
THE MULTIDIMENSIONAL DELSARTE TRANSMUTATION OPERATORS,
THEIR DIFFERENTIAL-GEOMETRIC STRUCTURE AND APPLICATIONS.

PART 1

ANATOLIY K. PRYKARPATSKY ∗, ANATOLIY M. SAMOILENKO ∗∗,
AND YAREMA A. PRYKARPATSKY ∗∗∗

This paper is dedicated to the memory of the 85-th birthday and the 10-th death anniversaries of the
mathematics and physics giant of the previous century academicianNikolay Nikolayevich Bogoliubov

A. A differential-geometric structure of Delsarte transmuation operators in multi-
dimension is described, application to the inverse spectral transform problem is discussed.

1. I

Consider the Hilbert spaceH = L2(Rm; Hom(Ck;CN)), k,m,N ∈ Z+, with the natural
bilinear (not scalar here) form onH∗ ×H
(1.1) (< ϕ, ψ >) :=

∫

Rm
S p(ϕ(x)ᵀψ(x)dx

for any pair (ϕ, ψ) ∈ H∗×H ,where, evidentlyH∗ ' H , sign ”ᵀ”is the matrix transposition
and ”S p” denotes the usual matrix trace. Take nowH0 andH̃0 as two closed subspaces of
H and two linear operatorsL andL̃ fromH intoH .
Definition 1.1. (J. Delsarte and J. Lions [2]) A linear invertible operatorΩ̂ defined on the
wholeH and acting fromH0 ontoH̃0 is called a Delsarte transmutation operator for the
pair of operatorsL andL̃, if the following two conditions hold:

• the operator̂Ω and its invertibleΩ̂−1 are continuos inH ;
• the operator identity

(1.2) LΩ̂ = Ω̂L̃

is satisfied.

Such transmutation operators were for the first time introduced in [1, 2] for the case of
one-dimensional second order differential operators. In particular, for the Sturm-Liouville
and Dirac operators the complete structure of the corresponding Delsarte transmutation
operators was described in [3, 4], where also the extensive applications to spectral theory
were given.

As it has just become clear recently, some special cases of the Delsarte transmutation
operators were constructed a lot before by Darboux and Crum (see [5]). A special gener-
alization of the Delsarte-operators for the two-dimensional Dirac operators was done for
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the first time in [6], where its applications to inverse spectral theory and solving some
nonlinear two-dimensional evolution equations were also presented.

Recently some progress in this direction has been made in [7, 8] due to analyzing a
special operator structure of Darboux type transformations which appeared in [9].

In this paper we give, in some sense, a complete description of multi-dimensional Del-
sarte transmutation operators based on natural generalization of the differential-geometric
approach devised in [8], and discuss how one can apply these operators to studying spectral
properties of linear multi-dimensional differential operators.

2. A  L    - .

Let a multi-dimensional linear differential operatorL : H → H of ordern(L) ∈ Z+ be
of the form

(2.1) L :=
n(L)∑

|α|=0

aα(x)∂|α|/∂xα,

where, as usual,α ∈ Zm
+ is a multi-index,x ∈ Rm, and for brevity one assumes that coef-

ficientsaα ∈ S(Rm;CN). Consider the following easily derivable generalized Lagrangian
identity for the operator (2.1) :

(2.2) < L∗ϕ, ψ > − < ϕ, Lψ >= S p(
m∑

i=1

(−1)i+1 ∂

∂xi
Zi [ϕ, ψ]),

where (ϕ, ψ) ∈ H∗ × H , mappingsZi : H∗ × H → HomCk, i = 1,m, are bilinear due
to the construction andL∗ : H∗ → H∗ is the corresponding formally conjugated to (2.1)
differential expression, that is

(2.3) L∗ :=
n(L)∑

|α|=0

(−1)|α|
∂|α|

∂xα
· aα(x).

Having multiplied the identity (2.2) by the usual oriented Lebesgue measuredx = ∧
j=
−−→
1,m

dxj ,

we get from that

< L∗ϕ, ψ > dx− < ϕ, Lψ > dx = S pd(Z(m−1)[ϕ, ψ])

for all (ϕ, ψ) ∈ H∗ ×H , where

(2.4) Z(m−1)[ϕ, ψ] :=
m∑

i=1

dx1 ∧ dx2 ∧ ... ∧ dxi−1 ∧ Zi [ϕ, ψ]dxi+1 ∧ ... ∧ dxm

is an (m− 1)−differential matrix form onRm.
Consider now all such pairs (ϕ, ψ) ∈ H∗ × H that the matrix differential form (2.4)

is exact, that is there exists such an (m− 2)−differential matrix formΩ(m−2)[ϕ, ψ] on Rm

satisfying the condition

(2.5) Z(m−1)[ϕ, ψ] = dΩ(m−2)[ϕ, ψ].

