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Abstract: - Identification of the underlying cancer causation mechanism is extremely important in 
understanding how to treat the disease. The disregulation of a given cellular pathway may show up in the gene 
expression profile of the cell. If such is the case, computational techniques that can detect this profile change 
can be used to detect the pathways that have been disregulated. The present study demonstrates a classification 
based scheme to detect these pathways. The scheme has been applied on publicly available breast cancer data. 
Our results show that a mechanism that avoids immune surveillance may be implicated in the more aggressive 
kind of cancer studied.  
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1   Introduction 
 In depth understanding of disease causing 
mechanisms is critical to the successful treatment of 
the disease. Some diseases like cancer can be caused 
due to disregulation in one or more mechanisms in 
the living cell. This is unlike diseases like cystic 
fibrosis or thalassamia in which a single faulty gene 
leads to the disease. Treatment for such diseases 
could be very specific, as the root cause is known. 
However the situation complicates when the disease 
(like cancer) is a result of the variation in one or 
more of several factors and the treatment strategy 
and results vary significantly based on the factors 
that have undergone variation. Hence it is critical to 
understand what factors have undergone a variation 
in order to provide optimal (best achievable results 
with minimum side effects) treatment. 
 
 The development of technologies like gene 
expression microarrays [1,2] has allowed us to study 
the behavior of cells at a genome-wide, molecular 
level. The data generated by these experiments 
provides vital information about the cellular 
environment. However the amount of data that is 
generated is very large making manual analysis 
difficult. This necessitates the development of 
computer tools to mine knowledge from the large 
volume of data.  Currently, a diverse set of data 
mining techniques has been developed to discover 
patterns and perform diagnosis based on gene 
expression data [3-10]. (For a review see [11].) In 
this paper we propose a machine learning approach 
that can be used with gene expression information to 
implicate a specific cellular mechanism as a 

potential cause of a particular cellular behavior 
(such as cancer). 
 The paper has been organized as follows. Section 2 
introduces the reader to gene expression data, gives 
a minimal account of the biology of cancer and 
formulates the problem being solved. Section 3 
provides a brief on related works. Section 4 
describes classification using support vector 
machines. Section 5 provides a description of the 
proposed solution. Section 6 describes the datasets 
that were used in the paper. In Section 7 we present 
the results obtained and in section 8 the conclusions 
are provided. 
 
 
2   Problem Formulation 
2.1 Gene Expression and Microarray data 
 The building blocks of the living cell are proteins. 
Virtually all active functions in a cell can be mapped 
on to a protein or a group of proteins. The type of 
proteins present and the interactions that exist 
among them determine the behavior of the cell. The 
proteins that are found in a cell are the result of the 
genes expressed by the cell. The expression of a 
gene that contains the code for building a protein is 
determined by the influence of other proteins in the 
cell. These interactions, referred to as pathways or 
mechanisms, are well regulated and robust in the 
normal cell.  
 
 When a protein has to be manufactured, a copy of 
the gene coding for that protein is made. Such 
molecular copy of the gene is called the mRNA. The 
mRNA is then used to produce the protein. Thus the 



amount of mRNA present in the cell is to a first 
approximation, proportional to the amount of the 
corresponding protein that will be produced (the 
relationship is fuzzy due to other interactions that 
exist within the cell).  
 Microarray technology captures the amount of 
mRNA's that are present in the cell corresponding to 
a large number of genes in the genome. Each 
microarray contains thousands of probes each used 
to measure the quantity (expression level) of a 
specific gene’s mRNA. Thus a microarray 
experiment provides quantitative information 
regarding the expression level of many genes. 
  
When a series of microarray experiments are 
conducted on similar cells, one can estimate the 
expression profile of the gene and observe features 
like the trend in the expression of a gene, how the 
gene’s expression is correlated to the expression of 
other genes, etc. Such features allow one to compare 
two or more cells at the molecular level and also to 
make inferences about an unknown cell based on its 
gene expression data. Sample gene expression data 
is shown in Fig. 1, where the logarithm of the gene 
expression levels for each gene (identified in the 
first and second columns) normalized by the amount 
of the same gene in a reference cell population 
(rows), is given for a number of patients with 
different types of breast cell malignancies (third and 
further columns). 
  

