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Abstract: Classification rates on out-of-sample predictions can often be improved through the use of model selection 
when fitting a model on the training data. Trained neural networks, with ESE financial ratios used as input, improve on 
ESE variables LDF and LR for discriminating between active and inactive stocks. The performance of Multilayer 
Perceptrons, Delta-Bar-Delta neural networks, LDF and LR can be improved with optimization of the features in the 
input. Neural network analyses show promise for increasing diagnostic accuracy of classifying the stocks. The areas 
under the ROC curves for MLP, and DBD were 0.929, and 0.927 respectively. For the full models of LDF and LR 
were 0.887 and 0.917 respectively. With the use of forward selection and backward elimination optimization 
techniques, the areas under the ROC curves for MLP and the LR were increased to approximately 0.93. 
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1. Introduction 
With the financial indicators (independent variables) of the 
stock markets, 132 companies shared in ESE have been 
investigated to classify their stocks. With all the ESE 
financial ratios used as input, receiver operating 
characteristic (ROC) curves were generated for the 
classification of stocks, by two neural network techniques: a 
multilayer perceptron (MLP) with back propagation 
technique, and Delat-Bar-Delat (DBD) and, as well as linear 
discriminant function (LDF) and logistic regression (LR) 
analysis.  
LDF analysis assumes that data representing different groups 
are linearly separable; also LR analysis assumes that data 
representing two groups are non-linearly separable. If these 
assumptions are not well met, the classifier’s performance is 
degraded. Other investigators have used artificial neural 
networks (specifically, multilayer perceptrons [MLP] with 
back-propagated learning) trained on ESE financial 
indicators (independent variables) to classify stocks as active 
or inactive. Using this method, the neural network classifier 
is trained to detect a relationship between input (independent 
variables) and a predefined investor's decision by comparing 
neural network prediction with the dependent variable and 
by learning from its mistakes. In general, neural network 
techniques differ from basic statistical techniques such as 
LDF and LR, because they can adapt to the distribution of 
the data rather than assume a predefined distribution. The 
active of statistical or neural network classification methods 
is most often measured by reporting areas under the receiver 
operating characteristic (ROC) curve or by reporting 
sensitivity at different specificities.  
The purpose of the current study was to compare the 
performance of ESE financial ratios LDF and LR with two 
artificial neural network methods in a single sample. 

Comparing different classification methods in a single 
sample reduces the effects of confounding variables. 
Because of their adaptability, we hypothesized that neural 
network techniques would perform as well as or better than 
LDF or LR classifiers in discriminating between active and 
inactive stocks.  
 
 
2. METHODOLOGY 
This part of the study includes shedding light on the case 
study used, the collected data description and the applied 
statistical techniques.  
 
2.1. The aim of the study 
The purpose of this study is to determine whether neural 
network techniques can improve differentiation between 
active (an investor can buy a stock) and inactive stocks (an 
investor can sell a stock) in Egyptian Stock Exchange (ESE). 
In an attempt to classify the stocks effectively as active or 
inactive, analysis strategies have been developed by using 
statistical methods such as linear discriminant function 
(LDF), logistic regression (LR) analysis and neural network 
technique. Also; this research aims at identifying a group of 
variables which deeply effect the decision of the investor 
whether to buy or sell a stock and also to suggest a model 
which can be used to classify any stock as they are parts of 
the financial instruments society. This research is extremely 
crucial for investors to identify the variables which will help 
them in taking the investment decision. Furthermore, the 
importance of this research according to companies which 
depend on issuing financial instruments is to disclose 
financial ratios which are of importance to the investors in 
the appropriate way and in the appropriate time. So that it 
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could provide the investors with the needed information to 
interact with the stocks belonging to a company. The 
importance of this research according to the responsible 
authorities in the government is to supply to it a way to 
monitor the type of information needed by the investor to 
take the investment decision to achieve the transparency 
concept.  
 
2.2. The research limits 
This research deals with stocks only and doesn’t deal with 
bonds in the ESE also it is based on the financial indicators 
and does not use political and economical variables which 
can be added to suggested models in future researches. 
 