Assume also that for any fixed elementϕ ∈ H∗ the setHϕ ⊂ H of functionsψ ∈ H
satisfying the condition (2.5) is dense inH , that isH̄ϕ = H . Since the relationship (2.5) is
bilinear in (ϕ, ψ) ∈ H∗ ×H , one gets easily that (2.5) holds for any pair (ϕ, ψ) ∈ H∗ ×H .
Thus, taking into account thatd2 = 0, it follows from (2.3) by integration overRm that for
any pair (ϕ, ψ) ∈ H∗ ×H the identity (< L∗ϕ, ψ >)− (< ϕ, Lψ >) holds, that is the operator
(2.1) possesses its adjointL∗ inH∗.
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Let nowS(σ(m−2)
x , σ(m−2)

x0
) denote an (m− 1)−dimensional piece-wise smooth hypersur-

face inRm such that its boundary∂S(σ(m−2)
x , σ(m−2)

x0
) = σ(m−2)

x − σ(m−2)
x0

, whereσ(m−2)
x and

σ(m−2)
x0

are some (m− 1)−dimensional homological cycles inRm, parametrized formally by
means of two pointsx, x0 ∈ Rm. Then from (2.5) based on the general Stokes theorem one
gets easily that∫

S(σ(m−2)
x ,σ(m−2)

x0
)
Z(m−1)[ϕ, ψ] =

∫

∂S(σ(m−2)
x ,σ(m−2)

x0
)
Ω(m−2)[ϕ, ψ] =

(2.6)
∫

σ(m−2)
x

Ω(m−2)[ϕ, ψ] −
∫

σ(m−2)
x0

Ω(m−2)[ϕ, ψ] := Ωx[ϕ, ψ] −Ωx0[ϕ, ψ]

for all (ϕ, ψ) ∈ H∗×H , where matrix functionalsΩx[ϕ, ψ] and Ωx0[ϕ, ψ] are assumed fur-
ther to be nondegenerate and satisfying the regularity conditionlim

x→x0

Ωx[ϕ, ψ] = Ωx0[ϕ, ψ],

define now actions of the following two linear Delsarte permutations operatorsΩ̂ : H →
H andΩ̂∗ : H∗ → H∗ still upon a fixed pair of functions (ϕ, ψ) ∈ H∗ ×H :

ψ̃ = Ω̂(ψ) := ψ(Ωx[ϕ, ψ])−1Ωx0[ϕ, ψ],

(2.7) ϕ̃ = Ω̂(ϕ) := ϕ(Ωᵀx [ϕ, ψ])−1Ω
ᵀ
x0

[ϕ, ψ].

Making use of the expressions (2.7), based on arbitrariness of the chosen pair of functions
(ϕ, ψ) ∈ H∗ ×H , we can easily retrieve the corresponding operator expressions forΩ̂ and
Ω̂∗ forcing the constant matrixΩx0[ϕ, ψ] to variate:

Ω̂(ψ) = ψ(Ωx[ϕ, ψ])−1(Ωx[ϕ, ψ] −
∫

S(σ(m−2)
x ,σ(m−2)

x0
)
Z(m−1)[ϕ, ψ] =

ψ − ψ(Ωx[ϕ, ψ])−1Ωx0[ϕ, ψ](Ωx0[ϕ, ψ])−1
∫

S(σ(m−2)
x ,σ(m−2)

x0
)
Z(m−1)[ϕ, ψ] =

ψ − ψ̃(Ωx0[ϕ, ψ])−1
∫

S(σ(m−2)
x ,σ(m−2)

x0
)
Z(m−1)[ϕ, ψ] =

(1− ψ̃(Ωx0[ϕ, ψ])−1
∫

S(σ(m−2)
x ,σ(m−2)

x0
)
Z(m−1)[ϕ, ·]) ψ := Ω̂ · ψ;

