
 1

New Analytical Model of Value Prediction 

J. MARKOVSKI, M. GUSEV 

Faculty of Natural Sciences and Mathematics,  
Ss. Cyril and Methodius University,  

Arhimedova b.b., PO Box 162, 1000 Skopje 
FYROM 

 
Abstract: - Value prediction is a technique for speculative execution of data dependent instructions based on 
predicted outcomes of instructions. The predicted outcomes are supplied by a special hardware device called 
value predictor. Despite the numerous reports on the benefits of value prediction there is still no commercial 
processor that employs this technique. One limiting factor of the performance potential of value prediction is 
the value predictor latency. In this paper we extend an existing analytical model of the processor in order to 
evaluate the effect of value predictor latency. We conclude that the value predictor latency must be reduced and 
value prediction latency should be overlapped by some other pipeline stages. In addition, value prediction 
should be made only on instructions with high execution latencies. 
 
Keywords: ILP, value prediction, analytical model, dataflow, critical path 

 

1 Introduction 
Value prediction was introduced almost 
simultaneously in [9] and [3] as powerful means to 
overcome true data dependences. It relies on the 
principles of value locality and value predictability 
which are employed as a way to collapse true data 
dependences or a means to produce suitable value 
predictors according to the observed type of value 
predictability [3]. In both cases, we can define 
speculative execution based on value prediction as 
execution of a true data dependent instruction with 
an empty or partially computed set of input values 
[3, 6, 14]. This set is filled with predicted values 
supplied by the value predictor. Value predictor 
presents a hardware-based mechanism that 
produces a predicted outcome value of a given 
instruction. 

Speculative execution based on value 
prediction introduces new classes of values to the 
processor: (1) actual or final values, (2) predicted 
values and (3) speculative values [12, 13, 14]. 
Actual (or final) values present real values 
produced by the instructions. Predicted values are 
values obtained by the value predictor. Speculative 
values are results of those instructions which 
execution is based on the predicted result. Predicted 
values are usually obtained before the beginning of 
instruction execution stage. They can be (1) 
speculatively forwarded to all data dependent 

instructions or (2) used to speculatively execute 
only the predicted instruction [12, 13]. 

Numerous propositions are made on how to 
implement techniques based on value locality and 
value predictability into contemporary processors. 
Different techniques propose different approaches, 
but they achieve similar performance 
improvements of 5-20% percent when simulated in 
comparable environments [2, 3, 13, 14]. 

However, if we compare (1) additional 
hardware complexity and complex misspeculation 
recovery techniques required to implement 
effective value prediction and (2) gained 
performance improvements, it comes to no surprise 
why there is still no commercial processor that 
employs value prediction. Still, significant 
performance potential of value prediction exists 
and shows tempting results when observed on 
perfect or almost perfect dataflow machines [3].  

 
2 Limiting factors  

Our previous research in [10] overviews current 
limiting factors of the performance potential of 
value prediction: (1) low instruction fetch width 
and finite instruction window [3, 5, 11, 12, 14], (2) 
imperfect branch prediction [5, 10, 13], (3) delayed 
update of the value prediction tables and value 
predictor latency [1, 2, 4, 8, 13, 14, 15] and (4) 
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multiple simultaneous value predictor accesses [2, 
5, 14].  

All above mentioned factors are still not 
resolved completely and pose very low boundaries 
on the amount of ILP offered by value prediction 
techniques.  

Instruction fetch width of the processor 
directly influences the performance potential of 
value prediction [3, 5, 6, 11, 12, 14]. In case of low 
instruction fetch width the possibility of fetching 
data dependent instruction in the same cycle is very 
small. This imposes serialization of data dependent 
instructions, which in return provides additional 
time for computation of inputs of the data 
dependent instruction.  

The effect of the finite instruction window 
is presented as the most devastating factor that 
suppresses the amount of extractable ILP using 
value prediction in several studies [3, 5, 6, 11, 14]. 
The performance potential of value prediction 
grows as the instruction window size increases until 
a certain threshold when observed under fixed 
instruction fetch width. Afterwards there is no 
additional performance gain while increasing the 
instruction window size.  

