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Abstract: - In this paper we present and study the performance of an OFDM-MIMO system with unitary 
Space-Time Code for two channel states at the receiver: Perfect Channel State Information (perfect CSI), 
where we assume that the channel is perfectly known to the receiver. The second state is: Absence of 
Channel State Information (No CSI), where the channel information is not available at the receiver. In the 
later case the Differential Unitary Code was implemented. The simulation results show performance 
degradation in the absence of channel estimation at the decoder. The differential coding method is 
favorable, in many situations especially when the channel estimation is impossible, or due to rapidly 
varying channel. An outer Reed Solomon encoding-decoding could be added to improve the error rate 
performance of the system. 
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1  Introduction 
High data rate has become an important demand for 
many applications. In order to achieve high data rate 
requirements usually more bandwidth is required. 
However due to limitation in the spectrum, it is often 
impractical and expensive to increase the bandwidth. 
In this case using multiple transmit and receive 
antennas for spectrally efficient transmission can be 
considered as an excellent solution. This diversity 
scheme is used to obtain the well known multiple 
input multiple output MIMO channels. 
The transmit diversity based on Space-Time coding 
has been studies a lot in literature [1-4]. Space-Time 
coding is necessary in MIMO systems. The code 
design is selected based on the channel estimation 
possibility. When the channel parameter estimation 
is possible at the receiver, there are various space-
time codes that could be implemented [2]. On the 
other hand there are many situations where the 
channel estimation is impossible. In this case 
differential Space-Time code is used [1].  
In Orthogonal Frequency Division Multiplexing 
(OFDM) modulation the entire channel is divided 
into many narrow parallel sub-channels, which in 
effect will increase the symbol duration and reduce 
the ISI caused by multipath fading. The use of 
OFDM is promising in the future high data rate 
wireless systems. The OFDM could be applied with 

MIMO systems to enhance the performance of the 
overall system, by combining together their merits. 
In this paper we introduce the OFDM-MIMO based 
on Unitary Space Time coding. This approach is 
applied to the case of 2X2 antennas, and maximum 
likelihood ML decoder. The unitary space-time code 
is designed as given by [1]. The design could be also 
generalized for higher numbers of transmitters and 
receivers that are multiple of 2. 
This paper is organized as follows: In section 2 we 
introduce a full description of the OFDM-MIMO 
system, showing the unitary space-time code 
features, and describing the two system structures for 
the CSI and No CSI channel states at the receivers. 
Both transmitters and receivers models are given in 
details. The channel is assumed to be Rayleigh 
fading channel. The simulations results are shown in 
section 3, and finally conclusion remarks are given 
in section 4. 
 
2  System Model 
The OFDM-MIMO system models, shown in Fig.1 
and Fig.2, are explained in the following sub-
sections. 
 
2.1 Unitary Space Time Code 
The unitary space-time codes have the following 
properties: 



1- For the code matrices from the group code {Cq} 
where q = 0,1,…,2v-1, ( v=1,2,…) 
 

ICC qq =*    (1) 
 
where I is the identity matrix, and * is the complex 
conjugate. 
2- Using Hadamard matrix D (for the case of 2X2 
code matrices) 
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a unitary group code is formed by {DCq}. The code 
matrix DCq is 2X2 unitary matrix, with the mth row 
transmitted over antenna m (Space diversity), and the 
columns are transmitted at successive time instances 
(Time diversity). And it complies with the following 
condition: 
 

IDCDC qq 2* =⋅    (3) 
 
For the quaternary QPSK constellation points {1, -1, 
i, -i} there are 32 code matrices (2X2) that fulfill the 
above conditions. Also we can add as another 
condition the distance criterion between two code 
matrices:  
 

´det qq CC −=ξ        (4) 
 

where det| ⋅ | is the determinant of the matrix, and q 
≠ q´ 
The following list of matrices (16 matrices), shows 
the unitary space-time code matrices that could be 
used in the OFDM-MIMO system with two transmit 
antennas (M=2) and two receive antennas (N=2) 
 









=

10
01

0C   








−
=

i
i

C
0

0
1    










−
=

01
10

2C   







=

0
0

3 i
i

C    










−
−

=
10

01
4C   







−
=

i
i

C
0

0
5  








 −
=

01
10

6C   








−
−

=
0

0
7 i

i
C    (5) 









=

01
10

8C   








−
=

0
0

9 i
i

C   










−
=

10
01

10C   







=

i
i

C
0

0
11   










−
−

=
01
10

12C   






 −
=

0
0

13 i
i

C  








−
=

10
01

14C   








−
−

=
i

i
C

0
0

15  

 
It was found that the code matrices C0, C1,…, C7 are 
optimum over the QPSK constellation points {1, -1, 
i, -i}, and for this reason they will be used (unless 
otherwise mentioned) in the OFDM-MIMO system 
design introduced in this paper. 
 
2.2  System Structure 
The OFDM-MIMO system structure for the two 
channel states: with CSI and No CSI are shown in 
Fig.1 and Fig.2 respectively.  
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Fig.1  OFDM-MIMO system with CSI at the receiver. 
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Fig.2  OFDM-MIMO system without CSI at the receiver. 
 
2.3 Transmitter 
The input data enters the encoder, and then the coded 
information is divided into two streams. Each stream 
leads to an OFDM modulator. The OFDM 
modulation is performed using the Inverse Fast 
Fourier Transform (IFFT). A description of the 
encoding and modulation process is explained next. 
 