 
2.2 Brief discussion of Cancer Biology  
 Cancer is a cellular state in which the cell begins to 
divide uncontrollably, a situation that leads to the 
creation of large masses of cells that begin to 
interfere with the normal physiology. In some cases 
these cells obtain the capability to travel through the 
body and start growing in other areas too 
(metastasis) [12]. In the normal cell the ability of the 
cell to divide is carefully controlled by a large 
number of cellular processes; also the immune 
system attacks those cells that act abnormally hence 

cancer. Thus for cancer to occur and proliferate, 
failure in the cell division regulatory processes and 
the ability of the cell to evade the immune system is 
necessary. The cells must acquire the ability to 
evade the immune system if it has to travel through 
the body; such cells are called invasive [13-22]. 
 Cancer is a disease that results from alteration
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multiple mechanisms. These alterations could be due 
to any one (or more than one) of the genes 
participating in those mechanisms. The cancerous 
behavior can be mapped to some of the several 
mechanisms that are responsible to maintain normal 
behavior, which in turn can be mapped to the genes 
that participate in these mechanisms. Hence the 
characterization of cancer in a cell can likely be 
done by observation and discovery of consistent 
patterns across a group of genes.  
 
2
 Given a particular pathway/mech
identify whether such pathway/mechanism behaves 
differentially between two cells with different 
phenotypes. 
 A generic st
the genes that participate in a regulatory mechanism 
and their expression profiles: identify whether a 
failure in the mechanism is associated with the 
disease state”. 
 In this study w
whether the disruption of a particular cellular 
pathway, the FAS-FASL pathway [13-22], leads to 
invasive cancer. We choose this pathway because of 
its relevance in evading the immune surveillance. 
We shall develop a generic machine learni
approach that would in principle determine whether 
the given pathway operates differentially in a given 
disease compared to the healthy state. 
 
3
 Currently classificatio
Neural Networks (ANN), Support Vector Machines, 
K-Nearest Neighbor methods, etc. have been used to 
classify among different cell types based on gene 
expression data. Golub et al.  [23] developed 
methods to classify among two cancer sub-types 
AML (Acute Myeloid Leukemia) and ALL (Acute 
Lymphoblastic leukemia). Khan et al. used ANN's 
in [24] to classify among SRBCT (Small Round 
Blue Cell Tumors) which are difficult to distinguish 
using conventional techniques. These studies and 
others that followed, clearly demonstrate how 
classification techniques can be used to differentiate 
among different tissues types using gene expression 
data. Ramaswamy et al. [4] studied various 

Figure 1: Sample Gene Expression data 



classification methods to differentiate among 
various cancer tissue types. They also used feature 
selection schemes to prune the large number of 
variables (genes) present in the analysis.  
  
In spite of their success at classification between 
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cancer types, these and other similar methods do not 
provide information regarding the role that each 
selected gene plays in the context of the disease 
under study. Indeed, these methods do not seek to 
factor in existing biological knowledge into the 
problem. Rather, they are designed to infer rules to 
determine tissue type, a task essential for diagnostic 
applications. Used in that modality, however, no 
clear biological hypothesis is formulated, making it 
difficult for the domain experts (typically biologists) 
to extract novel mechanistic information with these 
methods. 
 The study
integrate the biological knowledge in the feature 
selection process and subsequently derives 
inferences about the biological processes that are 
active in cancer cells being studied. 
 
 
4
Machines (SVM)  
 The task of classification
human activity. At its broadest, the term could cover 
any context in which some decision or forecast is 
made on the basis of currently available information. 
Autonomous systems to perform classification can 
be built using statistical learning techniques. Such 
techniques are usually applied when the amount of 
information to be churned to make decisions is 
voluminous and/or complex.   These systems can 
then be used to make decisions on new or unseen 
data. Many known techniques to build classifiers 
perform empirical data modeling. Empirical data 
modeling uses induction to build up a model of the 
system.  
 SVM is 
build classifiers [25,26]. SVM’s provide attractive 
features and promising empirical performance.  
SVM’s minimize the structural risk [27] and have a 
greater ability to generalize than methods that work 
by minimizing empirical risks. SVM’s also 
addresses the curse of dimensionality problem [28]. 
 Let us define a n-dimensional space, in which each
point x represents a cancer patient. The j-th 
coordinate of this point, xj, represents the expression 
level of j-th gene as measured in a microarray 
probing the cancer cells of that patient. Suppose we 
have patients with cancer of class 1 and patients 

with cancer of class -1. To find a rule that separates 
class 1 from class -1 points (i.e., patients), it is 
reasonable to try to find a hyperplane, with equation 
w.x+b = 0 (see Fig. 2), that neatly leaves each class 
at opposite sides of the plane. If that separation is 
possible we say that the problem is linearly 
separable. This is in general not feasible, but for the 
sake of simplicity we will restrict our discussion to 
linearly separable cases. A support vector machine 
(SVM) is based on the computation of a vector w 
and a scalar b that maximize the distance (margin) 
between the separating hyperplane and the available 
examples of each one of the two classes. It turns out 
that the hyperplane resulting from that maximization 
depends only on the points that are most proximal to 
it, called the support vectors (see Fig. 2). 