2.3. The data 
One hundred thirty two companies randomly selected from 
658 companies shared in ESE in year 2003 were included in 
the study. All ESE financial ratios have been calculated for 
each company; also the stocks of these companies have been 
observed as active or inactive stocks to construct the binary 
variable (dependent variable) which take two values; one for 
an active stock and zero for an inactive stock. The variables 
of this study are:  
I. The dependent variable: It’s a binary variable; it has 2 
values zero and one. The value zero denotes that the stock is 
inactive, and the value one denotes that the stock is active. 
Active stock means an investor can buy a stock, while an 
inactive stock means an investor can sell a stock.  
II. The Independent variables: This paper uses the 
financial indicators as independent variables because the 
investor’s decision is based on these indicators. So, the 
independent variables are: 
Current Ratio (X1), Quick Acid Ratio (X2), the Financial 
Leverage (X3), Accounts receivable turnover ratio (X4), 
Asset return ratio (X5), Rate of return on equity (X6), 
Profitability multiplier (X7), Dividends (X8), Market to Book 
Value ratio (X9), Liquidity of Stock in the Market (X10), 
Cash Flow from Operations (X11), and the ratio between 
Cash in Flow and Current Liabilities (X12). 
 
3. Study Techniques  
This part will focus on the deployed analytical techniques: 
linear discriminant function, logistic regression, the 
multilayer perceptron (MLP) neural network model with the 
back-propagation (BP) algorithm and Delta-Bar-Delta neural 
network technique. 
 
3.1. Discriminant Analysis 
Discriminant analysis approach suggests that the stocks 
represent two distinct populations: “active” population and 
“inactive” population. Before the stock history is 
accumulated, the prior probability of a stock to belong to the 
“active” population is )1S(P i1 ==π , while the probability 
of a stock to belong to the “inactive” population 
is 10 1 ππ −= . Stock history represented by  
supplies us with additional information regarding the 
posterior: 
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where  and 1N 10 NNN −=  are the numbers of active and 
inactive stocks respectively. This maximization is usually 
equivalent to separate maximum likelihood estimation of 
distribution parameters for active and inactive populations. 
Prior probabilities can be empirically estimated by the 
relative frequency of activation and inactivation in the 
sample (Cooley et al., 1985). Evaluation the performance of 
linear discriminant analysis formula was carried out for 
classifying the stocks as active or inactive. Also, developed 
and evaluated LDF that used all 12 financial ratios as input. 
This LDF was developed and tested, with 10-fold cross-
validation used to reduce bias in developing and testing on 
the same samples. 
 
3.2. Logistic Regression 
Logistic regression suggests that there exists a stable 
statistical relationship, which allows one to determine the 
probability of active  given the values 
of : 
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No assumption is made concerning the distribution of . 
Coefficients 

jX
α  and β  can be found directly by maximum 

likelihood estimation. Essentially, we may look for the 
values of α  and β , maximizing the conditional likelihood 

))xexp(1(1

)xXsS(P)xs(p

i

N

1i

iiii

N

1i

βα −+÷=

===

∏

∏

=

=    (2) 

Two models (discriminant analysis and logistic regression) 
may be considered equivalent if we assume 

)x(p
)x(ploglogx

0

1

0

1 +=−
π
π

αβ .   (3) 

Nevertheless, corresponding estimation procedures may lead 
to different results due to different maximization procedures 
in (1) and (2). However, if we do not have a good model for 
the distribution of X  to start with, the distribution-free 
logistic regression, optimizing conditionally on the observed 
values of , seems to be a logical choice. Logistic 
regression via formula (3) can even be used for diagnostics 
and validation of parametric models for

iX

X . Evaluation the 
performance of logistic regression analysis formula was 
carried out for classifying the stocks as active or inactive. 
Also, developed and evaluated LR that used all 12 financial 
ratios as input. This LR was developed and tested, with 10-
fold cross-validation used to reduce bias in developing and 
testing on the same samples. 
 
3.3. Neural network techniques: 
Evaluation the performance of two artificial neural network 
techniques (MLP and DBD) for classifying stocks as active 
or inactive was carried out. For both neural network 
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techniques, all 12 financial ratios described earlier were 
included initially in the training set. 
 
