
 1

New Analytical Model of Value Prediction

J. MARKOVSKI, M. GUSEV

Faculty of Natural Sciences and Mathematics,
Ss. Cyril and Methodius University,

Arhimedova b.b., PO Box 162, 1000 Skopje
FYROM

Abstract: - Value prediction is a technique for speculative execution of data dependent instructions based on
predicted outcomes of instructions. The predicted outcomes are supplied by a special hardware device called
value predictor. Despite the numerous reports on the benefits of value prediction there is still no commercial
processor that employs this technique. One limiting factor of the performance potential of value prediction is
the value predictor latency. In this paper we extend an existing analytical model of the processor in order to
evaluate the effect of value predictor latency. We conclude that the value predictor latency must be reduced and
value prediction latency should be overlapped by some other pipeline stages. In addition, value prediction
should be made only on instructions with high execution latencies.

Keywords: ILP, value prediction, analytical model, dataflow, critical path

1 Introduction
Value prediction was introduced almost
simultaneously in [9] and [3] as powerful means to
overcome true data dependences. It relies on the
principles of value locality and value predictability
which are employed as a way to collapse true data
dependences or a means to produce suitable value
predictors according to the observed type of value
predictability [3]. In both cases, we can define
speculative execution based on value prediction as
execution of a true data dependent instruction with
an empty or partially computed set of input values
[3, 6, 14]. This set is filled with predicted values
supplied by the value predictor. Value predictor
presents a hardware-based mechanism that
produces a predicted outcome value of a given
instruction.

Speculative execution based on value
prediction introduces new classes of values to the
processor: (1) actual or final values, (2) predicted
values and (3) speculative values [12, 13, 14].
Actual (or final) values present real values
produced by the instructions. Predicted values are
values obtained by the value predictor. Speculative
values are results of those instructions which
execution is based on the predicted result. Predicted
values are usually obtained before the beginning of
instruction execution stage. They can be (1)
speculatively forwarded to all data dependent

instructions or (2) used to speculatively execute
only the predicted instruction [12, 13].

Numerous propositions are made on how to
implement techniques based on value locality and
value predictability into contemporary processors.
Different techniques propose different approaches,
but they achieve similar performance
improvements of 5-20% percent when simulated in
comparable environments [2, 3, 13, 14].

However, if we compare (1) additional
hardware complexity and complex misspeculation
recovery techniques required to implement
effective value prediction and (2) gained
performance improvements, it comes to no surprise
why there is still no commercial processor that
employs value prediction. Still, significant
performance potential of value prediction exists
and shows tempting results when observed on
perfect or almost perfect dataflow machines [3].

2 Limiting factors

Our previous research in [10] overviews current
limiting factors of the performance potential of
value prediction: (1) low instruction fetch width
and finite instruction window [3, 5, 11, 12, 14], (2)
imperfect branch prediction [5, 10, 13], (3) delayed
update of the value prediction tables and value
predictor latency [1, 2, 4, 8, 13, 14, 15] and (4)

 2

multiple simultaneous value predictor accesses [2,
5, 14].

All above mentioned factors are still not
resolved completely and pose very low boundaries
on the amount of ILP offered by value prediction
techniques.

Instruction fetch width of the processor
directly influences the performance potential of
value prediction [3, 5, 6, 11, 12, 14]. In case of low
instruction fetch width the possibility of fetching
data dependent instruction in the same cycle is very
small. This imposes serialization of data dependent
instructions, which in return provides additional
time for computation of inputs of the data
dependent instruction.

The effect of the finite instruction window
is presented as the most devastating factor that
suppresses the amount of extractable ILP using
value prediction in several studies [3, 5, 6, 11, 14].
The performance potential of value prediction
grows as the instruction window size increases until
a certain threshold when observed under fixed
instruction fetch width. Afterwards there is no
additional performance gain while increasing the
instruction window size.

The correlation of branch prediction and
value prediction is discussed on multiple occasions
[5, 11, 14]. One obvious fact is that branch
misspeculation and value misprediction can lead to
additional value and branch mispredictions which
may result in higher misspeculation penalties and
decrease of the performance.

After the value predictor supplies the
predicted value for some instruction, its state has to
be updated. Usually, (1) the history of previously
seen values needs to be updated with the latest
actual result and (2) the confidence estimator [12]
needs to be adjusted depending on the success of
the previous value prediction. However, value
predictor update may occur late in case of long
execution latency of the predicted instruction. In
that case, several other dynamic instances of the
same static instruction obtain predicted values with
the old state of the predictor which in return affects
the value prediction accuracy. For example, this
phenomenon is observed during execution of a
short loop with long execution latency of the
instructions like integer division or load cache
misses.

