fuzzy partition. 
To solve this problem Linkens and Chen [10] 
developed a two-level algorithm, where in the first 
level a competitive scheme produces an initial 
number of clusters, while in the second level the 
centers of these clusters are further clustered using 
the fuzzy c-means method. The application of fuzzy 
c-means assumes that the cluster centers, taken from 
the first level, are of equal significance. However, 
this may not be true since two different initial clusters 
may contain different number of elements and 
therefore their variances are different, meaning that 
their significances with respect to the final partition 
are different. Thus, the optimal fuzzy partition of the 
original data set may still not be obtained. 
In this paper we propose a two-level optimal fuzzy-
clustering scheme to solve the aforementioned 
problems. In the first place, the algorithm utilizes the 
fuzzy c-means method to produce an initial fuzzy 
partition of the input space by dismembering it into a 
predefined number of clusters. Then, the resulted 
cluster centers are further clustered by means of 
optimal fuzzy clustering. This is achieved by using 
the weighted fuzzy c-means [11] since, as mentioned 
previously, the significance of each cluster center 
should depend on the variance of that cluster. Finally, 
in order  to  carry out  the optimal fuzzy clustering we 
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 employ the Xie-Beni validity index. 
  
2. Sugeno-Type Fuzzy Model 
In [2], Sugeno and Yasukawa developed a fuzzy 
model, which is described by the following fuzzy 
rules, 
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where  c  is  the  total number of  rules,  p  is the 
number of inputs, and and  Ω  are fuzzy sets. In 

this paper, the fuzzy sets  are 

of bell-typed shapes. Setting , 
the output of the model is determined as follows, 

iB

Ω

i
j

1 i≤

[=x

)1;( pjci
j ≤≤≤

pxxx ...,,, 21
T]

 

∑

∑

=

== c

i

i

c

i

ii b
y

1

1

)(

)(
~

x

x

ω

ω
                                                      (2) 

 
where { } cipjx j

i
jj

i ≤≤≤≤= 1,1,)(Ωmin)(xω    (3) 

and  cidyyBdyyyB iii ≤≤= ∫∫ 1,)()(b          (4) 
                               
From eq. (4) we notice that the inference mechanism 
“understands” the consequents as fuzzy singletons. 
The presence of fuzzy singletons in the consequent 
part of each rule requires a simpler identification 
procedure than other approaches [1]. 
   
3. The Proposed Method 
This section describes the proposed algorithm. The 
algorithm consists of 4 steps, which are briefly 
described next. 
In the first step, the algorithm applies the fuzzy c-
means to the available input training data vectors, by 
employing a significantly large number of clusters. 
In the second step, the determination of the 
appropriate number of fuzzy rules takes place. More 
specifically, the cluster centers obtained in the 
previous step are considered as a new data set, which 
is further clustered by means of optimal fuzzy 
clustering. To accomplish this, the algorithm uses the 
weighted fuzzy c-means [11], where the weight of 
significance for each cluster center is taken into 
account. Then, the optimal fuzzy clustering is carried 
out by using the Xie-Beni validity index. The 
implementation of the optimal fuzzy clustering 
requires a large number of clusters in the first step, 
since otherwise the resulted optimal fuzzy partition 
will not be a credible one.  

In the third step, the fuzzy covariance matrix and the 
final cluster centers are used to initialize the fuzzy set 
parameters in the premise part of each fuzzy rule. 
Moreover, an initial estimation of the consequent 
parameters is obtained by a using the orthogonal least 
squares algorithm [12]. 
Finally, in the last step, the premise and consequent 
model parameters are fine tuned by employing a 
gradient descent based approach.     
The four steps of the algorithm are analyzed in details 
within the following subsections. 
 
3.1 Initialization of the Input Space Fuzzy   
      Partition (Step 1) 
One of the most widely used fuzzy clustering 
algorithms is the well-known fuzzy c-means method. 
Let  be a set of  N unlabeled 

feature data vectors with , and n 
 be the number of fuzzy clusters defined 

in X. Given that the membership degree of the data 
vector x
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k to the i-th cluster (  is denoted as 
, the objective of the fuzzy c-means is to 

minimize the following function, 
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under the next equality constraint, 
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where  is a factor to adjust the 

membership degree weighting effect, and  the 
center of the i-th cluster. The cluster centers and the 
respective membership functions that solve the above 
constrained optimization problem are given by the 
following equations [11], 
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Equations (7) and (8) constitute an iterative 
optimization procedure. 