3.3.1. Multilayer perceptron neural network:  
The MLP, a feed-forward back-propagation (BP) network, is 
the most frequently used neural network technique in recent 
researches. Two important characteristics of the MLP are: 
it’s nonlinear PEs which have a nonlinearity that must be 
smooth (such as the logistic function and the hyperbolic 
tangent); and their massive interconnectivity, such as any 
element of a given layer feeds all the elements of the next 
layer (Haykin S. 1994).  
The MLP is trained with error correction learning, which 
means that the desired response for the system must be 
known. In pattern recognition this is normally the case, since 
we know which data belongs to which experiment or the 
input data are labeled. Error correction learning works in the 
following way: from the system response at ith PE at nth 
iteration,  and the desired response for a given 
input pattern an instantaneous error  can be expressed 
as follows:  

)n(Yi )n(di

)n(ei

)n(Y)n(d)n(e iii −=     (4) 
Using the theory of gradient descent learning, each weight in 
the network can be adapted by correcting the present value 
of the weight with a term that is proportional to the present 
input and error at the weight, which can be expressed as 
follows: 

)n(x)n()n(w)1n(w jiijij ηδ+=+       (5) 
The local error )n(iδ can be directly computed from at 
the output PE or can be computed as a weighted sum of 
errors at the internal PEs. The constant 

)n(ei

η is called the step 
size. This procedure is called the BP algorithm. BP computes 
the sensitivity of a cost functional with respect to each 
weight in the network, and updates each weight proportional 
to the sensitivity. Momentum learning is an improvement to 
the straight gradient descent in the sense that a memory term 
is used to speed up and stabilize convergence. In momentum 
learning the equation to update the weights becomes  
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where α is the momentum factor. Normally α should be set 
between 0.1 and 0.9. Training can be implemented in two 
ways: either we present a pattern and adapt the weights (on-
line training), or we present all the patterns in the input file 
(an epoch), accumulate the weight updates, and then update 
the weights with the average weight update. The input and 
output of the ith node in a MLP mode, according to the BP 
algorithm computations can be expressed as follows: 

   B  OW  X : Input  ijiji +=∑    (7) 

      )F(X  O :Output ii =     (8) 
Where  
Wij : the weight of the connection from node i to node j 
Bi : the numerical value called bias 
F : the activation function 
The sum in equation (7) is over all nodes j in the previous 
layer. The output function is a nonlinear function which 
allows a network to solve problems that a linear network 

cannot solve. In this study the Sigmoid function given in 
equation (9) is used to determine the output state.  

)exp(-X(1 1  )F(X ii +÷=                      (9) 
BP learning algorithm is designed to reduce an error between 
the actual output and the desired output of the network in a 
gradient descent manner. The summed squared error (SSE) 
is defined as: 
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Where p index the all training patterns and i indexes the 
output nodes of the network. Opi and Tpi denote the actual 
output and the desired output of node, respectively when the 
input vector p is applied to the network (Fahlman S.E. 1988). 
A set of representative input and output patterns is selected 
to train the network. The connection weight Wij is adjusted 
when each input pattern is presented. All the patterns are 
repeatedly presented to the network until the SSE function is 
minimized and the network learns the input patterns.  
3.3.2. Delta-bar-Delta technique: 
Delta rule is also well known as Widrow/Hoff’s rule, or the 
rule of least mean squares, because it aims to minimize the 
objective function by determining the weights values. The 
aim is to minimize the sum of error squares. Delta rule 
equation is 

jciij yw εη∆ ⋅⋅=      (11) 
where jiw∆  is the adjustment of the connection weight from 
neuron j to neuron i computed by: 

old
ij

new
ijij www ∆∆∆ −=      (12) 

yci is the output value computed in the neuron i , jε is the 
raw error computed by: 

djcjj yy −=ε      (13) 
η is the learning coefficient and ydj is the desired output that 
is used to compute the error. In a classical BP neural 
network, the error is backpropagated through the network 
using the gradient descent algorithm. Since Delta rule is 
commonly used in supervised networks, it is necessary to 
mention the main problem that can occur in BP the error, i.e. 
the local minima. The local minima problem occurs when 
the minimum error of the function is found only for the local 
area and learning is stopped without reaching a global 
minimum. Generalized delta rule is obtained by adding a 
derivation of input neurons into a Delta rule equation such 
that weight adjustment is computed according to the 
formula: 

