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Abstract 

 
Autonomous land vehicle navigation is used to 

assist the driver partially or completely with the 

help of modern technology in a non-intrusive 

manner. This work concerns with the addition of 

an additional neural network which works 

separately and takes care of the road signs and 

other such entities. It detects obstacles and 

tracks them till it is safely passed. The 

information about the obstacle is passed on to 

the driving network which deals with the 

obstacle by steering the vehicle away, or 

deciding some other means of avoiding the 

obstacle. Thus, the safety of the system is 

enhanced. 

 

 

1. Introduction 

 
1.1 Artificial Neural Networks (ANN): 

Artificial Neural Networks, also called parallel 

distributed processing systems (PDPs) and 

connectionist systems, are intended for modeling 

the organizational principles of central nervous 

system, with the hope that the biologically 

inspired computing capabilities of the ANN will 

allow the cognitive and sensory tasks to be 

performed more easily and more satisfactorily 

than with conventional serial processors. In 

simple terms ANN is an attempt to mimic the 

functionality of the human neural network 

system (brain). 

 
1.2 Autonomous Land Vehicle 

Navigation: 
Autonomous land vehicle navigation is used to 

assist the driver partially or completely with the 

help of modern technology in a non-intrusive 

manner. Currently, the most discussed 

technology with respect to autonomous land 
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vehicle navigation is the use of impregnated 

magnets along a path to guide the vehicle. But 

the drawback of this system is the cost and the 

practicality of implementation. Autonomous land 

vehicle navigation using ANN addresses all 

these drawbacks along with the added 

functionality of learning the different driving 

styles under different circumstances using on-

the-fly training [1]. This system uses active 

sensors to interact with the environment and 

concurrently learn from the user using a non- 

intrusive gaze tracking system through ANN. 

The issues addressed by this system are: 

 
� Rapidly Adapting the Lateral Position of the 

       Vehicle. 

� Kinematical  Control  of  Vehicle  using  

       Simulated Highways for Intelligent Vehicle  

       Algorithms. 

� Inter-Vehicle Interaction using Visibility  

       Estimation Techniques. 

� Simultaneous Localization and Mapping  

       with Detection and Tracking of Moving    

       Objects. 

� Path Intersection Detection and Traversal. 

� Predicting Lane Position for Roadway  

       Departure Prevention. 

� Driving in traffic: Short-Range Sensing for  

       Urban Collision Avoidance 

 
1.3 Active Sensor Control for Autonomous 

Driving System: 
The Autonomous Land Vehicle (ALV) is a 

neural network based system which has been 

successful in driving robot vehicles in a variety 

of situations. However, since ALV maintains no 

state information about the world, but processes 

each sensor frame individually, it can become 

confused on sharp curves when the field of view 

no longer displays the important features in the 

scene. A steerable sensor allows the perception 

system to select the desired field of view to 

maximize the information content of a sensor 



frame. For a vision system that builds a map of 

the road, it is straightforward to point the camera 

in the desired direction, but ALV directly outputs 

a steering command, without generating an 

intermediate road representation. The system 

interprets this steering command as a point on 

the road and pans the camera in the desired 

direction. However since ALV is trained with a 

fixed sensor orientation, the position of the 

sensor during training is implicitly encoded in 

the weights and moving the camera results in the 

outputs of the network being invalid for the 

given configuration. The system solves this 

problem by post-processing the steering response 

of the neural network as a function of the current 

sensor configuration. A significant advantage of 

this approach is that existing networks can run 

under this new system without any modification 

or retraining. 

The system's basic architecture is a three 

layered artificial neural network shown in figure. 

A reduced resolution camera image is fed into a 

30x32 array of input units, which are fully 

connected to a hidden layer of 4 units. The 

hidden units are fully connected to a vector of 30 

output units, and the steering response is given 

as a Gaussian activation level centered on the 

correct steering curvature. ALV's neural net is 

trained "on-the-fly", and the human driver's 

steering responses are used as the teaching 

signal. ALV is able to learn from this limited 

data by artificially expanding its training set. 