 The hyperplane, or decision boundary, can
to compute a decision rule ƒ(x)=sign(w.x+b), which 
is a bi-valued function that takes the input vector x 
and returns either +1 or –1, depending on whether x 
is deemed to belong to class 1 or class -1. The 
practical optimization procedure that yields w and b 
is an interesting exercise in convex quadratic 
programming whose description goes beyond the 
scope of this paper. The interested readers are 
referred to Ref. [25]. It turns out that the optimal w 
can be written in terms of a set of Lagrange 
multipliers 0≥iα  that are determined in the 
optimization process, in such a way that the decision 
function can be written as  
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where yi is the class descriptor (+1 or -1) of the 
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examples xi, and the sum is over all the example
(Interestingly, however, the αi are non-zero only fo
the support vector examples.) Eq. (1) is valid both in 
the separable and the non-separable cases. However 
these cases differ in the constrains imposed on the αi  
in the optimization process. 
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Figure 2: Schematic of hyperplane and support 
vectors in a sample feature space 
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 of 

on-
 

nearly 

VMs reside

  (2) 

 
 The Kernel formulation confers considerable 

dimensional space given by the expression level
n-genes considered as our features. However given 
two sets of points corresponding to two cancer 
classes, the problem will in general be linearly n
separable in its natural dimensionality. As illustrated
in Fig. 3, however, it is possible that a mapping Φ 
that brings the original space onto a higher 
dimensional space renders the two classes li
separable in the transformed space. 

 
 One of the beauties of the theory of S s 
in the fact that one can work on the higher 
dimensional space without explicitly computing Φ. 
This can be done because both in the optimization 
equations, as well as in the decision function given 
by Eq. (1), the problem can be formulated totally in 
terms of inner products of the form x.xj. In the 
transformed space, these inner products would be 
computed as Φ(x).Φ(xj). Therefore, all the 
formulation of the SVM in the transformed space 
depends on a “kernel function” K(x, xj)= Φ (x). Φ 
(xj). Usually, one chooses the kernel without 
knowing the transformation Φ. This is justified by 
Mercer’s theorem, which states that for any positive 
definite kernel K(x, xj), there exists a transformation 
Φ to a higher dimensional space, such that K(x, xj)= 
Φ (x). Φ (xj). Therefore, if one replaces x.xj by K(x, 
xj) everywhere in the algorithm, the result will be a 
linear SVM that lives in the higher dimensional 
space, but that results in a non-linear decision 
boundary in the original space. The decision 
boundary in the case of a nonlinear SVM is given 
by: 
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flexibility to the SVM approach, in that by sufficient 
experimentation one can find good problem-specific 
kernels that achieve good levels of performance in 
the classification problem. However, when data is 
scant and not too much test data is available, it is 
hard to determine whether a chosen Kernel will 
generalize well even when its performance in the 

limited data set was perfect. In those cases, it is 
better to take a parsimonious approach and use the 
simplest kernel. As we shall see, the amount of data 
to be used in the present paper is certainly limited. 
Therefore we used the linear SVM, given by the 
polynomial (degree 1) Kernel, given by  

K xxxx .),( ii =     (3) 

throughout the rest of the paper. This kernel is th

plest kernel, the good 

 
   Problem Solution 

o the problem posed in 

nology we can 

n consists of the following two 

tep 1: Build a classifier that can differentiate 

tep 2: Check classifier performance in terms of its 

e 
simplest possible kernel available for use, as it 
corresponds to Φ(x)=x. 
 Even with the sim
characteristics offered by SVMs, namely its ability 
to generalize, the fact that its training always finds a 
global minimum (in contrast with other methods 
such as neural networks), and the simplicity and 
ease of interpretation of the results, made SVM the 
method of choice for the problem to be addressed.  