( )jjciij Ifyw ′⋅⋅⋅= εη∆     (14) 
where Ij is the input into neuron j. This rule is appropriate to 
be used with non-linear transfer functions. 
Learning coefficient η is an important parameter for the 
speed and efficiency of neural network learning, and is 
typically determined as a single learning rate for all 
connections in the network. Delta-Bar-Delta learning rule 
was developed in 1988 by Jacobs in order to improve the 
convergence speed of the classical Delta rule. It is a heuristic 
approach of localizing the learning coefficient η in a way 
that each connection in the network has its own learning rate 
and changes those rates continuously as the learning 
progresses. Dynamic weight adjustment in the DBD rule is 
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One partition was used as the test set and the remaining nine 
partitions were combined to form the training set. The 
process was iterated, with each partition serving once as the 
test set. The results obtained for the 10 test sets were 
combined to generate a single ROC curve for each 
classification method. For MLP, cross-validation was 
similar, except eight partitions were used for training, one 
was used as a test set, and one was used as a stopping set to 
avoid overtraining. We provided sensitivities at specificities 
of 75% (representing moderate specificity) and 90% 
(representing high specificity), although this information is 
available in the graphic representations of ROC curves also 
presented. Finally, we reported the area under the ROC 
curve when specificity was 90% or more for the different 
techniques. These areas are bound by the ROC curve, the 
point at 100% specificity, and the line that passes through 
the point at 90% specificity and is perpendicular to the 
diagonal that represents chance discrimination. This 
information was provided to examine differences between 
techniques when specificity was high. The 90% specificity 
level was chosen because it theoretically forces the cases 
presumed to be the most difficult into the active group by 
allowing only 10% of these cases into the inactive group. 
Areas under the ROC curves (with sensitivities at 75% and 
90% specificities) for all classification techniques evaluated 
are shown in Table 1. 

done according to the Saridis heuristic approach. On the 
other hand, when the sign of the weight is changed for a 
certain number of time steps, the rate for that connection is 
decreased. Thus, Delta rule equation (11) is modified so that 
the learning rate is different for each connection. 
In order to overcome these shortcomings, Extended-Delta-
Bar-Delta rule (EDBD), introduces a momentum term 

kα which also varies with time. The momentum term is used 
to prevent the network weights from saturation, and the 
EDBD rule enables local dynamic adjustment of this 
parameter, such that the learning equation becomes: 

1t
)k(ijkjcjk

t
)k(ij wyw −+⋅⋅= ∆αεη∆      (15) 

where kα is the momentum of the connection k in the 
network and t is the time point in which the weights of the 
connection k are adjusted. DBDs are newly developed 
techniques used for solving classification and regression 
problems. DBD architecture resembles the architecture of 
MLPs (input layer, hidden layer, output layer). During 
training, the DBD nonlinearly maps the training data to a 
high dimensional space where a hyper plane is fit that 
maximizes the margin of separation between classes while 
minimizing the generalization error (ability to generalize 
results from finite training set to data set), with the use of 
statistical learning theory. The DBD attempts to split the 
positive and negative vectors to optimize the distance 
between the hyper plane and the nearest of the positive and 
negative examples.  Each weight has its own learning rate 
that increases linearly as long as the weight’ s direction of 
change does not rapidly alternate, in which case learning rate 
decreases exponentially (Jacobs, 1988). 

The area under the ROC curve (±SE) for the LDF was 
(0.887±0.033). Area under the ROC curve of the LR was 
(0.917±0.029) which was significantly greater than the LDF. 
No other statistically significant differences between areas 
under the ROC curves of LDF and LR were observed. ROC 
curves for LDF and LR are shown in Figure 1.   