A value predictor can receive a request to
make a value prediction on result of some
instruction during different stages in the pipeline,
which imposes the following classification of the

value prediction methods: (1) at-fetch value
prediction, (2) post-decode value prediction and (3)
decoupled value prediction [1]. This classification
is important because it is not reasonable to assume
that the predicted value will be available
immediately, since the value predictor has to access
considerably large memory tables [1]. The benefit
from the value prediction greatly depends on the
point in the pipeline where the value prediction is
requested.

Latency of a value predictor is time
required to produce a predicted value. It depends
on: (1) size of the value predictor, (2) associativity
of the value prediction tables and (3) number of
ports of the value prediction tables. It varies from
less than 2 (2 ports, 2K table entries, associativity
1) up to more than 24 (8 ports, 16K table entries,
associativity 16) processor cycles on a
contemporary high frequency processor with
working frequency of 3.5 GHz [1]. On contrary,
very large percent of instructions have consumers
within small number of cycles. Particularly, 78-
94% of the loads have a consumer within one
processor cycle, whereas 73-99% of the results of
integer instructions are requested within one cycle
[1].

Even more, predicted values are useless
unless they are provided before the predicted
instruction finishes its execution and the actual
result is obtained. This implies that not all
instructions benefit from value prediction since
instructions which can have predicted results must
have execution latency lower than the latency of
the value predictor.

Both, delayed value predictor update and
value predictor latency introduce stalls in the
process of value prediction and contribute to
prolonged generation of predicted values [1, 2, 4, 8,
13, 14, 15]. The former enforces serialized value
prediction because stale values in the value
prediction tables reduce the value prediction
accuracy which has considerable impact on the
gained performance. The latter prolongs generation
of predicted values which in return decreases the
time difference between predicted and actual
results and diminishes the importance of the made
value prediction.

Non-serialized generation of value
predictions provides multiple predicted values per
static instruction in case its different dynamic
instances require value prediction [5]. It requires
multiple value predictor accesses both for (1)
generation of predicted values and (2) update of
value prediction tables [8]. This problem was

 3

anticipated in [3] and further investigated in [2].
Both studies propose interleaved multiple value
predictor banks as a possible implementation of the
value prediction tables. The maximum number of
banks depends on the maximum number of
simultaneous accesses supported by the value
predictor.

3 Existing analytical models
Each one of these processor features has been
extensively studied under experimental conditions
using simulators and generic benchmark programs.
However, only few attempts have been made to
analytically describe a processor that employs
value prediction: (1) performance potential of value
prediction on a dataflow machine [3], (2) analytical
model that estimates expected performance when
employing perfect value prediction [14] and (3)
fluid stochastic Petri net model that deals with
finite processor resources and realistic branch
prediction and realistic value prediction [11].

However, none of these models observes
the effect of value predictor latency. Our analytical
model of the processor extends the model
introduced in [3]. We have chosen this model as
basis for our research for the following reasons: (1)
we want to analyze the effect of value predictor
latency since it is identified as one of the most
devastating limits even on perfect dataflow
machines [1, 2, 3, 8, 13, 15], (2) the model
presented in [14] assumes perfect value prediction
and actually studies the effect of branch prediction
in that environment, (3) the fluid stochastic Petri
net model is far to complex since it introduces
stochastic variables. However, it is of interest to us
since it confirms some experimentally discovered
limits on the performance potential of value
prediction.

Dataflow graph presentation of a program
is given by a directed graph G(V, S) as presented on
Fig. 1. Each node v ∈ V represents one instruction
and each arc s ∈ S presents data dependence
between two nodes. Critical path C in a given
dataflow graph G is the longest path in the dataflow
graph from the entry node to the termination node
as presented on Fig. 1a.

Dataflow graph is extended in [3] to
speculative dataflow graph since in reality it is not
possible to correctly predict all instructions.
Speculative dataflow graph is a weighted graph
where each s ∈ S is assigned probability ps to
correctly predict the result of the starting node.
Critical path in the speculative dataflow graph is

defined analogously to a critical path in dataflow
graph as presented on Fig. 1b.

1

2

3

4

n

...

1

2

3

4

n

...

1
p

2
p

3
p

4
p

n-1
p

1

2

3

4

n

...

1

2

3

4

n

...