 

5
 In this section the solution t
section 2.3. is discussed by considering cancer as a 
model disease. However our techniques can be 
easily extended to other diseases. From the 
discussion in section 2.1 it is often the case that 
cancer cells differ from the normal cells very 
significantly at the molecular level. 
With the help of microarray tech
measure expression levels of many genes and 
compare them across the two types. Cancer is a 
multigenic disease, i.e., change in more than one 
gene leads to causation of cancer. Thus univariate 
methods may not be successful across all cases.  
Therefore we require a multivariate approach that 
takes into consideration many factors 
simultaneously and hence can be better adapted to 
the problem at hand. 
 Our proposed solutio
steps. 
 
S
between cancer and normal cells (or two types of 
related cancers) based on the expression values of 
the genes that are known to participate in the given 
pathway. 
 
S
accuracy. If the classifier shows good performance 
(decided on the classification error-rate and 
corresponding p-value) then we conclude that the 
pathway/ mechanism that was used to build the 
classifier is playing a role, implicating the 

Figure 3: Schematic of a ‘Φ’ transformation 
of a 2-D non-separable sample space to a 3-D 

separable feature space 



pathway/mechanism as containing valuable 
information about the observed behavior. 
 
Our solution significantly differs from existing in 
silico gene expression analysis techniques in that it 
allows the biologist to map his/her biological 
hypothesis on a set of genes and verify it using the 
proposed solution. This is unlike many of the feature 
selection techniques, where genes that are 
significant from an information theoretic/ statistical 
point of view are chosen and these selected genes do 
not provide direct actionable knowledge using 
which the underlying cellular mechanism can be 
identified. Thus our method significantly differs 
from these existing techniques and allows one to 
investigate at the cellular pathway/ mechanism level. 
 
 
6  Analyses 
6.1 Description of used data 
 The dataset used and reported by Xiao-Jun Ma et al. 
[8] contained gene expression samples from 61 
Breast Cancer tissues (measured using cDNA 
technology). This dataset contained samples across 
various stages of the disease ADH (8), DCIS (30), 
IDC (23). ADH (Atypical Ductal Hyperplasia) is the 
stage where cells have begun to divide 
uncontrollably, yet do not have all the characteristics 
of a cancer cell. In some cases these cells later turn 
to be cancerous. DCIS (Ductal carcinoma in situ) a 
stage in which the cancer cells haven’t yet started to 
invade the body. IDC (Invasive Ductal Carcinoma) a 
stage in which the cancer cells have become 
autonomous and have the capabilities to evade the 
immune system and travel through the body. 
 
 All the gene expression levels are measured relative 
to normal breast tissue cell’s gene expression. In 
other words, the data to be used for a given gene is 
the gene expression of that gene in a given patient, 
divided by the gene expression of that same gene in 
a group of cells taken from normal breast tissue. 
From this dataset, three data subsets: ADHdf, 
DCISdf, IDCdf were created, where ADHdf, 
DCISdf and IDCdf contained ADH, DCIS, IDC 
samples respectively and each of these datasets 
contained only those genes that are related to the 
FAS/FASL pathway [13]. We also decided to test 
our procedure with a second well characterized 
metabolic pathway. Therefore three more data sub 
sets ADHdg, DCISdg, IDCdg with gene expression 
information of only those genes that play a role in 
the Glycolysis pathway were created. The details of 
the genes that were used in the dataset and known to 

play a role in the FAS/FASL pathway and the 
Glycolysis pathway are provided in Table 1 and 2 
respectively. All the datasets was generated using 
the cDNA microarray technology. 
 
 
6.2 Estimating Statistical Significance of 
results 
 In order to determine the statistical significance of 
the results, the following technique was used. The 
Receiver Operating Characteristic (ROC) [29] and 
the error rate (ER) of each classifier were 
determined by performing leave-one-out analysis.  
 
The error-rate ER is given by  

ER = 
TNFP

FP
+

+
TPFN

FN
+

  (4) 

where, 
TP – True positives identified by the classifier 
TN – True negatives identified by the classifier 
FP –  False positives identified by the classifier 
FN –  False negatives identified by the classifier 
 
Table 1: List of genes that participate in the 
FAS/FASL pathway and were observed in the used 
dataset. 