The correlation of branch prediction and 
value prediction is discussed on multiple occasions 
[5, 11, 14]. One obvious fact is that branch 
misspeculation and value misprediction can lead to 
additional value and branch mispredictions which 
may result in higher misspeculation penalties and 
decrease of the performance. 

After the value predictor supplies the 
predicted value for some instruction, its state has to 
be updated. Usually, (1) the history of previously 
seen values needs to be updated with the latest 
actual result and (2) the confidence estimator [12] 
needs to be adjusted depending on the success of 
the previous value prediction. However, value 
predictor update may occur late in case of long 
execution latency of the predicted instruction. In 
that case, several other dynamic instances of the 
same static instruction obtain predicted values with 
the old state of the predictor which in return affects 
the value prediction accuracy. For example, this 
phenomenon is observed during execution of a 
short loop with long execution latency of the 
instructions like integer division or load cache 
misses.  

A value predictor can receive a request to 
make a value prediction on result of some 
instruction during different stages in the pipeline, 
which imposes the following classification of the 

value prediction methods: (1) at-fetch value 
prediction, (2) post-decode value prediction and (3) 
decoupled value prediction [1]. This classification 
is important because it is not reasonable to assume 
that the predicted value will be available 
immediately, since the value predictor has to access 
considerably large memory tables [1]. The benefit 
from the value prediction greatly depends on the 
point in the pipeline where the value prediction is 
requested.  

Latency of a value predictor is time 
required to produce a predicted value. It depends 
on: (1) size of the value predictor, (2) associativity 
of the value prediction tables and (3) number of 
ports of the value prediction tables. It varies from 
less than 2 (2 ports, 2K table entries, associativity 
1) up to more than 24 (8 ports, 16K table entries, 
associativity 16) processor cycles on a 
contemporary high frequency processor with 
working frequency of 3.5 GHz [1]. On contrary, 
very large percent of instructions have consumers 
within small number of cycles. Particularly, 78-
94% of the loads have a consumer within one 
processor cycle, whereas 73-99% of the results of 
integer instructions are requested within one cycle 
[1].  

Even more, predicted values are useless 
unless they are provided before the predicted 
instruction finishes its execution and the actual 
result is obtained. This implies that not all 
instructions benefit from value prediction since 
instructions which can have predicted results must 
have execution latency lower than the latency of 
the value predictor.  

Both, delayed value predictor update and 
value predictor latency introduce stalls in the 
process of value prediction and contribute to 
prolonged generation of predicted values [1, 2, 4, 8, 
13, 14, 15]. The former enforces serialized value 
prediction because stale values in the value 
prediction tables reduce the value prediction 
accuracy which has considerable impact on the 
gained performance. The latter prolongs generation 
of predicted values which in return decreases the 
time difference between predicted and actual 
results and diminishes the importance of the made 
value prediction.  

Non-serialized generation of value 
predictions provides multiple predicted values per 
static instruction in case its different dynamic 
instances require value prediction [5]. It requires 
multiple value predictor accesses both for (1) 
generation of predicted values and (2) update of 
value prediction tables [8]. This problem was 
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anticipated in [3] and further investigated in [2]. 
Both studies propose interleaved multiple value 
predictor banks as a possible implementation of the 
value prediction tables. The maximum number of 
banks depends on the maximum number of 
simultaneous accesses supported by the value 
predictor. 

 

3 Existing analytical models  
Each one of these processor features has been 
extensively studied under experimental conditions 
using simulators and generic benchmark programs. 
However, only few attempts have been made to 
analytically describe a processor that employs 
value prediction: (1) performance potential of value 
prediction on a dataflow machine [3], (2) analytical 
model that estimates expected performance when 
employing perfect value prediction [14] and (3) 
fluid stochastic Petri net model that deals with 
finite processor resources and realistic branch 
prediction and realistic value prediction [11]. 