1
p

2
p

3
p

4
p

n-1
p

a) Dataflow graph G(V, S) and the critical path C b) Speculative dataflow graph G (V, S) and the critical path Cs
Fig. 1 Dataflow graph vs. Speculative dataflow graph

 [3] analyses performance potential of
value prediction in dataflow machines using two
processor models based on the size of the
instruction window: (1) infinite instruction window
and (2) limited instruction window. The focus is
placed on execution of the critical path because
dataflow machines are limited only by the critical
path of the dataflow graph. Final expression that
estimates the performance potential of value
prediction is based on (1) the average value
prediction accuracy under assumption that every
instruction on the critical path can be value
predicted and (2) number of entries in the
instruction window for the second model.

Execution of the critical path is observed
by using speculative dataflow graph GE(VE, SE)
which presents all possible execution sequences, as
presented on Fig. 2. All nodes which are executed
with speculated values are denoted with subscript s.

Start 1

2

1, T

s 2s 3s 4s n-1s ns

p, 0 p, 0 p, 0 p, 0 p, 0 p, 0

1-p, T 1-p, T 1-p, T 1-p, T 1-p, T

1, 0
3

1, 0
4

1, 0 1, 0

1-p, T

n-1
1, 0

n
1, 0

1, 0

End

...

...

 Fig. 2 Execution graph of the critical path

For simplicity, several assumptions are
made in [3]: (1) all instructions on the critical path
are predicted correctly by some value predictor
with the same average probability p, (2) in case of
correct value prediction execution time is zero
cycles, (3) in case of misprediction, misspeculation
penalty is considered to be T, which presents the
average execution time of all instructions on the
critical path and (4) after the misprediction
recovery, execution proceeds with value prediction
of the subsequent instruction.

Probability to execute a certain path σ =
(s1, s2, s3, …, sn) ∈ GE(VE, SE) is given by Pσ =

∏
=

n

1i
si

P , where
isP denotes probability to correctly

or incorrectly predict the outcome of the operation

 4

defined by the starting node of the arc si. Entire
execution time of σ is defined as Tσ and it can be
obtained as Tσ = T + Tp, because T is execution of
one instruction and random variable Tp presents the
execution time of the nodes in σ which can be
overlapped in case of correct value prediction, i.e.

Tp = ∑
−

=

1n

1t
si

t , where
ist is execution time of the

operation defined by si.
The random variable Tp has binomial

distribution as illustrated on Eq. 1 [3]:

 Eq. 1 Binomial distribution of Tp

 Tp has a binomial distribution
because occurrence of value misprediction in the
linear graph C (see Fig. 1b) is equivalent to
choosing k occurrences out of (n – 1) with a
probability to choose (1 – p). Thus, average
execution time of the critical path can be calculated
as mathematical expectation of Tσ as presented on
Eq. 2 Average execution time of the critical path

.

Eq. 2 Average execution time of the critical path

As expected, Eq. 2 shows that average
execution time of the critical path is prolonged due
to value mispredictions. This is evident from the
second part of the expression of E(Tσ) which
contains the probability of value misprediction (1 –
p). Average execution time of the critical path is
used to calculate average ILP boost in the ideal
case of employing value prediction on a dataflow
machine as presented on Eq. 3.

Eq. 3 Average ILP boost by employing value prediction on

a dataflow machine

The expression presented on Eq. 3 shows
that in ideal case the speedup obtained by
employing value prediction is proportional to the
accuracy of value prediction.

4 Value Prediction Latency
Reduced performance of value prediction due to
latency of the value predictor is reported on
multiple occasions [1, 2, 4, 8, 13, 15]. We modify
the analytical model of the processor introduced in
[3] in order to better understand the impact of value
predictor latency. We change the assumption made
in the model presented on Fig. 2 that execution
time of correct value prediction is zero cycles.
More precisely, we change execution time of
correct value prediction from 0 to L cycles, where L
denotes value predictor latency.

The modified execution graph of the
critical path is presented on Fig. 3.

Start 1

2

1, T

s 2s 3s 4s n-1s ns

p, L p, L p, L p, L p, L p, L

1-p, T 1-p, T 1-p, T 1-p, T 1-p, T

1, 0
3

1, 0
4

1, 0 1, 0

1-p, T

n-1
1, 0

n
1, 0

1, 0

End

...

...

 Fig. 3 Modified execution graph with additional value
predictor latency

Obviously, change of execution time of
correct value prediction introduces changes in the
set of possible values of Tp as presented on Error!
Reference source not found..

 Eq. 4 Modified variable Tp

This affects the average execution time of
Tσ, as presented on Eq. 5.