Each original image is shifted and rotated in 

software to create 14 additional images in which 

the vehicle appears to be situated differently in 

relation to the road. The training signal for each 

of these new images is calculated by assuming a 

pure pursuit model of driving and transforming 

the original steering response accordingly [1]. 

 

1.4 Inter-Vehicle Interaction using 

Visibility Estimation Techniques: 
Reduced visibility is one of the key factors in 

many traffic accidents. It is very difficult to 

consistently find high contrast targets at various 

known ranges from a moving vehicle. This 

system overcomes this difficulty when detecting 

the position and curvature of the road ahead in 

camera images by utilizing whatever features are 

visible on the roadway, including lane markings, 

road/shoulder boundaries, tracks left by other 

vehicles, and even subtle pavement 

discolorations like the oil stripe down the lane 

center when necessary. 

In order to estimate visibility the road feature 

should be detected. In this process an aerial 

image of the road is taken and a cross-section of 

the aerial image perpendicular to the road, called 

the road template is created. 

 
Fig. 1 – Image used to study the road using 

intensity as a parameter [4]. 

 
All the particulars necessary are taken from 

the road template and finds out the road ahead. 

The system adjusts the template left or to the 

right until it matches the particular row’s cross-

section. The amount of shift gives the lateral 

displacement. 

 
1.5 Driving in traffic: Short-Range 

Sensing for Urban Collision Avoidance 
This system addresses the issues involved in 

traffic driving. The requirements for an effective 

collision avoidance and warning system for 

urban environments, include the following as a 

minimum standard: 

 

• Sensing 

o State of own vehicle 

o State of nearby objects 

o Environment 

• Knowledge Base 

o Model of the own vehicle and 

driver 

o Model of other objects 

o Model of environment 

o Model of interaction between all of 

the above 

• Processing and Algorithms 

o What situation we are in? 

o How likely is a collision? 

o How dangerous is the situation? 

o Is an action needed? 

• System Response 

o Aware : Baseline Situational 

Awareness 

o Alert : Potential Obstacles 

o Warn : High Likelihood of 

Collision 

o Evade : Imminent Collision 

o Notify : Collision has occurred 

 



 

One method of sensing the nearby objects in 

an urban environment is using a laser line striper 

shown in the figure below [2]. 

 

 
Fig. 2 - Laser and Camera configuration used 

for short range detection of objects. 

 
1.6 Overtaking Vehicle Detection 

To detect vehicles, we do the following: first, 

we sample the image, perform edge detection, 

and use our planar parallax model to predict 

what that edge image will look like after 

traveling a certain distance. Next, we capture an 

image after traveling our assumed distance, and 

compare it to the prediction. For each edge point 

in the predicted image, we verify that there is a 

corresponding edge point in the actual image. If 

there is a match, then our prediction (based on a 

flat earth assumption) is verified. Otherwise, we 

know that the cause of the horizontal line in the 

predicted image was an obstacle (i.e., above the 

ground plane). There are 4 components to the 

system:  

 

• Sampling and Preprocessing,  

• Dynamic image Stabilization, 

• Model-Based Prediction, and  

• Obstacle Detection. 

 

The figure 3 on the right is the difference 

image obtained by taking the difference of the 

images actually sampled and the image predicted 

by the system.  When the noise is analyzed, the 

vehicle on the right easily stands out, since its 

predicted path of motion is varying greatly from 

its actual path of motion. Thus it is concluded 

that it is overtaking.  

 
Fig. 3 -  Rear View Road Image [3] 

 

 
Fig. 4 - Same image after 120 ms [3] 

 

 
Fig. 5 - Difference Image [3] 

 

 
Fig. 6 - Obstacle Image [3] 

 

 



2. Obstacle Tracking 
Our work is extending the above working 

model developed by NAVLAB, Carnegie Mellon 

University by adding an obstacle tracking 

system. We have taken up a two dimensional 

case, for greater flexibility in case of contour 

changes on the road. With the initial positions of 

the obstacle and the autonomous vehicle, the 

bearing information is simulated using sensor 

simulator, the output of which is fed to the Least 

Square Estimator (LSE) filter which gives the 

estimated obstacle parameters. The errors 

between the estimated and the simulated obstacle 

parameters are compared. To reduce estimation 

error, the backpropogation neural network is 

incorporated with the LSE filter. The network is 

trained for a set of inputs and after testing, the 

network estimates the obstacle parameters. The 

errors between the simulated and the estimated 

values are compared with the errors obtained 

without the aid of the network. 

