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Abstract: - In this paper, we present an exact transient (discrete-time) queuing analysis of a statistical 
multiplexer with a finite number of input links and whose arrival process is correlated and consists of a train of 
a fixed number of fixed-length packets. The functional equation describing this queuing model is manipulated 
and transformed into a mathematical tractable form. This allows us to derive the transient probability 
generating function (pgf) of the buffer occupancy. From this transient pgf, time-dependent performance 
measures such as transient probability of empty buffer, transient mean of buffer occupancy and instantaneous 
packet overflow probabilities can be derived. The transient analysis provides useful insights into the derivation 
of the busy period distribution function, which will be illustrated for the simpler GI/D/1 case. We also present 
closed-form expressions for the idle period distribution of the queuing model under consideration. The paper 
presents significant new results on the transient and busy-period analysis of statistical multiplexers with N 
input links and train arrivals.  
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1  Introduction 
In this paper, we consider a statistical multiplexer 
with N input links, having the same transmission 
rate, and one output link. The arrival process to this 
multiplexer is correlated and consists of a fixed-
length packet-train arrival process. The main thrust 
behind our interest in investigating the impact of the 
above train arrival process on the performance of 
switching elements stems from the fact that such 
train arrival models are often encountered in the 
performance evaluation of large-scale ATM 
switching networks. For example, in some ATM 
environments, large external data frames (e.g voice 
or IP frames) are segmented at the edge of an ATM 
network into fixed-length ATM cells (mini-cells). 
Discrete-time queuing models with correlated train 
arrivals are also encountered in various other 
applications whereby customers are messages (eg. 
Frames or jumbo packets) composed of multiple 
fixed-length packets, see eg. [1-2].  
In this paper, we model an ATM multiplexer as a 
discrete-time queue, whose arrival process consists 
of mini-cell arrivals (thereafter referred to train 
arrivals). A functional equation describing this 
system has been derived in [1].We manipulated and 
transformed the functional equation describing this 

queuing model into a mathematical tractable form. 
This allows us to extract the transient pgf of the 
queue length, from which transient performance 
measures such as probabilities of an empty buffer, 
transient mean of buffer occupancy and 
instantaneous packet overflow probabilities can be 
derived. The proposed transform approach is an 
extension of an earlier approach [3] in the analysis 
of ATM multiplexers with correlated arrivals. 
Further, using the GI/D/1 queuing model as a 
reference, we show how our transient results allow 
us to characterize the distribution of the busy period 
of the queuing model under consideration. We also 
characterize the idle period distribution of our model 
in terms of its system’s parameters and illustrate our 
solution techniques through some numerical 
examples.  
 
2  Queuing Model and Functional 
Equation 
In this paper, we consider a discrete-time queuing 
system (figure 1) with infinite buffer capacity, N 
input links, one output link and a single (FCFS) 
deterministic server. The time axis is divided into 
equal length slots and packet transmission is 



synchronized to occur at the slot boundaries. Here a 
slot is the time period required to transmit exactly 
one packet from the buffer, and a message enters the 
buffer as a train at a fixed rate of one packet per slot. 
We further assume that each message is composed 
of a fixed number of m packets. In addition, traffic 
on different input links is assumed to be independent 
and with the same statistical characteristics.  
 

 
Fig.1. Statistical multiplexer with N input links and 
m packets/train 
 
On any input link, the probability that the first 
(leading) packet of a message enters the buffer in 
any given slot is q if the first packet of the previous 
message on this link did not enter the buffer during 
the previous (m-1) slots and it is zero, otherwise 
Further, let {cj ; j ≥1) be a series of independent and 
identical Bernoulli random variables with pgf  

C(z) = 1-q + q.z 
The queuing model under consideration can be 
formulated as a discrete-time m-dimensional 
Markov chain. The state of the system is defined by 
the state vector (lk, a1,k,a2,k,..am-1,k) where lk is the 
queue length at the end of slot k and an,k (0<n<m) is 
the number of input links having sent the nth packet 
of a message to the buffer in slot k. 
Next let: 
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denote the joint pgf of the system state vector. 
This type of statistical multiplexers with correlated 
train arrivals was modeled in [1] and a functional 
equation describing the pgf of the system state 
vector was derived and is given by the following 
expression [1]:  
 