Eq. 5 Average execution time of the critical path with

value predictor latency (part 1)

The last expression can be rearranged as
presented on Eq. 6 Average execution time of the
critical path with value predictor latency (part
2)
.

P(Tp = k ⋅ T) = 






 −
⋅⋅− −−

k
1n

pp)1(1knk , 0 ≤ k ≤ n-1

E(Tσ) = E(T + Tp) = E(T) + E(Tp) =

= T + ∑
−

=

−−







 −
⋅⋅−⋅⋅−−+⋅

1n

0i

1ini

i
1n

p)p1()L)1in(Ti(

= T + T ⋅ (n – 1) ⋅ (1 – p) – L ⋅ (n – 1) ⋅ (1 – p) +L ⋅ (n – 1)

P(Tp = k ⋅ T + (n – k – 1) ⋅ L) = 






 −
⋅⋅− −−

k
1n

p)p1(1knk

E(Tσ) = E(T + Tp) = E(T) + E(Tp)

= T + ∑
−

=

−−







 −
⋅⋅−⋅⋅

1n

0i

1ini

i
1n

p)p1(Ti

= T + T ⋅ (n – 1) ⋅ (1 – p)

ILPboostVP =
n ⋅ T

E(Tσ)
 =

n ⋅ T
T ⋅ (1 + (n – 1) ⋅ (1 – p))

ILPboostVP ≈
1

(1 – p)

 5

Eq. 6 Average execution time of the critical path with

value predictor latency (part 2)

The execution time of the critical path
increases significantly with respect to the latency of
the value predictor. Average ILP boost gained by
employing value prediction with value predictor
latency L on a dataflow machine is presented on
Eq. 7.

 Eq. 7 Average ILP boost when employing value
predictor with latency L

In case value predictor latency is zero
cycles, we obtain the same expression for the ILP
boost as [3]. However, if the latency is greater than
zero, than the gain of value prediction is reduced to
a speedup of only several times. Even with perfect
value prediction (value prediction accuracy p = 1)
leads to ILP boost of only several times as
presented on Eq. 8.

Eq. 8 ILP boost with perfect value prediction and value

predictor latency L

This result suggests that value predictor
latency should be reduced as low as possible, which
excludes use of large value prediction tables and
suggests overlapping of value prediction with other
pipeline stages. Also, higher ILP boost is gained by
predicting instruction with longer execution time T
which suggest value prediction on load instructions,
especially ones that miss in L1 data cache and long
latency integer and floating point arithmetic
instructions.

Further analysis of the effect of the value
prediction latencies are presented on Fig. 4. We
assume that T = 7 as it is suggested in [15], where
the average execution time of instructions on the
critical path is obtained using critical path profiling.

Effect of Value Predictor Latency

0

1

2

3

4

5

6

7

8

9

10

0,
05 0,
1

0,
15 0,
2

0,
25 0,
3

0,
35 0,
4

0,
45 0,
5

0,
55 0,
6

0,
65 0,
7

0,
75 0,
8

0,
85 0,
9

0,
95 1

Value prediction accuracy (p)

IL
P

 B
oo

st

L=0 L=1 L=2 L=3 L=4 L=5 L=6

Fig. 4 Effect of value predictor latency

For zero cycle predictor latencies the ILP
boost is hyperbolical as expected from Eq. 1. In
this ideal case, which is practically impossible,
value prediction has the potential to collapse all
true data dependences in case value prediction
accuracy p = 1. In this case, each program could be
executed in two steps: (1) predict outcomes of all
instructions and (2) validate predicted results.

If we consider value predictor latencies
greater than zero, it is obvious that the performance
potential drops significantly. Particularly, the ILP

boost is at most
T
L, as implied by Eq. 8. Similar

behavior is observed in [4] while examining the
performance potential of data reusing techniques.
[4] reports performance decrease from about 20 to
2 when the reuse buffer latency is increased from
zero to one.

We make additional observation on the
way the ILP boost increases with the increase of the
value prediction accuracy. When considering
higher value predictor latencies the ILP boost
assumes quasi-linear tendency of growth as
reported on multiple occasions [1, 2, 5, 11, 13, 14,
15].

5 Conclusion and Future Work
Techniques based on principles of value

locality and value predictability have potential to
break true data dependencies. This is exploited in
several manners: (1) to reduce or eliminate memory
access latencies, (2) to execute data dependent
instructions in parallel and (3) to buffer instruction
results for later reuse. Numerous propositions are
made on how to implement value prediction (and
instruction reuse) into contemporary processors.
All techniques have different approaches, but they
achieve similar performance improvements of 5-
20% when simulated in comparable environments.