 

2.1 Tracking Model Derivations 
 

2.1.1 Mathematical Model: 

 

System model at state k+1: 

 

X(k+1) = A.X(k) + B.U(k) + W(k) 

 

where 

 

X(k) =  r.x(k)   = State Vector 

 r.y(k) 

 v.x(k) 

 v.y(k) 

 

        = Range in x-direction at time k 

 Range in y-direction at time k 

 Velocity in x-direction at time k  

 Velocity in y-direction at time k  

 

 

U(k) = v.x(k) 

 v.y(k) 

 

 

 

       = Change in relative velocity in x-

direction between time k and k+1. 

 Change in relative velocity in x-

direction between time k and k+1. 

 

 

 

W(k) = System Noise 

 

A =  1 0 kT 0 = State Transition  

 0 1 0 kT     Matrix 

 0 0 1 0 

 0 0 0 1 

 
             -1 

B =  0 1 0 0 = Input Matrix 

 0 0 0 1 

 

T = Sampling Period 

 

k = Sample Number 

 

U(k) is concerned with vehicle dynamics with 

respect to the obstacle. Since the vehicle is 

assumed to be moving with a uniform velocity 

within the infinitesimal period between k and 

k+1, B.U(k) term can be taken as zero for 

theoretical verification purposes. By assuming 

the system noise as zero, the system model 

becomes: 

 

X(k+1) = A.X(k) 

 

2.1.2 Measurement Model: 

 

Y(k) = H.X(k) + υ(k) 

where, 

 Y(k) : Measured bearing at time k 

 H      : [cos b     -sin b     0      0] 

          : Measurement Matrix 

 b       : Bearing 

 υ(k)  : Measurement noise component of the 

appropriate order. 

 

2.1.3 System Dynamics Model: 

The Cartesian state vector formulation 

is as follows: 

 

Let ‘k’ be any arbitrary time instant, 

  

X(k) =  rx(k)    

 ry(k) 

 vx(k) 

 vy(k) 

 

 

rx(k) = rtx(k) – rox(k) 

ry(k) = rty(k) – roy(k) 

 

where, 

rx and ry are relative ranges along x and y 

directions between the vehicle and the obstacle. 

t : refers to the obstacle (target) 

o : refers to the vehicle (observer) 



The measurement process is described by non-

linear elation: 

 

b(k) = arctan(rx/ry) 

 

where, 

b(k) represents the measured target (obstacle) 

bearing at the k
th 

instant of time and taking tan 

on both sides we have, 

 

tan(b(k)) = (rtx(k) – rox(k)) / (rty(k) – roy(k)) 

 

or, 

 

sin(b(k)) (rty(k) - rox(k)) = cos(b(k))  

    (rtx(k) - rox(k)) 

 

but, 

 

b(k) = bm(k) + v(k) 

 

where, 

 

 bm(k) is the actual measured bearing at k
th 

instant and v(k) is the measurement noise at k
th 

instant. 

 

 This can be formulated as follows avoiding the 

subscript ‘k’: 

 

(rtx - rox) cos (bm) – (rty - roy) sin (bm)  

     = – rs(k).sin(v(k)) 

 

where, 

 

 rs(k) = (rtx - rox) sin (b) – (rty - roy) cos (b) 

 

i.e, 

 

rox.cos (bm) – roy.sin (bm)  

 = rtx.cos (bm) – rty.sin (bm) + rs(k).sin(v(k)) 

 

In the above equation the left hand side 

denotes the measurement vector H(k), and is 

chosen as, 

 

H(k) = [cos(bm)     –sin(bm)        0        0] 

 

Therefore the observation sequence is as follows, 

 

z(k) = H(k).Xo(k) = H(k).Xt(k) + n(k) 

 

i.e, 

z(k) is the measurement at k
th 

instant, 

Xo(k) is the observer(vehicle) state at the k
th 

instant, 

Xt(k) is the target(obstacle) state at the k
th 

instant and 

n(k) is the noise sequence at the k
th 

instant. 