Figure 1: ROC curves of LDF and LR 4. Study results 

 

 
ROC curves for classifying stocks as active or inactive were 
determined for all techniques. These curves describe the 
continuous relationship between sensitivity and specificity at 
specificities ranging from 0% to 100%.  
A Receiver Operating Characteristic curve (ROC) 
summarizes the performance of a two-class classifier across 
the range of possible thresholds. It plots the sensitivity (class 
two true positives) versus one minus the specificity (class 
one false negatives). An ideal classifier hugs the left and top 
sides of the graph, and the area under the curve is 1.0. A 
random classifier should achieve approximately 0.5 while a 
classifier with an area less than 0.5 can be improved simply 
by flipping the class assignment (Zweig H.M. 1993). The 
ROC curve is recommended for comparing classifiers, as it 
does not merely summarize performance at a single 
arbitrarily selected decision threshold, but across all possible 
decision thresholds. The ROC curve can be used to select an 
optimum decision threshold. 

Areas under the curves when specificity was constrained 
from 90% to 100% were 0.180, and 0.138 respectively. 
Sensitivities at 75% specificity for LDF and LR were 86% 
for both methods. Sensitivities at 90% specificity were 79% 
and 69% respectively. Areas under the curves when 
specificity was constrained from 90% to 100% were 0.200 
and 0.180, for MLP and DBD respectively. Sensitivities at 
75% specificity for MLP and DBD were 90% for both 
techniques; sensitivities at 90% specificity were 82% and  
 
 For LDF and LR, 10-fold cross-validation was used to 

evaluate the classifiers. The active and inactive stocks were 
each divided randomly into 10 approximately equal subsets. 
Ten mutually exclusive partitions were formed for cross 
validation (to measure the true rather than the estimated error 
rate) by combining one of the 10 inactive subsets with one of 
the 10 active subsets. 
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Table 1: Area under ROC curves and Sensitivities.  
 Area under ROC curve Sensitivity % 
 

Technique 
 Total SE Specificity 0.9-1.0 Specificity 75% Specificity 90% 
LDF 0.887 0.033 0.180 86 79 Statistical 

methods LG 0.917 0.029 0.138 86 69 
MLP 0.929 0.027 0.200 90 82 Neural network 

techniques DBD 0.927 0.027 0.180 90 77 
MLP forward selection 0.935 0.026 0.177 94 77 
MLP backward elimination 0.935 0.026 0.128 89 71 
LR forward selection 0.933 0.026 0.228 94 88 

Optimizing 
techniques 

LR backward elimination 0.928 0.027 0.205 94 82 
77%, respectively. ROC curves for MLP and DBD are 
shown in figure 2. 

Figure 2: ROC curves of MLP and DBD 

 
Areas under the ROC curves were significantly higher for 
MLP than DBD. ROC curves for the best neural network 
(MLP) and the best statistical method LR are shown in 
Figure 3. 

Figure 3: ROC curves of LR and MLP 

 
 
4.1. Optimizing Neural Network and LR Results 
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When all financial ratios (independent variables) were 
included as input to the training set; the largest area under 
the ROC curve was the MLP for the neural network 
technique and LR for the statistical technique. Feature 
selection both by sequential forward selection and sequential 
backward elimination of features were carried out to 
determine whether relying on more effective features and 
removing less effective features would improve the 
performance of a classifier as measured by area under the 
ROC curve. During forward selection, an optimum training 
(input) set was determined by starting with an empty subset 
and adding one input parameter at a time (e.g., the one that 
most increased the area under the curve in combination with 
the previously selected variables) to the previously selected 
features until the area reached a maximum. During backward 
elimination, an optimal training set was found by starting 
with the full dimensional set from which the least effective 
input parameter was removed, one input parameter at a time 
(e.g., the one that resulted in the smallest increase in area 
under the ROC curve) until the maximum area was reached. 
This technique has been applied to LR and MLP. ROC 

curves for the optimizing MLP and LR are shown in Figure 
4. 