2.4   Encoding Process 
The encoding process for the two channel states at 
the receiver is explained here; 
2.4.1   Perfect Channel State Information 
The mapping process between the input data and the 
corresponding code is performed in a straightforward 
manner. For example the input data of 000 110 



100… could be mapped to the code matrices: C0 C6 
C4 … and so on. 
The transmission equation for the perfect CSI case is 
given by: 

ττ dCDS =    (6) 
 
where dτ ∈{0,1,2…7} is the transmitted data. 
The transmitted block matrix before OFDM 
modulation, 
 

[ ]2/1, KCSIb SSS m=            (7-a) 
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Where s11, s12, s21, and s22 are the entries of the sub-
matrix S1. And s1,K-1, s1,K, s2,K-1, and s2,K are the 
entries of the sub-matrix 2KS . The transmitted block 
of the m-th antenna, after OFDM modulation, is 
expressed by: 
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where K is the number of sub-channels,  fk=f0+k/Tb, 
f0 is the carrier frequency, and Tb is the block time 
interval. 
 
2.4.2 Absence of Channel State Information 
The transmission equation is expressed by: 
 

τττ dCSS 1−=    (9) 
 

where dτ ∈{0,1,2…7} is the data to be transmitted, 
and S0=D, given that D is the initial transmitted 
matrix at the beginning of every differential OFDM 
block. The differential transmitted block before 
OFDM modulation could be expressed in the form, 

 
[ ]2/2, KdCSIb SSDCS m=          (10-a) 
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where s11, s12, s21, and s22 are the entries of the sub-
matrix dDC , while s1,K-1, s1,K, s2,K-1, and s2,K are the 
entries of the sub-matrix 2KS . 

 The transmitted differential OFDM block, over the 
m-th antenna, for the No CSI case is given by: 
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2.5  OFDM Characteristics 
The channel bandwidth is taken as 1.25 MHz, and is 
divided into 256 sub-channels. To make the tones 
orthogonal the symbol duration is Ts= 204.8µs. A 
guard interval Tg of 5.2µs is added in order to 
provide more protection from ISI due to channel 
multipath delay spread. The total block length: Tb= 
Ts+Tg= 210 µs. Each OFDM block will be 
modulated by a maximum of K=128 transmission 
matrices, as shown in (8) and (11). This OFDM-
MIMO system has a bit rate of about 1.83 Mbps, and 
a bandwidth efficiency of approximately 1.46.  
 
2.6  Channel Model 
The MIMO channel matrix H is expressed by: 
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 The entries h11, h12, h21, h22 are independent 
Rayleigh distributed variables. The channel is 
considered constant during one OFDM block interval 
Tb, so that differential decoding is possible. 
 
2.7 Receiver 
The received signal passes through the OFDM 
demodulator represented by the Fast Fourier 
Transform (FFT). The received signal matrix after 
OFDM-demodulation is given below for each 
channel state.  
 
2.7.1 Perfect Channel State Information 
The received signal matrix after the FFT block is 
represented by: 

WSHR CSICSI += ρ        (13) 
 
where ρ is the signal to noise ratio at each received 
antenna. H is the MIMO channel matrix with 
independent Rayleigh distributed entries, and W is an 
additive complex guassian noise with zero mean and 
unity variance.  
The maximum likelihood ML decoder, for the 
unitary space-time code, is given by: 
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where Tr {⋅} is the trace function.  The ML-decoder 
has to perform the search over 8 matrices, when 
decoding each Cd. 
 
2.7.2  Absence of Channel State Information 
The received signal matrix after OFDM 
demodulation is expressed as; 

WSHR noCSInoCSI += ρ   (15) 
 

The maximum likelihood ML-decoder for the 
differential unitary space-time coding: 
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where Re(⋅) is the real part, and Rτ,noCSI is the 
received matrix at time instance τ. 
 
3  Simulation Results 
A comparison between the two channel states, CSI 
and No CSI at the receiver, is shown in Fig. 3. In this 
figure we observe the degradation (about 3dB, noting 
that each 3-bits are considered as a word) in the 
performance of the differential coding-decoding, 
when compared to perfect channel state information 
at the receiver. This degradation is acceptable for 
cases of difficulty or even impossibility of finding 
the channel parameters at the receiver; in addition to 
the simplified receiver design for the case of 
Differential Decoding.  

 
Fig.3  Word Error Probability using ML-decoder. 

 

A further performance evaluation could be 
performed for the Differential OFDM-MIMO 
system, by comparing an optimum unitary space-
time code of 8 matrices with a sub-optimum unitary 
space-time code of 16 matrices. The results, given in 
Fig.4, show the degradation in performance when 
using space-time code of 16 matrices. The advantage 
of the 16-code matrices is to increase the bit rate and 
to improvement the bandwidth efficiency. 

 
Fig.4  Word Error Probability comparison between 8 and 
16 code matrices. 
 
For the Differential OFDM-MIMO system with 8 
code matrices, an Outer Reed Solomon encoding 
(before the Unitary Space-Time Coding) and 
decoding (after ML-decoder) is added to the system. 
This will improve the error rate performance as 
shown in Fig.5. The performance improvement will 
increase as the SNR increases. 

 
Fig.5  Word Error Probability with and without Reed 
Solomon outer coding. 



 
4. Conclusions 
In this paper we have presented the OFDM-MIMO 
system using Unitary Space Time Code. The coding-
decoding technique was designed for two channel 
states: The perfect Channel State Information (CSI), 
and the absence of Channel State Information (No 
CSI). The results for the CSI case had better 
performance compared to the No CSI case, due to 
the assumption of perfect estimation of the channel 
parameters in the first case while no channel 
knowledge in the case of differential coding. The 
ML decoder in this case is simpler, and practical for 
situations with difficulties in channel estimation or 
rapidly fading channels. An outer Reed Solomon 
coding could be used to enhance the performance of 
the Differential OFDM-MIMO system. 
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