3.2 Optimization of the Input Space Fuzzy     
       Partition (Step 2) 
This step performs the structure identification of the 
fuzzy model, where the appropriate number of rules 
is determined. More specifically, the cluster centers 

, generated in the previous step, will be 
further clustered by using optimal fuzzy clustering. 
Since these data have been determined by applying 
the fuzzy c-means, each of them should weight 
differently with respect to the final fuzzy partition. 
The reason is that one of these data, say , may 
correspond to a cluster that contains many more 
elements from the original data set than the rest of 
the clusters, and therefore its contribution to the final 
partition should be greater. In order to solve this 
problem, we use the weighted fuzzy c-means method 
[11]. In our case, the objective function for the 
weighted fuzzy c-means is given as, 
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where n is the number of the cluster centers 
generated in the previous step, c is the number of 
clusters that constitute the final fuzzy partition (i.e. 
the number of rules),  is a parameter to 
adjust the membership degree weighting effect, w

),1( ∞∈a
k is 

the weight of significance that is assigned to the data 
vector , vkυ i ) are the cluster centers of the 
final fuzzy partition, and u

1( ci ≤≤
ik is the membership 

degree of υ  to the vk i. Since the k-th vector υ  
corresponds to a cluster of the original data set, we 
introduce the following procedure to determine the 
respective weight, 
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where  is given in eq. (8). Then, the weight wkjµ k is 
defined as follows, 
 

∑
=

= n

i
i

k
kw

1
ρ

ρ
                                                             (11) 

 
The optimization problem is to minimize the 
objective function in (9) under the following equality 
constraint, 
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The final cluster centers and the respective 
membership functions that solve the above 
constrained optimization problem are given by the 
following equations [11], 
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Equations (13) and (14) constitute an iterative 
optimization procedure, which is known as the 
weighted fuzzy c-means algorithm [11].  
Optimal fuzzy clustering concerns the estimation of 
the number of clusters that yields a fuzzy partition, in 
which data belonging to the same cluster are as 
similar as possible. Despite the fact that both the 
fuzzy c-means and the weighted fuzzy c-means are 
able to detect similarities within a data set, they 
cannot perform optimal fuzzy clustering because they 
require an a-priori knowledge of the number of 
clusters. Therefore, a convenient way to exhibit 
optimal fuzzy clustering is to develop a reliable index 
(i.e. function) to accompany the objective function in 
(9), in order to obtain the best possible clustering 
results. In this section, we use the well-known Xie-
Beni index [13], which for the weighted fuzzy c-
means is calculated as follows, 
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The optimum number of clusters using the above 
index is the one that corresponds to its lowest value. 
 
3.3 Model Parameter Initialization (Step 3)  
As mentioned in section 2, the fuzzy model in (1) 
uses bell-typed fuzzy sets in the premise part of each 
fuzzy rule, which are described as follows,   
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The fuzzy set centers are 
obtained by projecting the final cluster centers v
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(i=1, 2, …, c) on each axe. In order to calculate the 
standard deviations ( , we use the fuzzy 
covariance matrix,  
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Then, the standard deviation for each fuzzy set is 
given as follows, 
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After the premise parameters of relation (1) have 
been initialized, we can expand the output of the 
model, given in eq. (2), into the following fuzzy basis 
functions (FBFs) form, 
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For the N input-output data pairs of the form (xk; yk) 
(k=1, 2, …, N), the consequent parameters are 
obtained via an optimization procedure. In order to 
do this, we employ the following regression model, 
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above relations e is the error vector. In order to solve 
(21) we use the orthogonal least squares (OLS) 
approach proposed in [12], which is described by the 
next algorithm, 
 
Orthogonal Least Squares 
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Step3)  Solve the triangular system:   gbA =
             where,   
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3.4 Parameter Tuning (Step 4) 
In this step the system parameters obtained in the 
previous section are further tuned using the well-
known gradient descent algorithm. The objective 
function that is used for this purpose is, 
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where is given in eq. (19). By applying the 
gradient descent method to minimize J

ky~

1, the premise 
parameters of the fuzzy model can be precisely 
adjusted by using the following learning rules, 
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The partial derivatives in the above equations can be  
easily calculated by using the eqs (3) and (16).  
Relationally, for the consequent parameters the 
learning formula should be, 
 

( )[ ] ipyy
N

b
N

k
k

i
kk

i ∀−= ∑
=1

3 )(~ x
β

∆               (25) 



In the above equations the parameters  
are the learning rates for the gradient descent.  