      

 
Where pk(0) = Prob (lk=0)  is the probability of an 
empty buffer at the end of the kth slot  
In [1], a technique for deriving an explicit 
expression for the steady-state mean buffer 
occupancy is provided and an approximate method 
to get a tight upper bound for the tail distribution of 
the buffer occupancy is presented. In the sequel, an 

exact transient analysis of this queuing model will 
be presented, along with new results related to its 
busy and idle period distributions. 
3  Idle Period Analysis 
We first start with the idle period analysis of the 
queuing model under consideration, since it is easier 
to tackle. Recall [4] that an idle period starts at the 
departure instant of the last packet from the buffer 
(which leaves the system empty) and ends at the end 
of the first subsequent slot during which at least one 
arrival occurs. Let the random variable I denote the 
length of an arbitrary idle period, expressed in 
number of slots, and let I(z) be the corresponding 
pgf.  
For the idle period to last for k consecutive slots, 
there must be no arrivals during the first (k-1) slots 
and at least one arrival must occur in the kth slot. 
Further, recall from the queuing model’s description 
in the previous section that when the multiplexer is 
empty, all the links must be in an ‘idle’ (‘off’) state 
and must remain so for the first (k-1) slots. At the 
last slot (k), at least one link must switch to an 
‘active’ (‘on’) state. Because of the independence 
assumption among all the links, it follows that: 
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with probability generating function: 
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The above shows that the idle periods of the queuing 
model under consideration are geometrically 
distributed with parameter Nq)1( − , mean: 
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4 Transient Probabilities (pk(0)’s) of an 
Empty Buffer 
In this section, we derive expressions for the 
transient probabilities (pk(0)’s) of an empty system 
for the queuing model under consideration. First, we 
illustrate the solution technique by considering the 
simpler GI/D/1 queuing model and then highlight 
the strong resemblance in the general expressions of 
pk(0) between the two discrete models. Note that the 
analysis in this section will provide valuable insights 
into the busy period analysis, discussed in section 5. 
 
4.1  The GI/D/1 Queue Case  
Consider a GI/D/1 queuing system, and denote by 
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V(z) the pgf of the number of packet arrivals in 
steady-state. Also let Pk(z) denote the pgf of the 
buffer occupancy at the end of the kth slot. Without 
any loss of generality, assume that the system is 
initially empty (P0(z)) = 1). The imbedded Markov 
Chain analysis of the GI/D/1 queue yields the 
following well known equation relating the pgf of 
the queue length between two consecutive slots: 
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In the sequel, we show how to extract the transient 
probabilities of an empty buffer, pk(0)’s  from (2). 
First, we zero initial conditions, we can re-write (2) 
as follows: 
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where the only unknowns are the transient 
probabilities pk(0)’s. To evaluate these, we proceed 
as follows:  First let us define the following 
transforms ( 1≤w ): 
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Now substituting Pk(z) from (3) into P(z,w), as 
defined in (4): 
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Using Rouchés theorem, and taking into the account 
the analytical property of P(z,w) inside the poly-disk 
( ( 1; 1)z w≤ < , we get: 
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where z* is the unique root inside the unit circle of 
the equation 

                z-wV(z)=0                    (6) 
Applying Lagrange’s theorem [Appendix] to 
equation (5) allows us to derive the following 
expression for the transient probabilities of an empty 
buffer for the GI/D/1 queue: 
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Using the Leibniz’s rule for the kth derivative of a 
product, allows us to re-write (7) as follows: 
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For instance, applying (8) to the M/D/1 case, with 
(1 )( ) zV z e ρ− −= gives: 
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where Hg is the Barnes’s extended Hyper-geometric 
function, which for integers n and d is defined by: 
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4.2  The Case of Our Queuing Model  
The aim of this section is to re-write the marginal 
pgf of the buffer content of the queuing model under 
consideration in a form similar to (2) and then use 
similar arguments to extract the transient 
probabilities of an empty buffer, pk(0)’s.    
 