ILPboostVPL ≈
T

T ⋅ (1 – 1) + L ⋅ 1 =
T
L

ILPboostVPL =
n ⋅ T

E(Tσ)
 =

n ⋅ T
 T + T ⋅ (n – 1)+ (L – T) ⋅ (n – 1) ⋅ p

≈
T

T + (L – T) ⋅ p =
T

T ⋅ (1 – p) + L ⋅ p

ILPboostVPL ≈
T

T ⋅ (1 – p) + L ⋅ p

E(Tσ) = T + (n – 1) ⋅ T ⋅ (1 – p) + (n – 1)⋅ L ⋅ p

 6

The limiting factors on the performance
potential of value prediction have been widely
explored using experimentally obtained results.
Few attempts have been made to analytically
describe a processor that employs value prediction,
none of which observes the effect of value
predictor latency.

We introduced a new analytical model of
value prediction, by extending the existing model
of a dataflow machine which employs value
prediction [3]. The analytical results confirm some
previously experimentally observed behaviors, so
that we can conclude that although our model is not
detailed, it gives a general idea of the effect of
value predictor latency.

Three general conclusions can be made: (1)
value predictor latency must be reduced either by
simplifying the way predictions are made or by
reducing the value prediction tables and (2) value
prediction latency should be overlapped by some
other pipeline stages in order to reduce the value
predictor latency as much as possible and (3) value
prediction should be made only on instructions with
high execution latencies. Our future work will
study the third aspect of predicting high execution
latency instructions, especially loads.

References
[1] R. Bhargava, L. K. John, “Latency and Energy
Aware Value Prediction for High-Frequency
Processors”, ICS’02, New York, USA, 2002
[2] M. Burtscher, “Improving Context-Based Load
Value Prediction”, PhD Thesis, University of
Colorado, USA, 2000
[3] F. Gabbay, A. Mendelson, “Using Value
Prediction to Increase the Power of Speculative
Execution Hardware”, ACM Transactions on
Computer Systems, Vol. 16, No. 3, pp. 234-270,
1998
[4] A. González, J. Tubella, C. Molina, “The
Performance Potential of Data Value Reuse”,
Technical Report UPC-DAC-1998-23, University
of Politecenica of Catalunya, 1998
[5] J. González, A. González, “Limits of Instruction
Level Parallelism with Data Speculation”,
Proceedings of the VECPAR Conf., pp. 585-598,
1998
[6] J. L. Hennessy, D. A. Patterson, “Computer
Architecture: A Quantitive Approach – third
edition”, Morgan – Kaufmann Publishers, San
Francisco, USA, 2003

[7] M. S. Lam, R. P. Wilson, “Limits of Control
Flow on Parallelism”, in Proceedings of the 19th
International Symposium on Computer
Architecture, Gold Coast, Australia, pp. 46-57,
1992
[8] S. Lee, P. Yew, “On Some Implementation
Issues for Value Prediction on Wide-Issue ILP
Processors”, International Conference on Parallel
Architecture and Compiler Techniques, 2000
[9] M. H. Lipasti, C. B. Wilkerson, J. P. Shen,
“Value Locality and Load Value Prediction”, In
Proceedings of the Second International
Conference on Architectural Support for
Programming Languages and Operating Systems,
pp. 138-147, 1996
[10] J. Markovski, M. Gusev, “Why Value
Prediction is Limited?”, Technical Report PMF-II-
01-2004, FNSM, University of Sts. Cyril and
Methodius, Skopje, FYROM
[11] P. Mitrevski, “Prediction and Speculation in
ILP Processors”, PhD Thesis, University of Sts.
Cyril and Methodius, Skopje, Republic of
Macedonia, 2002
[12] R. A. Moreno, “Using Value Prediction as a
Complexity-effective Solution to Improve
Performance”, Technical Report, DACYA-UCM
5/98, 1998
[13] B. Rychlik, J. Faistl, B. Krug, J. P. Shen,
“Efficacy and Performance Impact of Value
Prediction”, In International Conference on
Parallel Architectures and Compilation
Techniques, 1998
[14] Y. Sazeides, “An Analysis of Value
Predictability and Its Application to a Superscalar
Processor”, PhD Thesis, University of Wisconsin,
Madison, USA, 1999
[15] D. M. Tullsen, B. Calder, “Computing Along
the Critical Path”, UCSD Technical Report, 1998