However, none of these models observes 
the effect of value predictor latency. Our analytical 
model of the processor extends the model 
introduced in [3]. We have chosen this model as 
basis for our research for the following reasons: (1) 
we want to analyze the effect of value predictor 
latency since it is identified as one of the most 
devastating limits even on perfect dataflow 
machines [1, 2, 3, 8, 13, 15], (2) the model 
presented in [14] assumes perfect value prediction 
and actually studies the effect of branch prediction 
in that environment, (3) the fluid stochastic Petri 
net model is far to complex since it introduces 
stochastic variables. However, it is of interest to us 
since it confirms some experimentally discovered 
limits on the performance potential of value 
prediction.  

Dataflow graph presentation of a program 
is given by a directed graph G(V, S) as presented on  
Fig. 1. Each node v ∈ V represents one instruction 
and each arc s ∈ S presents data dependence 
between two nodes. Critical path C in a given 
dataflow graph G is the longest path in the dataflow 
graph from the entry node to the termination node 
as presented on  Fig. 1a. 

Dataflow graph is extended in [3] to 
speculative dataflow graph since in reality it is not 
possible to correctly predict all instructions. 
Speculative dataflow graph is a weighted graph 
where each s ∈ S is assigned probability ps to 
correctly predict the result of the starting node. 
Critical path in the speculative dataflow graph is 

defined analogously to a critical path in dataflow 
graph as presented on  Fig. 1b. 
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a) Dataflow graph G(V, S) and the critical path C b) Speculative dataflow graph G (V, S) and the critical path Cs  
Fig. 1 Dataflow graph vs. Speculative dataflow graph 

 [3] analyses performance potential of 
value prediction in dataflow machines using two 
processor models based on the size of the 
instruction window: (1) infinite instruction window 
and (2) limited instruction window. The focus is 
placed on execution of the critical path because 
dataflow machines are limited only by the critical 
path of the dataflow graph. Final expression that 
estimates the performance potential of value 
prediction is based on (1) the average value 
prediction accuracy under assumption that every 
instruction on the critical path can be value 
predicted and (2) number of entries in the 
instruction window for the second model. 

Execution of the critical path is observed 
by using speculative dataflow graph GE(VE, SE) 
which presents all possible execution sequences, as 
presented on  Fig. 2. All nodes which are executed 
with speculated values are denoted with subscript s. 

Start 1

2

1, T

s 2s 3s 4s n-1s ns

p, 0 p, 0 p, 0 p, 0 p, 0 p, 0

1-p, T 1-p, T 1-p, T 1-p, T 1-p, T
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3
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4
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n
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1, 0

End

...

...

 Fig. 2 Execution graph of the critical path 

For simplicity, several assumptions are 
made in [3]: (1) all instructions on the critical path 
are predicted correctly by some value predictor 
with the same average probability p, (2) in case of 
correct value prediction execution time is zero 
cycles, (3) in case of misprediction, misspeculation 
penalty is considered to be T, which presents the 
average execution time of all instructions on the 
critical path and (4) after the misprediction 
recovery, execution proceeds with value prediction 
of the subsequent instruction.  

Probability to execute a certain path σ = 
(s1, s2, s3, …, sn) ∈ GE(VE, SE) is given by Pσ = 

∏
=

n

1i
si

P , where 
isP  denotes probability to correctly 

or incorrectly predict the outcome of the operation 
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defined by the starting node of the arc si. Entire 
execution time of σ is defined as Tσ and it can be 
obtained as Tσ = T + Tp, because T is execution of 
one instruction and random variable Tp presents the 
execution time of the nodes in σ which can be 
overlapped in case of correct value prediction, i.e. 

