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Abstract: - An combined approach for reducing the errors in the pole frequency fp, in the pole Q-factor Qp and in the 
amplitude at the pole frequency Hp of switched-capacitor biquads is presented. At first, the conventional 
integrators in the biquads are replaced by gain-and offset-compensated integrators. Subsequently, the errors 
∆fp/fp, ∆Qp/Qp and ∆Hp/Hp are minimized by modifying three capacitances: the two integrating capacitances 
and an appropriately chosen capacitance. The effectiveness of this approach is demonstrated by designing a 
bandpass biquad. 
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1   Introduction 

Switched-capacitor (SC) integrators are the basic 
building blocks of SC filters. A key requirement of these 
circuits is that their performances remain insensitive to 
variations in operational-amplifiers (op amps) offset 
voltage, gain and bandwidth. This is especially important 
in high-frequency SC filters, where low amplifier gain is 
often the result of wide bandwidth design. It has been 
shown that in SC filters the effect of op amps finite gain 
A is more serious than that of the finite bandwidth [1]. 
This has led to the development of gain – and offset-
compensated (GOC) integrators where the phase error is 
proportional to 1/A2 [2-6]. In a conventional integrator 
this is a simple inverse dependence 1/A. In the most of 
the GOC integrators, reported in the literature, the 
reduction in the phase error θ(ω) was obtained at the 
expense of increased gain error m(ω). According to the 
authors knowledge, the Betts-91 [5] and the Shafeeu-91 
[6] circuits are the two GOC integrators that have the 
same sample correction property, which results in 
simultaneous reduction of gain and phase errors. The 
Betts-91 integrator is however quite complex. The 
Shafeeu-91 integrator uses fewer components but 
requires a four-phase clock.  

A second-order filter section, known as a biquad, is 
commonly realized using a feedback loop containing one 
inverting and one noninverting integrators. The gain 
errors m(ω) of the integrators affect the pole frequency fp 
of the biquad, while the phase errors θ(ω) affect the pole 
quality factor Qp and the magnitude of the biquad 
transfer function at the pole frequency Hp.  

In this paper a combined approach for minimization 
of the errors in the pole frequency fp, in the pole Q-factor 

Qp and in the amplitude at the pole frequency Hp of  SC 
biquads with low but precisely known and stable op 
amps dc gain is proposed. The effectiveness of this 
approach is demonstrated by designing a bandpass SC 
biquad.  
 
 
2   Proposed combined approach  

The z-domain biquadratic transfer function has the 
general form  
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where z = exp( j2πf/fs ), with fs denoting the sampling 
frequency. 

For any pair of complex conjugate poles in the z-
domain, one can write the denominator as  
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where R is the radius and θ is the angle to the pole.  

From (2) the following relationships for the pole 
frequency and the pole Q-factor can be derived: 
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For small ratio fp/fs and high Q-factor the pole 

frequency fp and the pole Qp are approximately given by 
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For a given SC structure, in standard design the op 

amp gain value is assumed to be infinite. Then the 
coefficients in (1) are a function only of the 
capacitances. In this case, from (5), (6) and (1) the 
logarithmic sensitivities of fp, Qp and of the amplitude at 
the pole frequency Hp to the capacitances Cq can be 
obtained. 

Using the simple classical definition 
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the results are 
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and 
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where  
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 The proposed combined approach for minimization 
of the errors ∆fp/fp, ∆Qp/Qp and ∆Hp/Hp in SC biquads 
consists in the following consecutive steps: 

 
Step 1. At first, for reducing the effect of op amp 

imperfections (dc gain A and offset voltage VOS) the 
conventional integrators in the biquad considered are 
replace by Nagaraj-86 [2] and Ki-89 [3] GOC SC 
integrators. These simple bi-phase integrators form an 
excellent GOC integrator-pair without the use of extra 
clock phases or holding circuits to satisfy the sampling 
conditions. The reduced phase errors of the GOC 
integrators provide a reduction in the errors ∆Qp/Qp and 
∆Hp/Hp. 

 
Step 2. The gain error of the integrators is 

equivalent to an element value variation ∆Ci of the 
integrating capacitance Ci. If  the finite dc gain A is 
known, the value of Ci can be replaced by  

( )mCC ii += 1/  in the two integrators of the GOC 
biquad, thereby essentially reducing the gain errors m(ω) 
[7]. This prewarping technique automatically provides 
minimization of the pole frequency error ∆fp/fp of the 
biquad considered. 