 

Hence the measurement scalar model 

 

z(k) = H(k) . X(k) + n(k) 

 

2.2 Backpropogation Neural Network 

Training 

 
2.2.1 Forward Pass. Calculation in multilayer 

network is done layer by layer. The NET of each 

neuron in the first hidden layer is calculated as 

the weighted sum of all its neuron inputs. The 

activation function ‘F’ then squashes NET to 

produce the OUT value for each neuron in that 

layer. Once the set of outputs for a layer is 

found, it serves as the input for the next layer. 

The process is repeated , layer by layer, until the 

final set of network outputs is produced. 

 

2.2.2 Backward Pass. The networks actual 

output from the forward pass is compared with 

the desired output and error estimates are 

computed for the output units. The weights 

connected to the output units are adjusted to 

reduce those errors. The error estimates of the 

output units are used to derive the error estimates 

for the units in the hidden layer. Finally, the 

errors are propagated back to the connections 

stemming from the input units. 

Before starting the training process, all the 

weights must be initialized to small random 

numbers. This ensures that the network is not 

saturated by large values of weights. 

 

2.3 Least Square Estimator Filter 
The Least Square Estimator is one the methods 

providing Target Motion Analysis (TMA). We 

propose to incorporate this in our ALV model. 

Here instead of the target moving, the ALV 

model moves, and the obstacle remains 

stationary. The basic task is to estimate 

accurately to the extent possible, the relative 

position (Rx, Ry) and the relative velocities (Vx, 

Vy) of the obstacle, from either the Short Range 

Sensors or sonar noisy measurements of range 

and bearing. The obstacle can be a stone, a 

vehicle (parked or in motion), a signboard, etc. 

The state vector plays a key role in LSE 

diverging/converging cases. 

The statistical characteristics of the noise 

depend upon the measuring equipment. It is 

observed that the LSE is optimum only for the 



case of Gaussian noise. The LSE is an unbiased, 

stable, and optimal estimator with minimum 

variance, if the system is stochastically 

controllable and observable, with some noise 

assumptions being satisfied.  

The recursive LSE is a linear, discrete time, 

finite-dimensional and sequential recursive 

system. It assumes the availability of a state 

model and an observational model. The input to 

the filter is a sensor or a sonar bearing 

contaminated with noise and the output is the 

obstacle parameters.  

 

2.4 Block Diagram of Network Aided LSE 

 
Fig. 7 - Block Diagram of Backpropogation 

Neural Network (BPNN) aided LSE (Least 

Square Estimator). 

 

The block diagram shown above illustrates 

how the LSE functions in combination with the 

Backpropogation neural network. The compared 

results of the network and the LSE are fed back 

and thus the error is deducted.  

 

3. Conclusion 
Intelligent vehicles are beginning to appear on 

the market, but so far their sensing and warning 

functions only work on the open road. Functions 

such as run off road warning or adaptive cruise 

control are designed for the uncluttered 

environments of open highways. Current 

sensing/warning/controlling systems generally 

work only in relatively simple environments. 

Applications developed for open highways 

include Adaptive Cruise Control (ACC), which 

controls the throttle to keep a safe gap behind 

other vehicles; run-off-road collision warning 

systems, which alert a driver if the vehicle starts 

to drift out of its lane; and blind-spot sensors on 

heavy trucks to warn the driver if they start a 

lane change without seeing a car in the next lane. 

Some applications are also on the market for 

slow speed driving: rear-facing sensors as 

parking aids, for example. This work of ours 

gives a spin-off to further studies. Other neural 

networks such as the Hopfield network can be 

employed instead of the Backpropogation 

network. 

The Autonomous Land Vehicle Navigation 

using Artificial Neural Networks puts forward a 

very promising technology which might change 

the very way vehicle navigation is perceived as 

of today. Although still under research, its results 

are very encouraging and in conjunction with 

other modern technologies like GPS, ACC, etc. 

can easily pull down the rate of causality which 

is very high in today’s roadways. The future is 

very bright for Autonomous Land Vehicles. 

They have come here to stay and stay they will.  
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