4.2.1 Theorem : 
Under zero initial conditions, where the buffer is 
initially empty with all links being ‘idle’, the 
functional equation (1) describing the queuing 
model under consideration can be written as follows: 
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where the summation is taken to be empty for k=0 
and the sequence J (k) is defined by the mth-order 
linear homogeneous “difference” equation: 
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With the following m initial conditions: 
 
 

 
The proof of the above proposition is readily 
obtained by induction and can be found in [5]. 
Next, let 1...121 121
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denotes the marginal pgf of the buffer occupancy at 
the end of the kth slot, assuming zero initial 
conditions. From (9): 
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It is interesting to note that the transient joint pgf of 
the queuing model under consideration, as expressed 
in (11) is now explicitly defined in terms the 
sequences ( )J k% as well as the transient probabilities 
of an empty buffer pk(0).   
 
4.2.2  Proposition: 
The function 1... 121
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=== −

=
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(11) is given by the following formula: 
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and iλ ’s (i=1,2, ..m) are the m distinct roots of the 
characteristic equation: 
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The proof of the above proposition is readily 
obtained via standard transform techniques [5].  
From (14), it is obvious that one of the roots has the 
property that 11==zλ . This particular root is 

thereafter denoted by mλ  
Next substituting Pk(z) from (11) into P(z,w), as 
defined in (4): 
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Substituting for )(~ kJ from (12) into the above, 
substituting for the Multinomial expansion and 
simplifying the resulting expression, yields [5]: 

( )

)15(.
!!...!.

!).()1(

.
.

!!...!.
!),(

1

1

... 21

1

1

... 21

21

21

i

i

m

i

i

m

nm

i
i

m

i

n

i

i

Nnnn m

nm

i
i

m

i

n
i

Nnnn m

wz

C

nnn
NwwPz

wz

Cz

nnn
NwzP

−

=

=

=+++

−

=

=

=+++

−










−+

−
=

∑

∑

C

C

C

C

λ

λ

λ  

Next, we determine the unknown boundary P(w), by 
invoking the analytical property of P(z,w) inside the 
polydisk ( 1; 1)z w≤ < . First, by defining ii λβ 1= , 
we can re-write (15): 
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where from (14), the iβ ’s are the m distinct roots of 
the characteristic equation: 
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Furthermore, from (17), one of these roots has the 
property that 11 ==zβ  This particular root is 
thereafter denoted by mβ . 
Next, from Rouchés theorem, it can be shown that 
for a small 0>ε , the equation 
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has a unique root inside ε+= 1z . Moreover, from 

the definitions of the iβ ’s, it is easy to show that 

since 0: 0 =<∀ =zimi β , then the unique root of 

(18) inside the unit disk is 0* =z , which also 
appears in the numerator of (16) since 

0: 0 =<∀ =ziCmi . Therefore these roots do not 
give us the equation we need to solve for P(w). For 
the remaining case )( mi = , we note that since 

qzm −== 10β and 10 ==zmC  then the  
corresponding term in (16) is given by: 
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Now, let N
mzH β=)( and denote by *z the unique 

root of the equation N
mwzHwz β.)(. == inside 1≤z .  

Since P(z,w) is bounded on )1;1( <≤ wz , the 
numerator of (19) must also be zero at z*, which 
implies: 
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where z* is the unique root inside the unit circle of: 
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From here we note the similarity between the 
expression of P(w) as given in (20-21) and the 
corresponding expression (5-6) for the GI/D/1 
queue. Using the same approach, presented in 
section 4.1, we can express the transient 
probabilities of an empty buffer of the queuing 
model under consideration as follows: 
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For instance, for m=2, it is easy to show from (17) 
that: 
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In this case (m=2), a closed-form expression for the 
transient probabilities pk(0)’s can be obtained from 
(22) by first expanding  H(z)k using the binomial 
theorem and then using a proof by induction to 
obtain the ith derivative of the corresponding 
expansion at z=0 [5]. Substituting the result back 
into (22), gives the following expression for the 
transient probabilities of an empty buffer: 
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where  denotes the floor function and )(xΓ is the 

Gamma function defined by dzezx zx∫
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which, for positive x, satisfies π=Γ )2
1( and 

)1()1()( −Γ−=Γ xxx , among others [6]. 
In this case (m=2), equations (12) and (24), allow us 
to fully characterize the transient pgf Pk(z) of the 
queue length. From this pgf, time-dependent 
performance measures such as transient mean 

1
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 and transient overflow probabilities 

of buffer occupancy can be derived.  
 

