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ABSTRACT
A preliminary investigation of an atomic model-based algo-
rithm for the compression of single lead ECG is presented.
The paper presents a novel coding scheme for ECG sig-
nals based on time-frequency atomic signal representations.
Signal-adaptive parametric models based on overcomplete
dictionaries of time-frequency atoms are considered. Such
overcomplete expansions are here derived using the match-
ing pursuit algorithm.

The compression algorithm has been evaluated with the
MIT-BIH Arrhythmia Database. Our algorithm was com-
pared with several well-known ECG compression algorithms
and was found to be superior at all tested bit rates. An aver-
age compression rate of approximately 140 bps (compression
ratio of about 28:1) has been achieved with a good recon-
structed signal quality (PRD of about 7 % ).

1. INTRODUCTION

Considering the great volume of ECG data which is gener-
ated each year, the ability to efficiently manage the storage
and retrieval of this data for comparison and evaluation man-
dates the need for ECG compression techniques. Effective
storage of ECG information is required in the intensive coro-
nary care unit, or in the long-term (24-48 hours) wearable
monitoring tasks (Holter). For good diagnostic quality, each
ECG lead provided by the Holter should be sampled at a
rate of 250-500 Hz with 12 bits resolution. The informa-
tion rate is thus approximately 11-22 Mbits/hour/lead. If ef-
ficient compression methods are employed, memory require-
ments may drastically drop to make the monitoring device
commercially feasible. ECG compression is also of practical
importance for other aspects of electrocardiography. Trans-
mitting the ECG signal through telephone lines or mobile
radio, for example, may save a crucial time and unnecessary
difficulties in emergency cases. Real-time heart rhythm anal-
ysis algorithms require ECG data compression. Compression
parameters may also be valuable tools for developing pattern
recognition schemes and automatic diagnostic algorithms.

In practice, efficient data compression may be achieved
only with lossy compression techniques. In ECG compres-
sion algorithms the goal is to achieve a minimum informa-
tion rate, while retaining the relevant diagnostic information
in the reconstructed signal.

Data compression methods have been mainly classified
into three mayor categories: a) direct data compression, b)
transformation methods, and c) parameter extraction tech-
niques. Most of the existing data compression techniques
for ECG signals lie in two of the three categories described:
direct methods and transformation methods. Direct methods
are realized by irregular sampling and quantization of origi-
nal waveforms in the time-domain. Transform methods are

based on orthogonal transforms, such as Fourier, Karhunen-
Loeve (KL), DCT or wavelets.

An excellent overview of direct and transform-based
ECG compression techniques before 1990 is reported in [1].
AZTEC, Fan/SAPA, TP, CORTES, DPCM, Peak-Picking
and Cycle-to-Cycle are well-known examples of direct ECG
compression schemes. Regarding to transformation meth-
ods, the wavelet-packet transform has received a great deal
of attention over the past year (and even by now), being
successfully applied to several problems in electrocardiol-
ogy, including data compression [2, 3, 4, 5, 6]. The suc-
cess of wavelets for ECG compression is due to their time-
frequency localization capability. High compression ratio are
also achieved by the Karhunen-Loeve transform [7] at the ex-
pense of a meaningful computational cost.

Other relevant works published in last years for ECG data
compression are [8, 9, 10, 11, 12, 13, 14].

Recently, a ECG data compression approach based on
atomic models and matching pursuit has been proposed [15].
A signal is decomposed into atoms that are included in an
overcomplete dictionary. The dictionary hence can be de-
fined to best match the signal structure. It is expected that
the time-frequency localization capability of matching pur-
suit can be superior to orthogonal transforms. Furthermore,
a few waves appear during one heart-beat period in an ECG
signal. It is expected that a small number of atoms can ap-
proximate the ECG waveforms.

In this paper, signal-adaptive parametric atomic mod-
els based on overcomplete dictionaries of wavelet functions
have also been applied to ECG waveform compression. Such
overcomplete expansions are derived using the matching pur-
suit algorithm. The resulting representations are signal-
adaptive in that the atoms for the model are chosen to match
the signal behavior; furthermore, the models are parametric
in that the atoms can be described in terms of simple param-
eters.

Atomic decompositions and matching pursuit are revised
in section 2. Section 3 describes in detail the proposed
scheme for ECG compression. Experimental results are pre-
sented in section 4. Finally, conclusions are resumed in sec-
tion 5.