Tp = ∑
−

=

1n

1t
si

t , where 
ist  is execution time of the 

operation defined by si.  
The random variable Tp has binomial 

distribution as illustrated on  Eq. 1 [3]: 

 Eq. 1 Binomial distribution of Tp 

 Tp has a binomial distribution 
because occurrence of value misprediction in the 
linear graph C (see  Fig. 1b) is equivalent to 
choosing k occurrences out of (n – 1)     with a 
probability to choose (1 – p). Thus, average 
execution time of the critical path can be calculated 
as mathematical expectation of Tσ  as presented on 
Eq. 2 Average execution time of the critical path 

. 

 
Eq. 2 Average execution time of the critical path 

As expected, Eq. 2 shows that average 
execution time of the critical path is prolonged due 
to value mispredictions. This is evident from the 
second part of the expression of E(Tσ) which 
contains the probability of value misprediction (1 – 
p). Average execution time of the critical path is 
used to calculate average ILP boost in the ideal 
case of employing value prediction on a dataflow 
machine as presented on Eq. 3. 

  
Eq. 3 Average ILP boost by employing value prediction on 

a dataflow machine 

The expression presented on Eq. 3 shows 
that in ideal case the speedup obtained by 
employing value prediction is proportional to the 
accuracy of value prediction.  

 

4 Value Prediction Latency 
Reduced performance of value prediction due to 
latency of the value predictor is reported on 
multiple occasions [1, 2, 4, 8, 13, 15]. We modify 
the analytical model of the processor introduced in 
[3] in order to better understand the impact of value 
predictor latency. We change the assumption made 
in the model presented on  Fig. 2 that execution 
time of correct value prediction is zero cycles. 
More precisely, we change execution time of 
correct value prediction from 0 to L cycles, where L 
denotes value predictor latency. 

The modified execution graph of the 
critical path is presented on  Fig. 3. 
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 Fig. 3 Modified execution graph with additional value 
predictor latency 

Obviously, change of execution time of 
correct value prediction introduces changes in the 
set of possible values of Tp as presented on Error! 
Reference source not found.. 

 Eq. 4 Modified variable Tp 

This affects the average execution time of 
Tσ, as presented on Eq. 5. 

 
Eq. 5 Average execution time of the critical path with 

value predictor latency (part 1) 

The last expression can be rearranged as 
presented on Eq. 6 Average execution time of the 
critical path with value predictor latency (part 
2) 
. 

P(Tp = k ⋅ T) =  






 −
⋅⋅− −−

k
1n

pp)1( 1knk , 0 ≤ k ≤ n-1 

E(Tσ) = E(T + Tp) = E(T) + E(Tp) =  

= T + ∑
−

=

−−







 −
⋅⋅−⋅⋅−−+⋅

1n

0i

1ini

i
1n

p)p1()L)1in(Ti(   

= T + T ⋅ (n – 1) ⋅ (1 – p) – L ⋅ (n – 1) ⋅ (1 – p) +L ⋅  (n – 1)

P(Tp = k ⋅ T + (n – k – 1) ⋅ L) =  






 −
⋅⋅− −−

k
1n

p)p1( 1knk

E(Tσ) = E(T + Tp) = E(T) + E(Tp)  

= T + ∑
−

=

−−







 −
⋅⋅−⋅⋅

1n

0i

1ini

i
1n

p)p1(Ti  

= T + T ⋅ (n – 1) ⋅ (1 – p) 

ILPboostVP = 
n ⋅ T

E(Tσ )
 = 

n ⋅ T
T ⋅ (1 + (n – 1) ⋅ (1 – p))  

 

ILPboostVP ≈  
1

(1 – p) 
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Eq. 6 Average execution time of the critical path with 

value predictor latency (part 2) 
 

The execution time of the critical path 
increases significantly with respect to the latency of 
the value predictor. Average ILP boost gained by 
employing value prediction with value predictor 
latency L on a dataflow machine is presented on  
Eq. 7. 

 Eq. 7 Average ILP boost when employing value 
predictor with latency L 

In case value predictor latency is zero 
cycles, we obtain the same expression for the ILP 
boost as [3]. However, if the latency is greater than 
zero, than the gain of value prediction is reduced to 
a speedup of only several times. Even with perfect 
value prediction (value prediction accuracy p = 1) 
leads to ILP boost of only several times as 
presented on Eq. 8. 