5.  Busy Period Analysis 
The main aim of this section is derive an expression 
for the pgf of the busy period of the multiplexer 
under consideration in terms of its system 
parameters. Generally speaking, the analysis of the 
busy periods is far more complicated than that of the 
idle periods. Further, the lengths and the positions of 
the idle and busy periods on the time axis are not 
affected by the queuing discipline, as long as it is 
work conserving [4]. We first illustrate the solution 
technique by considering the simpler case of the 
GI/D1 queue and show how the same approach is 
applicable to the our original queuing model. This 
approach has been used in [7] to analyze the busy 
period of an ATM multiplexer whose arrival process 
consists of the superposition of the traffic generated 
by independent binary Markov sources. 
 
5.1 The GI/D/1 Queue Case  
Consider a GI/D/1 queuing system, and, again, 
denote by V(z) be the pgf of packet arrivals in 
steady-state. Also let Pk(z) denote the pgf of the 
buffer occupancy at the end of the kth slot. Without 
any loss of generality, assume that the system is 
initially empty (P0(z)) = 1). The tree diagram, shown 
in figure 2 below will be used to explain the general 
approach, where for purpose of illustrations we have 
assumed a maximum of two packet arrivals/slot. 
Note that in figure 2, numbers above edges represent 
number of arrivals/slot and node labels represent 
buffer length at the end of the corresponding slot.  
 
                                                                                                                                                                                                     

 
 
Fig.2 An illustrating example 
 
From figure 2, we can see that the event of having 
an empty buffer at the end of the kth slot (grayed 
nodes) can be expressed as the sum of k mutually 
exclusive events. For instance, in reference to figure 
2, at the end of slot number 1, the probability of an 
empty buffer, p1(0), is equal to the probability that 
the buffer was initially empty and there were no 
arrivals. In other words: 

For k=1,  p1(0) = p0(0).V(0) 
Similarly, from figure 2, the probability of having an 
empty buffer at the end of the second slot is equal to 
the probability that the buffer was empty at the end 
of the first slot and there were no arrivals plus the 
probability that the buffer was initially empty and 
there were one and then zero arrivals (these two 
events are mutually exclusive). In mathematical 
terms, this translates to: 
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Similarly, for k=3, it is easy to verify from figure 2 
that: 
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and in general, by induction, we can write: 
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In (25), we have expressed the probability of an 
empty buffer at the end of the kth slot as the sum of k 
mutually exclusive events. Further, in (25), 

)0(jkp − is interpreted as the probability that the 
system was empty for the last time at the end of the 
(k-j)th slot and therefore the function )( jΩ  is the 
probability that the system is busy for (j-1) slots. 
Further, with simple algebra, we can prove by 
induction that (26) can be further simplified to yield: 
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Note that the above expression allows a busy period 
to consist of zero slots, and since in general we 
define the busy period of a queuing system as the 
time between two consecutive idle periods, then the 
busy period must consist of at least one slot (i.e 
initiated by at least one arrival). Under this 
convention, let the random variable b denote the 
length of an arbitrary busy period in number of slots 
and let B(z) be the corresponding pgf. Then: 
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and the corresponding pgf is therefore: 
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Further, from Lagrange’s theorem (Appendix), we 
can write: 

[ ] *

1 0
1

1

)(
!

σ∑
∞

= =
−

−

=
k z

k
k

kk

zV
dz
d

k
z  

where *σ is the unique solution of the equation: 
                   )(. σσ Vz=                   (28) 

inside the unit circle. Hence the pgf of the busy 
period for the GI/D/1 queue is: 
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where *σ is as defined in (28). The mean length of 
the busy period is readily obtained from (28-29), 
giving: 
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5.2 The Multiplexer with Train Arrivals Case  
In section (4.2), it was found that under zero initial 
conditions, the general expression of transient 
probability of empty buffer, pk(0), for our model, is 
the same as that of the GI/D/1 queue, with 

N
mzHzV β== )()( . Hence equations (25-26) also 

hold for the correlated case (this has also been 
verified through symbolic computation using the 
Maple computational system [8]). Hence, for our 
case, the distribution of the busy period is 
characterized by the probabilities: 
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and the corresponding pgf: 
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where *σ is the unique solution of the equation 
)(σσ zH= inside the unit circle. Further, from 