Ω̂∗(ϕ) = ϕ(Ωᵀx [ϕ, ψ])−1(Ωᵀx [ϕ, ψ] −
∫

S(σ(m−2)
x ,σ(m−2)

x0
)
Z(m−1),ᵀ[ϕ, ψ] =

ϕ − ϕ(Ωᵀx [ϕ, ψ])−1Ω
ᵀ
x0

[ϕ, ψ](Ωᵀx0
[ϕ, ψ])−1

∫

S(σ(m−2)
x ,σ(m−2)

x0
)
Z(m−1),ᵀ[ϕ, ψ] =

(2.8) (1− ϕ̃(Ωᵀx0
[ϕ, ψ])−1

∫

S(σ(m−2)
x ,σ(m−2)

x0
)
Z(m−1),ᵀ[·, ψ]) ϕ := Ω̂∗ · ϕ,

where, by definition,

Ω̂ := 1− ψ̃(Ωx0[ϕ, ψ])−1
∫

S(σ(m−2)
x ,σ(m−2)

x0
)
Z(m−1)[ϕ, ·],

(2.9) Ω̂∗ := 1− ϕ̃(Ωᵀx0
[ϕ, ψ])−1

∫

S(σ(m−2)
x ,σ(m−2)

x0
)
Z(m−1),ᵀ[·, ψ]

are of Volterra type multidimensional integral operators. It is to be noted here that now
elements (ϕ, ψ) ∈ H∗ × H and (ϕ̃, ψ̃) ∈ H∗ × H inside the operator expressions (2.9) are
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arbitrary but fixed. Therefore, the operators (2.9) realize extension of their actions (2.7) on
fixed pair of functions (ϕ, ψ) ∈ H∗ ×H upon the whole functional spaceH∗ ×H .

Due to the symmetry of expressions (2.7) and (2.9) with respect to two pairs of functions
(ϕ, ψ) ∈ H∗ ×H and (ϕ̃, ψ̃) ∈ H∗ ×H ,it is very easy to state the following lemma.

Lemma 2.1. Operators (2.9) are invertible of Volterra type expressions onH∗ ×H whose
inverse are given as follows:

Ω̂−1 := 1− ψ(Ω̃x0[ϕ̃, ψ̃])−1
∫

S(σ(m−2)
x ,σ(m−2)

x0
)
Z̃(m−1)[ϕ̃, ·]),

(2.10) Ω̂−1
∗ := 1− ϕ(Ωᵀx0

[ϕ̃, ψ̃])−1
∫

S(σ(m−2)
x ,σ(m−2)

x0
)
Z̃(m−1),ᵀ[·, ψ̃],

where pairs of functions(ϕ, ψ) ∈ H∗×H and (ϕ̃, ψ̃) ∈ H∗ × H are taken as arbitrary but
fixed.

For the expressions (2.10) to be compatible with mappings (2.7) the following actions
must hold:

ψ = Ω̂−1 · ψ = ψ̃(Ω̃x[ϕ̃, ψ̃])−1Ω̃x0[ϕ̃, ψ̃]),

(2.11) ϕ = Ω̂−1
∗ · ϕ̃ = ϕ(Ω̃ᵀx [ϕ̃, ψ̃])−1Ω̃

ᵀ
x0

[ϕ̃, ψ̃]),

where for any two pairs of functions (ϕ, ψ) ∈ H∗ × H and (ϕ̃, ψ̃) ∈ H∗ × H the following
relationships are satisfied:

< L̃∗ϕ̃, ψ̃ > dx− < ϕ̃, L̃ψ̃ > dx = S pd(Z̃(m−1)[ϕ̃, ψ̃]),

(2.12) L̃ := Ω̂LΩ̂−1, L̃∗ := Ω̂∗L∗Ω̂−1
∗ , Z̃(m−1)[ϕ̃, ψ̃] = dΩ̃(m−2)[ϕ̃, ψ̃].

Moreover, the expressions̃L : H → H and L̃∗ : H∗ → H∗ must be differential too.
Since this condition determines properly Delsarte transmutation operators (2.10), we need
to state the following theorem.

Theorem 2.2. The operator expressions̃L := Ω̂LΩ̂ andL̃∗ := Ω̂∗L∗Ω̂−1
∗ are purely differ-

ential onH∗ ×H for any suitably chosen hyper-surfacesS(σ(m−2)
x , σ(m−2)

x0
).