2. ATOMIC DECOMPOSITIONS AND MATCHING
PURSUIT

2.1 Principles of atomic modelling

Time-frequency atomic signal representations have been of
ongoing interest since their introduction by Gabor several
decades ago. The fundamental notions of atomic modelling
are that a signal can be decomposed into elementary func-
tions that are localized in time-frequency and that such de-



compositions are useful for applications such as signal anal-
ysis and coding. Here, an overview of the computation and
properties of atomic models is presented. The overview is
based on an interpretation of atomic modelling as a linear
algebraic inverse problem.

A signal model of the form

x[n] =
M

∑
i=1

αmgi [n] (1)

can be expressed in matrix notation as

x = D ·α with D = [g1g2 ... gi ... gM] (2)

where the signalx is a column vector (N x 1), α is a
column vector of expansion coefficients (M x 1), andD is an
(N x M ) matrix whose columns are the expansion functions
gi [n]. In this framework, derivation of the model coefficients
is an inverse problem.

When the functionsgi [n] constitute a basis, such as in
Fourier and wavelet decompositions, the matrixD is square
(N = M ) and invertible, and the expansion coefficientsα for
a signalx are uniquely given by

α = D−1 ·x (3)

While this ease of computation is an attractive feature,
basis expansions are not generally useful for signal mod-
elling, because they do not provide compact models of ar-
bitrary signals [16]. To overcome the difficulties of basis
expansions, signals can instead be modelled using overcom-
plete set of atoms that exhibit a wide range of time-frequency
behaviors. Such overcomplete expansions allow for compact
representation of arbitrary signals for the sake of compres-
sion and analysis. With respect to the interpretation of signal
modelling as an inverse problem, when the functionsgi [n]
constitute an overcomplete or redundant set (M > N ), the
dictionary matrixD is of rankN and the linear system in
equation (2) is underdetermined. The null space ofD then
has nonzero dimension and there are an infinite number of
expansions of the form of equation (1).

There are a wide variety of approaches for deriving over-
complete signal expansions, which differ in the structure of
the dictionary and the manner in which dictionary atoms are
selected. Examples include best basis methods and adaptive
wavelet packet, where the overcomplete dictionary consists
of a collection of bases. Signal decomposition schemes us-
ing more general overcomplete sets can also be considered.
Such approaches can be roughly grouped into two categories:
a) parallel methods, such as the method of frames, basis pur-
suit, and FOCUSS, in which computation of the various ex-
pansion components is coupled and derive exact solutions;
b) sequential methods, such as matching pursuit and its vari-
ations, in which models are computed one component at a
time and derive sparse approximate solutions according to
suboptimal criteria. All these methods can be interpreted as
approaches to solving inverse problems.

Since sparse approximate solutions are of interest for
compact signal modelling, matching pursuit is the chosen
method for deriving overcomplete signal expansions in the
proposed ECG compression scheme. Furthermore, it pro-
vides a framework for deriving such expansions by succes-
sive refinements with low computational cost.

2.2 Matching pursuit

Matching pursuit [17] is a greedy iterative algorithm that of-
fers a sub-optimal solution for decomposing a signalx[n] in
terms of unit-norm expansion functionsgi [n] chosen from an
overcomplete dictionaryD. When a well-designed overcom-
plete dictionary is used in matching pursuit, the nonlinear na-
ture of the algorithm leads to compact signal-adaptive para-
metric models [17, 18].

At the first iteration, the atomgi [n] which gives the
largest inner product with analyzed signalx[n] is chosen. The
contribution of this vector is then subtracted from the signal
and the process is repeated on the residual. At them-th iter-
ation, the residue is:

rm[n] =
{

x[n] m= 0
rm+1[n]+αi(m) ·gi(m)[n] m 6= 0 (4)

whereαi(m) is the weight associated to optimum atom

gi(m)[n] at them-th iteration, andi(m) the dictionary index of
the optimum atom chosen at them-th iteration.

The orthogonality principle gives the weightαm
i associ-

ated to each atomgi [n] ∈ D at them-th iteration:

〈rm+1[n],gi [n]〉= 〈rm[n]−αi(m) ·gi(m)[n],gi [n]〉= 0

=⇒ αm
i = 〈rm[n],gi [n]〉

〈gi [n],gi [n]〉 = 〈rm[n],gi [n]〉
‖gi [n]‖2 = 〈rm[n],gi [n]〉 (5)

where the last step follows from restricting the atoms to
be unit-norm.