 
Eq. 8 ILP boost with perfect value prediction and value 

predictor latency L 

This result suggests that value predictor 
latency should be reduced as low as possible, which 
excludes use of large value prediction tables and 
suggests overlapping of value prediction with other 
pipeline stages. Also, higher ILP boost is gained by 
predicting instruction with longer execution time T 
which suggest value prediction on load instructions, 
especially ones that miss in L1 data cache and long 
latency integer and floating point arithmetic 
instructions.  

Further analysis of the effect of the value 
prediction latencies are presented on Fig. 4. We 
assume that T = 7 as it is suggested in [15], where 
the average execution time of instructions on the 
critical path is obtained using critical path profiling.  
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Fig. 4 Effect of value predictor latency 

For zero cycle predictor latencies the ILP 
boost is hyperbolical as expected from  Eq. 1. In 
this ideal case, which is practically impossible, 
value prediction has the potential to collapse all 
true data dependences in case value prediction 
accuracy p = 1. In this case, each program could be 
executed in two steps: (1) predict outcomes of all 
instructions and (2) validate predicted results. 

If we consider value predictor latencies 
greater than zero, it is obvious that the performance 
potential drops significantly. Particularly, the ILP 

boost is at most 
T
L, as implied by Eq. 8. Similar 

behavior is observed in [4] while examining the 
performance potential of data reusing techniques. 
[4] reports performance decrease from about 20 to 
2 when the reuse buffer latency is increased from 
zero to one.  

We make additional observation on the 
way the ILP boost increases with the increase of the 
value prediction accuracy. When considering 
higher value predictor latencies the ILP boost 
assumes quasi-linear tendency of growth as 
reported on multiple occasions [1, 2, 5, 11, 13, 14, 
15].  

 

5 Conclusion and Future Work 
Techniques based on principles of value 

locality and value predictability have potential to 
break true data dependencies. This is exploited in 
several manners: (1) to reduce or eliminate memory 
access latencies, (2) to execute data dependent 
instructions in parallel and (3) to buffer instruction 
results for later reuse. Numerous propositions are 
made on how to implement value prediction (and 
instruction reuse) into contemporary processors. 
All techniques have different approaches, but they 
achieve similar performance improvements of 5-
20% when simulated in comparable environments. 

ILPboostVPL ≈ 
T

T ⋅ (1 – 1 ) + L ⋅ 1 = 
T
L 

ILPboostVPL = 
n ⋅ T

E(Tσ )
 = 

n ⋅ T
 T + T ⋅ (n – 1)+ (L – T) ⋅ (n – 1) ⋅ p 

≈  
T

T + (L – T) ⋅ p = 
T

T ⋅ (1 – p ) + L ⋅ p 

 

ILPboostVPL ≈ 
T

T ⋅ (1 – p ) + L ⋅ p 

E(Tσ) = T + (n – 1) ⋅ T ⋅ (1 – p) + (n – 1)⋅ L ⋅ p
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The limiting factors on the performance 
potential of value prediction have been widely 
explored using experimentally obtained results. 
Few attempts have been made to analytically 
describe a processor that employs value prediction, 
none of which observes the effect of value 
predictor latency. 

We introduced a new analytical model of 
value prediction, by extending the existing model 
of a dataflow machine which employs value 
prediction [3]. The analytical results confirm some 
previously experimentally observed behaviors, so 
that we can conclude that although our model is not 
detailed, it gives a general idea of the effect of 
value predictor latency.  

Three general conclusions can be made: (1) 
value predictor latency must be reduced either by 
simplifying the way predictions are made or by 
reducing the value prediction tables and (2) value 
prediction latency should be overlapped by some 
other pipeline stages in order to reduce the value 
predictor latency as much as possible and (3) value 
prediction should be made only on instructions with 
high execution latencies. Our future work will 
study the third aspect of predicting high execution 
latency instructions, especially loads.  
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