Figure 4: ROC curves of optimizing LR and MLP 

 
Figures 5 and 6 shows that the optimal areas under the ROC 
curve with either forward selection or backward elimination 
when we were using approximately 40% of the input 
variables. These figures show areas under the ROC curve (y-
axis) as a function of the number of ESE financial ratios in 
the training set (x-axis). The areas were maximized with a 
reduced dimension data set (subset of available input 
parameters) that contained an optimal combination of 
features determined by each optimization method, compared 
with using the full-dimensional feature set (all available 
input parameters). Using forward selection, the area under 
the ROC curve (± SE) increased from 0.935 (± 0.026) with 
all input variables, to a maximum of 0.935 (± 0.026) with 7 
input variables. When the optimal feature set was analyzed at 
specificities constrained from 90% to 100%, the area under 
the ROC curve decreased from 0.200 to 0.177. Sensitivity at 
75% specificity increased from 90% to 94%, and sensitivity 
at 90% decreased from 82% to 77%. When backward 
elimination was used, the area under the ROC curve 
increased to 0.928±0.027 and reached its maximum with 5 
input variables. When specificity was constrained from 90% 
to 100%, the area was 0.205. Sensitivity at 75% specificity 
was 94% and sensitivity at 90% specificity was 82%.  

 
Figure 5: Forward selection and backward elimination of 

LR 
ROC area of LR
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Figure 6: Forward selection and backward elimination of 

MLP 
ROC area of MLP
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ESE variables included in the optimized MLP and LR 
training set with both methods is listed below: 
LR Forward selection: X5, X7, X9 and X12  
LR Backward selection: X3, X4, X7, X9 and X12  
MLP Forward selection: X3, X4, X5, X6, X7 and X9  
MLP Backward selection: X3, X6, X7, X9 and X12 
When forward selection was used, the area under the ROC 
curve (±SE) increased from 0.917 ±0.029, with all input 
variables, to 0.933 ± 0.026, with 4 input variables. The areas 
when specificity was constrained from 90% to 100% 
increased from 0.138, with all input variables, to 0.177, with 
4 input variables. Sensitivity at 75% specificity increased 
from 86% to 94%, and sensitivity at 90% increased from 
69% to 77%. When backward elimination was used, the area 
under the ROC curve increased to 0.928 ± 0.027, with 5 
input variables. When specificity was constrained from 90% 
to 100%, the area was 0.205. Sensitivity at 75% specificity 
was 95% and sensitivity at 90% specificity was 82%. The 
investor’s decision classification performance of the 
optimized LR was similar to that of the optimized MLP, 
indicating that, with an optimal feature set, the data are 
linearly separable, and adaptive classifiers may not be 
necessary. Areas under the ROC curves for the optimized 
and full-dimensional LR and MLP are shown in Figure 4. 

 
5. Conclusion 
In our sample, all investigated financial ratios neural 
network techniques performed as well as or better than the 
LR functions. ROC curves for non-optimized neural network 
techniques ranged from 0.927 to 0.935, compared with 0.887 
to 0.917 for LDF and LR methods. Further, optimization of 
the feature set significantly increased discrimination ability, 
probably because of the removal of variables that add 
information that has less value than the cost of including 
them in the training process. These results suggest that 
neural network classification techniques trained on ESE 
financial ratios are promising for discriminating between 
stocks. In the present study, the non-optimized technique that 
resulted in the largest area under the ROC curve for 
discriminating between active and inactive stocks (area 
under ROC curve = 0.929 for MLP) yielded a sensitivity of 
82% at 77% specificity.  
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Although neural networks successfully discriminated 
between active and inactive stocks in this study, these 
techniques incur one general analysis. Due to the complexity 
of the classifiers, they do not allow the interaction of 
important variables to be identified and measured. Other 

classification techniques, such as Bayesian networks, allow 
better assessment of the relative contribution of features. In 
summary, neural network techniques were more successful 
at discriminating between active and inactive stocks than 
previously proposed LR. This improvement suggests that 
neural network techniques show at least as much potential 
for use in diagnosis of active and inactive stocks as nonlinear 
discriminant techniques. In addition, support vector 
machines demonstrated better generalization performance, 
and therefore better classification performance than MLPs. 
This result, coupled with the fact that MLPs are faster to 
train than DBD, suggests that DBD show superior potential 
for use in diagnosis of active and inactive stocks when 
compared with MLPs.  
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