The l2 norm ofrm+1[n] can be expressed as:

||rm+1[n]||2 = ||rm[n]||2− |〈r
m[n],gi [n]〉|2
||gi [n]||2 = ||rm[n]||2−|αm

i |2

(6)
which is minimized by maximizing

|αm
i |2 = |〈rm[n],gi [n]〉|2 (7)

Therefore, the optimum atomgi(m)[n] (and its weight
αi(m)) at them-th iteration are obtained from (8):

gi(m)[n] = arg min
gi∈D

‖rm+1[n]‖2 = argmax
gi∈D

|〈rm[n],gi [n]〉|2 (8)

This is simply equivalent to choosing the atom whose in-
ner product with the signal has the highest magnitude.

To enable representation of a wide range of signal fea-
tures, a large dictionary of time-frequency atoms is used
in matching pursuit. The computation of correlations
〈rm[n],gi [n]〉 for all gi [n] ∈ D at each iteration is highly com-
putational consuming. As derived in [17], this computation
can be substantially reduced using an updating formula based
on equation (4). The correlations at them-th iteration are
given by:

〈rm+1[n],gi [n]〉= 〈rm[n],gi [n]〉−αi(m) · 〈gi(m)[n],gi [n]〉 (9)

where the only new computation required for the cor-
relation updating corresponds to the cross-correlation term
〈gi(m)[n],gi [n]〉, which can be pre-calculated and stored, if
enough memory is available, once setD has been determined.



3. THE COMPRESSION ALGORITHM

The ECG signal may be considered a quasi-periodic signal.
The main redundancies in the ECG signal exist in the form of
correlation between adjacent or past beats (inter-beat corre-
lation) and correlation between adjacent samples (intra-beat
correlation).

The inter-beat correlation suggests the idea of using a
Long-Term Predictor (LTP) [10]. The frequent existence of
abnormal beats in some pathological cases suggests using a
beat codebook. The codebook is used to store ”typical” past
beats. The intra-beat correlation suggests using a Short-Term
Predictor (STP). With LTP, STP and a beat codebook, a pre-
dicted beat can be estimated, and a residual signal, which has
lower variance, can be calculated [13].

Our approach is somewhat different to the one proposed
in [13]. Inter-beat correlation is reduced by pattern matching
between two consecutive beats in an analysis by synthesis
framework. Nevertheless, intra-beat correlation is reduced
by operating over the difference between consecutive beats.
This residual signal is modelled using matching pursuit over
an overcomplete dictionary of time-frequency atoms.

Figure 1 shows the encoding stage of the proposed ECG
coder and figure 2 shows the decoding stage of the same sys-
tem.
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Figure 1: Encoding stage of the proposed ECG compression
system
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Figure 2: Decoding stage of the proposed ECG compression
system

The general scheme of the proposed ECG compression
method consists of three main subsystems: 1) preprocessing,
2) encoding (pattern matching and residual signal coding), 3)
decoding. These subsystems are described below.

3.1 Preprocessing

The ECG signal is preprocessed prior to compression. Pre-
processing consists of segmentation, alignment with respect

to the fiducial point (R wave), nonuniform filtering and base-
line removal.

Segmentation divides the ECG signal into beats (com-
plexes), and every beat is further divided into three sections:
P section, QRS section and T section. The motivation for
such beat segmentation arises from the fact that every one of
the three sections has a different diagnostic meaning and a
different power spectral density.

The alignment with respect to the fiducial point between
adjacent beats involves sending side information to the de-
coder, which must be taken into account in the last step at the
decoder (postprocessing).

The nonuniform filtering consists of two different FIR
filters. The P and T waves are filtered with a 0.01-50 Hz
bandpass FIR filter, and the QRS section with a 0.1-100 Hz
bandpass FIR filter. The filters are switched according to seg-
mentation. The last step of preprocessing is baseline removal
using cubic splines.

3.2 The encoding subsystem

The encoder matches the current preprocessed beatbk with
the previous synthesized oneb̂k−1, and computes a differ-
ence signalrk, taking into account thatb0 is anN-length zero
vector (b0 = b̂0 = 0):

rk = bk k = 1
rk = bk− b̂k−1 k 6= 1 (10)

If the length of the synthesized beatb̂k−1 is different from
that of the current beatbk, the last one is cut or zero-padded
at the edges. The difference or residual signalrk is repre-
sented by atomic modelling using matching pursuit with a
dictionary of orthogonal wavelet-based atoms and efficiently
coded. The current synthesized ECG signalb̂k is obtained by
adding the current decoded residuer̂k to the previous synthe-
sized ECG signal̂bk−1:

b̂k = b̂k−1 + r̂k (11)

At each segment, the matching pursuit algorithm is iter-
ated, extracting atoms from the original beat (first segment)
or the current residue (remaining segments), until the differ-
ence between the original ECG signalbk and the synthesized
oneb̂k reaches a predefined value of the PRD measure.