Gene Id Description 
BAG3  BCL2-associated athanogene 3 
BCL2  B-cell CLL/lymphoma 2 
BCL2L1  BCL2-like 1 
BCL9  B-cell CLL/lymphoma 9 
BNIP3L  BCL2/adenovirus E1B 19kD-interacting 

protein 3-like 
DAXX  death-associated protein 6 
EGR1  early growth response 1 
FAP48  FKBP-associated protein 
NFATC1  nuclear factor of activated T-cells, 

cytoplasmic, calcineurin-dependent 1 
NFATC4  nuclear factor of activated T-cells, 

cytoplasmic, calcineurin-dependent 4 
NFAT5  nuclear factor of activated T-cells 5, 

tonicity-responsive 
TLE1  transducin-like enhancer of split 1 
TLE2  transducin-like enhancer of split 2 

 
Table 2: List of genes that participate in the Glycolysis 
pathway and were observed in the used dataset. 

Gene Id Description 
ALDOC Aldolase C, fructose-bisphosphate 
C4.4A GPI-anchored metastasis-associated 

protein homolog 
ENO1 Enolase 1, (alpha) 
GPI Glucose phosphate isomerase 
PDHA1 pyruvate dehydrogenase alpha 1 



To estimate the statistical significance of the 
classification error rates observed in our data set, 
randomized datasets were generated by permuting 
the labels of the experiments and both the ROC and 
the error rate for each such randomized dataset was 
determined. The p-value for the error rate was 
estimated by  

p-value = ∑   (5) 
=

(
n

1i
i)/nERφ

where n=1000 is the number of random datasets 
considered, ERi is the error rate in randomized 
dataset i, and 
 

      )ERi(φ = , 
⎩
⎨
⎧

≤
>

ERER if  1
ERER if  0

i

i

 
 where ER is the error rate for the actual dataset. 
 
The ROC is evaluated by means of a plot of the true 
positive fraction (sensitivity) versus the false 
positive fraction (1-specificity) using a continuously 
varying decision threshold. Each observation 
(training sample) describes a point on a two 
dimensional plot where the ordinate indicates the 
fraction of class 1 examples left out in the cross-
validation that fell   on the correct side of the 
decision boundary (the class 1 side), and the 
abscissa indicates fraction of class -1 examples left 
out in the cross-validation   that fell on the wrong 
side of the decision boundary (the class 1 side). A 
good classifier will have a point where the true 
positives rate is high and the false positive rate is 
low. The ROC curve in this case will lie in the upper 
left corner (see line a in Fig. 4). 

 
A classifier with no discrimination will have the 
positives and negatives mixed together and will 
produce a line like b in Fig. 4. Thus, the area under 
the ROC curve, referred to as the ROC score, is a 
measure of correct classification. An area of 0.9, for 

instance, indicates a good classification 
performance. The area under the ROC curve can be 
used without any transformation to examine the 
sensitivity and specificity of the classifier. 
 
The p-value for ROC scores was determined using  

p-value =   (6) ∑
=

(
n

1i
i)/nROCφ

where n=1000 is the total number of random 
datasets, ROCi is the ROC score in randomized 
dataset i, and  

        )ROCi(φ = ,  
⎩
⎨
⎧

≥
<

ROCROC if  1
ROCROC if  0

i

i

 
 where ROC is the ROC score for the actual dataset. 
 
The tool Genes@Work [30] was used to perform the 
classification procedure and in performing the 
statistical significance tests. Genes@Work is 
available for download from 
www.research.ibm.com/FunGen/ 
 
 
7   Results 
Three classifiers where built to differentiate among 
the classes ADH, DCIS and IDC for both the 
FAS/FASL and the glycolysis pathways. Three 
groups were built with the following pairings: group 
1{ADH, DCIS}, group 2 {ADH, IDC}, group 
3{DCIS, IDC}. We expected to see a very good 
classification in groups 1 and 2 and a reduced 
accuracy in group 3. The reason for this is as 
follows. ADH is a stage where the cells have not yet 
obtained the capabilities for immune evasion, 
whereas DCIS is a stage where the cells have 
obtained some capabilities for immune evasion; 
similarly cells in IDC stage have immune evasion 
capabilities [12]. Thus with respect to the FAS-
FASL pathway (which, as mentioned earlier, plays a 
role in enabling immune evasion) samples of type 
ADH should differ significantly from that of DCIS 
and IDC. Since cells in either IDC or DCIS stage 
have obtained the immune evasion capability these 
samples must have similar expression profile and 
hence result in a higher error-rate as the FAS/FASL 
pathway does not differentiate between them. 
  