3βββ  and, 21

 
4. Simulation Experiments 
In this subsection we use the proposed modeling 
scheme to predict the Mackey-Glass time series, 
which is generated by the following time-delay 
differential equation, 
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When the parameter τ is large enough, the system 
appears a chaotic behavior. In our simulations we set 
τ=17 and generated a sample of 1000 points, which 
are drawn in Fig. 1. The first 500 points were used to 
build the fuzzy model, and the last 500 points as test 
data to validate its performance. The proposed 
algorithm was applied to build a model with 4 inputs: 
x(k-18), x(k-12), x(k-6) and x(k), while the output was 
the point x(k+6). For the step 1, we used  n=40, m=2, 
and the terminal condition for the fuzzy c-means was 
ε1=0.00001. 
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 Figure 1: A set of 1000 data points of the Mackey- 

                       Glass time-series system. 
 
For the step 2 we used a=2, and the terminal 
condition for the weighted fuzzy c-means was set 
equal to ε2=0.00001. Different initializations were 
used, which gave similar results. In order to apply the 
validity index, the parameter c was set to take values 
within the interval [2, cmax], where n2max ≤c . 
Thus, for n=40 the cmax was equal to cmax=12. Fig. 2 
depicts the results obtained by applying the Xie-Beni 
validity index, showing that the optimal number of 
clusters was copt=9. Therefore, the final number of 
rules was equal to c=9. The learning rates for the 
gradient descent were selected as β1=β2=β3=0.55. Fig. 
3 depicts the model outputs and the actual outputs of 

the system for the test data, where the Root Mean 
Square Error (RMSE) is equal to 0.00624.  
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      Figure 2: Values of the proposed validity index for  
                      different numbers of clusters for the Mackey- 
                      Glass system. 
 
Finally, table 6 compares the RMSE obtained by the 
proposed algorithm to other results found in the 
literature. From this table we can easily notice that 
our model gives the best results and therefore, it can 
be used as a reliable tool for time series prediction.  
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Figure 3: Original and predicted values for the test data set  
                of the  Mackey-Glass system. 
 
5. Discussion and Conclusions 
In this paper we have proposed a novel method for 
fuzzy modeling, which is based on optimal fuzzy 
clustering. The algorithm starts by producing a 
number of fuzzy clusters within the multidimensional 
input space, so that all the training input data vectors 
belong to at least one cluster. The number of clusters 
is then reduced to an optimum, which is determined 
using the weighted fuzzy c-means. The optimum 
number of clusters corresponds to the total number of 



rules, since each fuzzy cluster defines a single fuzzy 
rule.   
 
       Table 1: Comparison results for the test data of the  
                      Mackey-Glass system. 
 

Model RMSE 
Crowder [14] 0.02 
De Souza [15] 0.0065 
Kim   [16] 0.0264 
Lenng et al. [17] 0.0215 
Wang and Mendel [18]  0.01 
Our model 0.0062 

 
The parameters of the premise membership functions 
are calculated by projecting the clusters on each axe, 
while the respective consequent parameters are 
obtained by applying the orthogonal least squares 
algorithm on the input-output training data set. 
Finally, the fuzzy model parameters are fine tuned 
using the gradient descent approach.  
The novelty of the contribution lies on the fact that 
the above method extends the fuzzy clustering-based 
fuzzy modeling approaches by employing the 
weighted fuzzy c-means. As it was shown from the 
experiments, the main advantage of using weight 
factors for the clusters, which are produced in the 
first step, is that the whole approach becomes 
significantly less sensitive to initialization. Therefore, 
compared to other approaches, the final fuzzy 
partition produced by our model corresponds to a 
local minimum that is closer to the global minimum.  
The main characteristics of the method are 
summarized as follows: Firstly, the method yields the 
optimal fuzzy partition, which is directly related to 
the real data structure. Secondly, the whole approach 
is one pass through the training data set and thus, it 
needs less computational demands than other 
methods do. Thirdly, the resulted fuzzy model 
utilizes a small number of rules, while at the same 
time the prediction performance is very accurate.  
In view of the above, we can conclude that the 
proposed algorithm is a very attractive method that 
can be efficiently implemented to a wide area of 
practical applications such as: modeling of chemical 
processes, function approximation, and time series 
prediction. 
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