Proof. For proving the theorem it is necessary to show that the formal pseudo-differential
expressions corresponding to operatorsL̃ andL̃∗ contain no integral elements. Making use
of an idea devised in [8, 6], one can formulate the following lemma. �

Lemma 2.3. A pseudo-differential operatorL : H → H is purely differential iff the
following equality

(2.13) (<, (L
∂|α|

∂xα
)+ f >) = (<, L+

∂|α|

∂xα
f >)

holds for any|α| ∈ Z+ and all (h, f ) ∈ H∗ ×H , that is the condition (2.13) is equivalent to
the equalityL+ = L, where, as usual, the sign”( ...)+” means the purely differential part of
the corresponding expression inside the bracket.

Proof. Based now on this Lemma and exact expressions of operators (2.9) , similarly to
calculations done in [8], one shows right away that operatorsL̃ andL̃∗, depending only on
a pair of homological cyclesσ(m−2)

x andσ(m−2)
x0

marked by pointsx, x0 ∈ Rm, are purely
differential, thereby finishing the proof.I �
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3. T    D  

Consider the expression (2.9) in case when the dimensionk = dimCk tends to infinity.
Then we shall consider the Hilbert spaceH =L2(Rm; (L(µ)

2 (Rp;C))N), p ∈ Z+, and the
corresponding bilinear form onH∗ ×H given as

(3.1) (< ϕ, ψ >) :=
∫

Rm
dx

∫

Rp
dµ(λ)ϕᵀ(x; λ)ψ(x; λ),

whereµ is some Lebesgue measure on the space of values of a vector parameterλ ∈ Rp.
Subject to the bilinear form (3.1) one can derive an analog of the Lagrangian identity (2.2):

(3.2) < L∗ϕ, ψ > − < ϕ, Lψ >= Tr(
m∑

i=1

(−1)i+1 ∂

∂xi
Zi [ϕ, ψ](λ|ξ)),

where for any pair (ϕ, ψ) ∈ H∗ ×H kernelsZi [ϕ, ψ](λ|ξ), i = 1,m, being bilinear function-
als onH∗ × H , are assumed to be of the trace class scalar operators fromL(µ)

2 (Rp;C) into

L(µ)
2 (Rp;C) with the standardTr-operation given as follows:Tr(A(λ|ξ) :=

∫
Rp A(λ|λ)dµ(λ);

the variablex ∈ Rn is assumed here as a parameter. Correspondingly, there exists a dif-
ferential (m− 1)−form Z(m−1)[ϕ, ψ](λ|ξ) like (2.4), one finds that under suitable conditions
similar to those formulated before, there exists a differential (m−2)−form Ω(m−2)[ϕ, ψ](λ|ξ)
for all λ, ξ ∈ Rp, so that

(3.3) Z(m−1)[ϕ, ψ](λ|ξ) = dΩ(m−2)[ϕ, ψ](λ|ξ).
Making use of (3.3), we can derive now the fundamental expression generating Delsarte
transmutation operators:

∫

S(σ(m−2)
x ,σ(m−2)

x0
)
Z(m−1)[ϕ, ψ](λ|ξ) =

∫

∂S(σ(m−2)
x ,σ(m−2)

x0
)
Ω(m−2)[ϕ, ψ](λ|ξ) =

(3.4)
∫

σ(m−2)
x

Ω(m−2)[ϕ, ψ](λ|ξ) −
∫

σ(m−2)
x0

Ω(m−2)[ϕ, ψ](λ|ξ) := Ωx[ϕ, ψ](λ|ξ) −Ωx0[ϕ, ψ](λ|ξ)

for any pair (λ, ξ) ∈ Rp × Rp. The bilinear functionalsΩx[ϕ, ψ](λ|ξ) andΩx0[ϕ, ψ](λ|ξ),
parametrized by pointsx andx0 ∈ Rm, should be also considered as kernels of some scalar
integral operatorsΩx[ϕ, ψ],Ωx0[ϕ, ψ] : L(µ)

2 (Rp;C) → L(µ)
2 (Rp;C). For instance, by defini-

tion,

(3.5) Ωx[ϕ, ψ] f (λ) :=
∫

Rp
dµ(ξ)Ωx[ϕ, ψ](λ|ξ) f (ξ)

for any f ∈ L(µ)
2 (Rp;C). Thereby, one can define the corresponding generalized Delsarte

transformation operators actions as follows:

ψ̃(x; λ) = (Ω̂ψ)(x; λ) :=
∫

Rp×Rp
dµ(ξ)dµ(η)Ωx0[ϕ, ψ](λ|η)Ω−1

x [ϕ, ψ](η|ξ)ψ(x; ξ),

(3.6) ϕ̃(x; λ) = (Ω̂∗ϕ)(x; λ) :=
∫

Rp×Rp
dµ(ξ)dµ(η)Ωᵀx0

[ϕ, ψ](λ|η)Ω−1,ᵀ
x [ϕ, ψ](η|ξ)ψ(x; ξ),

where (x; λ) ∈ Rm × Rp and integral scalar operatorsΩx[ϕ, ψ],Ωx0[ϕ, ψ] : L(µ)
2 (Rp;C) →

L(µ)
2 (Rp;C) are assumed to be invertible. Based on (3.6) and on the method of varying
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constant invertible integral operatorΩx0[ϕ, ψ] : L(µ)
2 (Rp;C) → L(µ)

2 (Rp;C), one can easily
finds that expressions

Ω̂(x; λ) = 1−
∫

Rp×Rp
dµ(ξ)dµ(η)ϕ̃(x; η)Ω−1

x0
[ϕ, ψ](ξ|η) ×

∫

S(σ(m−2)
x ,σ(m−2)

x0
)
Z(m−1)[ϕ, ·](λ|ξ)Ω−1

x0
[ϕ, ψ](ξ|η),

Ω̂∗(x; λ) = 1−
∫

Rp×Rp
dµ(ξ)dµ(η)ψ̃(x; η)Ω−1,ᵀ

x0
[ϕ, ψ](ξ|η) ×(3.7)

∫

S(σ(m−2)
x ,σ(m−2)

x0
)
Z(m−1),ᵀ[·, ψ](λ|ξ)Ω−1,ᵀ

x0
[ϕ, ψ](ξ|η)

for all parameters (x; λ) ∈ Rm×Rp and fixed pairs (ϕ, ψ) ∈ H∗×H are purely invertible inte-
gral operators of Volterra type onH∗×H . Applying the same arguments as in section1, one
can also show that correspondingly transformed operatorsL̃ := Ω̂LΩ̂−1, L̃∗ := Ω̂∗L∗Ω̂−1

∗
appear to be purely differential too. Thereby, one can formulate the following theorem.

Theorem 3.1. The generalized operator expressions (3.7) are invertible integral Delsarte
transmutation operators of Volterra type ontoH∗×H , transforming correspondingly given
operatorsL andL∗ into the pure differential ones̃L := Ω̂LΩ̂−1 andL̃∗ := Ω̂∗L∗Ω̂−1

∗ . More-
over, the suitable subspacesH0 ⊂ H andH̃0 ⊂ H̃ , so thatΩ̂H0 � H̃0, depend strongly
on the topological structure of basic homological cyclesσ(m−2)

x andσ(m−2)
x0

parametrized by
pointsx, x0 ∈ Rm, generating a hypersurfaceS(σ(m−2)

x , σ(m−2)
x0

) via spanning them.

4. D.

Consider a differential operatorL : H → H in the form (2.1) and assume that its spec-
trumσ(L) consists of the discreteσd(L) and continuousσc(L) parts. By means of general
the general form of the Delsarte transmutation operators (3.7) one can construct a new
differential operator̃L := Ω̂LΩ̂−1 in H , so that its continuos spectrumσc(L̃) = σc(L) but
σd(L) , σd(L̃). Thereby these Delsarte transformed operators can be used for constructing
a wide class of differential operators with a fixed spectrum.

As it was shown before in [6] for the two-dimensional Dirac operator, the kernel of
the corresponding Delsarte transmutation operator satisfies necessarily some special linear
of Fredholm type integral equations called the Gelfand-Levitan-Marchenko ones, which
are very important for solving the corresponding inverse spectral problem, having a lot of
applications in modern mathematical physics.

One believes that such equations can be constructed for our multidimensional case too,
thereby, making it possible to pose the corresponding inverse spectral problem for de-
scribing a wide class of multidimensional operators with given spectral characteristics. In,
particular, similar to [6, 10], one can use such results for studying so called completely in-
tegrable nonlinear evolution equations, especially for constructing their exact solutions like
solitons and many others. This activity is in progress now and the corresponding results
will be published later.
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