In order to justify that the classification results 
obtained using the pathway information are 
significant and are not just an artifact of the 
classification procedure, we selected a pathway  
believed not to play a role in the causation of cancer. 
The Glycolysis pathway is a metabolic pathway and 

Figure 4: Schematic showing sample ROC 
curves  



plays a role in generating energy in the cell. This 
pathway was chosen with a naïve belief that 
metabolic activities across the cells will remain 
undisturbed and will not be associated with the 
cancer state of the cells. Classifiers were built to 
perform classification using the expression data of 
the Glycolysis genes across the groups 1, 2 and 3. 
The classifiers were built and the error-rate and 
ROC scores (with their respective p-values) that 
each group scored across the two pathways is shown 
in Fig. 5 and Fig. 6. 

 
 From the results we can observe that ADH is well 
distinguished at the molecular level from DCIS and 
IDC. The ROC and the Minimum error-rate (p-value 
< 0.05) for ADH vs DCIS and ADH vs IDC is very 
good compared to DCIS vs IDC, confirming the 
biological expectation. In the case of the Glycolysis 
pathway, the ROC and Minimum error-rate for 
ADH vs DCIS indicates that the pathway is 
significantly different between ADH and DCIS. This 
was further investigated and the reason for the 
difference can be interpreted as follows. 
 The cells in the ADH stage undergo dramatic 
phenotypic changes and genes involved in the 
glycolytic function are upregulated. There seems to 
be a significant alteration in the metabolic functions 
of the cell that is getting transformed to the DCIS 
[10]. 
 
The above results show that the method also helps in 
correcting incorrect or misunderstood assumptions 

and the method should be used in conjunction with a 
body of knowledge that would enable to 
differentiate between causative and non-causative 
mechanisms.  
  
 
8  Conclusions 
 Identification of mechanisms associated with a 
disease remains a challenging task. Challenges are 
mainly due to the lack of knowledge and effort/cost 
involved in verifying mechanistic hypotheses. 
Microarray technology has allowed scientists to 
capture instances of cells at various stages of 
behavior. A microarray experiment usually captures 
the expression level of thousands of genes. Direct 
discovery of mechanisms playing a role in a disease 
has so far been unsuccessful, due to high error rate 
in the microarray experiments, the nuances 
associated with normalization of the expression 
information, the presence of large number of 
variables (genes) and very low number of samples 
(microarray experiments). 
 In this study we have taken two pathways one of 
which is known to play a role in the causation of 
invasive cancer and shown proof of principle that 
the pathway can be detected and implicated in silico.  
 
This attempt is significantly different from the 
existing efforts (see section 3 for details) wherein 
classification techniques have applied to 
differentiate among different tissue types. Also the 
existing methods do not have provision to include 
the existing body of biological knowledge into the 
classification process. Such methods do not directly 
provide any information regarding the underlying 
cellular mechanisms that result in the difference and 
hence cannot be used for studies where the 
knowledge of the underlying mechanism is critical. 
 
The proposed machine learning approach allows one 
to identify putative mechanisms that contain 
information about the class of tissue under 
classification, and therefore might play a role in the 
causation of the disease. In doing so, we have come 
up with a methodology that can potentially find 
probable causative mechanisms from the entire pool 
of known/hypothesized mechanisms. 
 The proposed method is very sensitive and detects 
even low discriminative features. This is seen as a 
result of the analysis that was performed on the 
glycolysis pathway. According to our initial 
understanding the Glycolysis pathway was not 
expected to play a role. However our method 
showed that the pathway acts as a significant 
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Figure 5: Results using FAS/FASL pathway  
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biomarker presumably indicating the setting in of 
cancer during the transition period from ADH to 
DCIS.  
The proposed technique may be helpful in choosing 
and targeting specific treatments which have better 
therapeutic effects and minimal side effects. For 
example antiestrogen treatment is effective only in 
patients with estrogen receptor positive breast 
cancer [31]. Hence it important to detect whether the 
estrogen associated pathways/ mechanisms have 
been disregulated before prescription of the 
antiestrogen based treatments.  
 Although the proposed method has been proven to 
detect pathways with sufficient correlation to the 
target disease causation, the process of choosing the 
ROC/Error-rate cutoff’s and the p-value score still 
remains non-standardized and hence these decisions 
have to be done on a case by case basis. Also the 
method needs to be used in conjunction with a body 
of domain knowledge to differentiate between 
diagnostic and causative mechanisms. 
 The method developed can be easily extended to 
verify other mechanisms and it is possible to build a 
group of classifiers that would co-operatively 
identify the possible causes for the observed 
phenotype. 
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