In order to achieve the same PRD value at the encoder
and the decoder, the optimum weightαi(m) at each iteration
of matching pursuit must be quantized and the reconstructed
valueα̂i(m) applied to achieve the residue:

rm+1[n] = rm[n]− α̂i(m) ·gi(m)[n] m 6= 0 (12)

Lemarie wavelets have been chosen because we have
found that they best match to the waves within each ECG
beat. Orthogonal wavelets are considered to speed up the
correlation updating procedure within the matching pursuit,
as indicated in [19]. The overcomplete dictionaryD is made
up with those functions which give rise to aJ-depth wavelet
decomposition, beingN the frame length andW = ∑J−1

i=0
N
2i

the wavelet dictionary size.
Once the residual signal is completely modelled and the

parameters of the model quantified, they are finally entropy
coded.



3.3 The decoding subsystem

This subsystem exists at the transmission side as well as the
receiver side, as expected of an analysis by synthesis based
ECG coding scheme. The decoder recovers the residual sig-
nal from its quantized parameters, and obtains the current
reconstructed beat̂bk by adding the recovered residuer̂k to
the previous synthesized beatb̂k−1 (see equation (11)). This
process is repeated beat to beat until the ECG signal is com-
pletely coded.

It must be noted that the current reconstructed beatb̂k
must be finally post-processed at the decoder in order to undo
the alignment with respect to the fiducial point between adja-
cent beats performed at the encoder, which involves decoding
the received side information (beat time duration and fiducial
point location).

4. RESULTS AND DISCUSSION

The MIT-BIH Arrhythmia database [20] was used to evalu-
ate the proposed compression algorithm and compare it with
other known ECG compression methods (SAPA2 [21] and
LTP [10]). These compressors were chosen because SAPA2
is very often referred for comparison in the literature, and
LTP is one of the best ECG compressors available today.

Quantitative tests were performed using rate-distortion
curves for each one of the compression algorithms to be com-
pared. The rate was chosen to be expressed in terms of bits/s
of the compressed ECG signal, and the distortion was cho-
sen to be the PRD (in percentage units) between the recon-
structed signal and the original one.

Figure 3 shows an example of reconstructed ECG signals,
which were compressed by the proposed ECG compression
scheme at two different PRD values.
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Figure 3: Example of reconstructed ECG signals (record
202 of MIT-BIH Arrhythmia database). (a) Original signal;
(b) Reconstructed signal with PRD = 12% (bit rate = 51.48
bits/s); (c) Reconstructed signal with PRD = 7% (bit rate =
97.80 bits/s)

For the quantitative tests, a minute of 8 MIT-BIH records
were processed: 100, 101, 103, 119, 202, 205, 207 and 209.
The signals to be processed were chosen to show the per-

formance of the proposed ECG coder for a wide variety of
cases.

Figure 4 compares the distortion-rate curve obtained by
the proposed algorithm with those of the SAPA2 and LTP
ECG coders. Each line is a polynomial fit of the resulting
points for each compression method.
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Figure 4: PRD-rate curves for SAPA2, LTP and the proposed
ECG coder

Figure 4 suggests that the proposed ECG coding scheme
is a profitable alternative to other existing ECG coders when
the PRD measure is above a threshold of about 3%. Below
that value the ECG coder performance is not good enough
due to matching pursuit extracts too many atoms, most of
them representing noise-like components, mainly for noisy
ECG signals.

5. CONCLUSIONS

The proposed ECG coder allows to achieve low transmission
rates (100-200 bits/s) while maintaining a good reconstructed
signal quality (PRD of 6-10%), being an interesting alterna-
tive to other existing ECG coders. The best performance with
regard to the ECG coders chosen for comparison was found
with a PRD of 4-10%),

The ECG coder complexity is low owing to the use of
orthogonal wavelet atoms, that make possible a fast correla-
tion updating procedure in matching pursuit. Therefore, the
compression system can be real-time implemented using in-
expensive DSP chips.

In atomic models based on matching pursuit, signal adap-
tivity is achieved by choosing expansion functions that match
the time-frequency behavior of the signal. By choosing a
dictionary with a parametric structure, such as the selected
wavelet one, the resultant ECG coder is both signal-adaptive
and parametric, as the proposed one.
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