(30), the mean busy period of the multiplexer is: 
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where 
qm

NqmH
)1(1

)1('
−+

==ρ is the load of the 

system at steady-state (readily obtained from (17)).  
Finally, we note that our definition of the busy and 
idle periods implies that a slot will belong to an idle 
period if and only if the multiplexer is empty at the 
beginning of this slot; otherwise it belongs to a busy 
period. Hence, from the previous expressions for 
b and I , the fraction of slots belonging to an idle 
period is given by: 

ρ−=
+

1
bI

I
 

which, as expected, equals the steady-state 
probability of an empty buffer.  
For the case (m=2), closed-form expressions for the 
busy-period’s probability distribution can be derived 
from (31), giving: 
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In this case, the fact that the busy periods consists of 
an even number of slots is expected as each message 
consists of a fixed number of m=2 packets.  
 
6.0 Numerical Results  
In this section, we illustrate our analysis approach 
through some numerical examples. In figure 3, we 
plot the transient probabilities of an empty buffer as 
a function of time, with the number of input links as 
a parameter. We kept the steady-state load constant 
at 80%ρ = and assumed m=2. As may be seen, for 
the same steady-state load, different probabilities are 
obtained for different values of N. Also note that the 
transient probabilities of an empty buffer approach 
the steady-state value of 1 0.2ρ− = as time 
increases. 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 3 Transient probabilities of an empty buffer 
 
In figure 4, we plot the corresponding transient 
mean of the queue length. In particular, we note that 
the exponential rise behavior in the transient mean-
time curve, depicted in figure 4, is typical in many 
other queuing systems [3-9].  
 
 

 
 
Fig. 4 Transient mean of queue length 
 
A very useful measure to estimate the instantaneous 
packet overflow probabilities due to a finite buffer 
size (n) is the transient probability that occupancy in 
an infinite buffer system exceeds the proposed 
buffer size, [ ]kpr i n> . These probabilities can be 

computed from the transient pgf  ( )kP z as given in 

(11), by also noting that [ ]kpr i n> corresponds to 

the coefficient of nz in the polynomial 
1 ( )

1
kP z
z

−
−

. 

For m=2, these probabilities are displayed in figure 
5, below. As expected, the transient probabilities of 
overflow increase as time evolves, and this reflects 
the fact that when the system starts from zero initial 
conditions, the queue waiting room builds up 
progressively.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig.5 Transient probabilities of packet overflow  
 
Finally, figure 6 depicts the corresponding 
probability distribution function of the busy period, 
which exhibits zero ‘discontinuities’ at odd 
numbered slots. 
  



 
 
 
 
 
 
 
 
 
 
 
 
 
Fig.6 Probability distribution function of busy 
Period 
 
 7.  Conclusions  
In this paper, we have carried an exact transient 
analysis of a statistical multiplexer with a finite 
number of input links and whose arrival process 
consists of a train of a fixed number of fixed-length 
packets. By means of a generating functions 
approach, coupled with functional transformation 
techniques, we were able to extract the expression 
for the transient pgf of the queue length. From this 
pgf, several time-dependent performance measures 
were derived. Using the GI/D/1 queue as a 
reference, we showed how the transient analysis 
allows us to derive expressions for the probability 
distribution of the busy period and its corresponding 
pgf. Results for the idle period distribution were also 
provided.  
The transform approach used in the present analysis 
provides a general framework under which similar 
types of queuing models with correlated arrivals can 
be analyzed. Finally, we note that our transient 
analysis approach can also be generalized to cover 
non-zero initial conditions. More importantly, our 
transient analysis provides a key solution technique 
to extract the corresponding steady-state pgf [5]. 
 
Appendix : Lagrange’s Theorem [10] 
If )()( zgandzΨ are functions of z, analytical on 
and inside and on a closed contour C surrounding a 
point a, and if w is such that azzgw −<)(.  is 
satisfied at all points z on the perimeter C, then the 
equation: 

)(. zgwaz +=  
regarded as an equation in z, has exactly one root in 
the interior of C. Further any function )(zΨ of z 

analytical on and inside C can be expanded as power 
series in w by the formula: 
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