The prewarped capacitance values  and  for 
the Nagaraj-86 and Ki-89 integrators are calculated on 
the basic of the expressions 
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where 



● The terms in the sums are all the capacitances 
(excepting the holding capacitance Ch) connected to the 
“super-virtual ground” node of the integrators; 

● A0 is the nominal value of the op amp dc gain A; 
● For the Nagaraj-86 integrator the holding 

capacitance Ch is equal to the smallest biquad 
capacitance; 

● For the Ki-89 integrator Ch= . /
iKC

 
Step 3. The errors ∆Qp/Qp and ∆Hp/Hp can be 

further minimized by modifying one capacitance. This 
capacitance Cq is chosen such that the following 
relations hold: 
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The sensitivities ,  and , defined by (7), 

(8) and (9), are calculated for the standard synthesis 

values of the capacitances computed assuming the op 
amp gain A to be infinite. The relative deviation in pole-
Q factor due to a change in the capacitance C

fp
CqS Qp

CqS Hp
CqS

q around its 
nominal value is approximately given by 
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The calculated relative error ∆Qp/Qp of the 

resulting GOC biquad with prewarped integrating 
capacitances is substituted with opposite sign for the 
relative deviation into (12). 

The new value  of the capacitance C/
qC q is the 

solution of the equation 
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The relationships (12) and (13) are valid for small 

variations of the capacitance around its standard 
synthesis value. That is why the preliminary GOC 
approach is indispensable for the subsequent 
compensation by modifying the capacitance Cq. 

 
 

3   Application of the proposed approach 
The proposed approach is illustrated by means of 

the Fleischer and Laker’s E-type bandpass BP01 SC 
biquad [8,9], shown in Fig.1. 

The circuit has a pole frequency fp=500kHz, a 

quality factor Qp=16, a peak gain of 10dB at fp and 
sampling frequency fs=10MHz. The component values 
are CA=11.67pF, CB=37.22pF, CC=11.38pF, 
CD=36.81pF, CE=2.28pF, and CJ=2.26pF [8]. 

 It was found that for op amp gain A1=A2=100 the 
deviation of fp, Qp and Hp from the ideal case are 
 
∆fp/fp = -1.202%, ∆Qp/Qp= -25.37%, ∆Hp/Hp = -25.38%  
 

According to the proposed approach the first 
integrator in the conventional biquad (Fig.1) is replaced 
by the Nagaraj-86 inverting integrator and the second 
integrator – by the Ki-89 noninverting integrator. The 
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Fig.1. Bandpass SC biquad with conventional integrators 



resulting filter is shown in Fig.2, where Ch1=CJ and 
Ch2=CB. 

The performance parameters of the GOC  biquad 
for A1=A2=100 are summarized in Table 1. 

 
 

GOC biquad 
with: 

∆fp/fp [%] ∆Qp/Qp [%] ∆Hp/Hp [%]

CB and CD -1.41199 2.0395 2.026 

/
BC  and C  /

D
-3.4764.10-3 0.63116 0.62675 

Table 1: Performance parameters of the GOC  biquad 
 

Subsequently, for reducing the pole frequency error 
the integrating capacitances CD and CB are modified 
according to the relation (10) and (11). The prewarped 
capacitances C  and  are given by the expressions /
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One obtains =36.28792 pF and =36.71356 pF 

for A

/
DC /

BC
01=A02=100. 
The corresponding performance parameters of the 

biquad are also given in Table 1. 

The ideal z-domain transfer function is  
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The pole frequency fp and the quality factor Qp are 

approximately given by 
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The corresponding logarithmic sensitivities to the 

capacitance CE are 
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Therefore, the errors ∆Qp/Qp and ∆Hp/Hp can be 

further minimized by modifying the capacitance CE 
according to the expression 
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Fig.2. Bandpass biquad with GOC integrators 
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where ∆Qp/Q =6.311

This gives /
EC =2.29439 pF. 

h 
, CE and with gain variation 

A1= 8 are summarized in Table 2. 

p 6.10-3. 

The performance parameters or the GOC biquad wit
modified capacitances CB, CD

A2=A=100±
 

A ∆fp/fp [%] ∆Qp/Qp [%] ∆Hp/Hp [%] 
92 -0.1236 0.1405 0.1383 

100 -5.98. -4 -4 10-310 -9.1.10 -1.92.
1  08 0.1044 -0.125 -0.1252 

Tabl erfor am he ad  
apac B, CD
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 biquads have been replaced by gain-and offset-
compensated integrators. Subsequently, the errors in the 
pole frequency fp, in the pole Q-factor Qp and in the 
amplitude Hp at the pole frequency have been minimized 
by modifying three capacitances: the two integrating 
capacitances and an appropriately chosen capacitance. 
The proposed approach has been illustrated by designing 
a bandpass biquad. 

The obtained results demonstrate the possibility of 
considerable performance improvement by using the 
proposed approach. 
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