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Abstract. With this paper we want to present a black-box model, that can be applied to a vast number of RF 
electron devices (e.g. FET). We will show that an analytical Volterra series approximation of the nonlinear 
behavior time-dependent model of an electron device can be built using a neural network and its parameters, 
once the proper training data are given. 
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1  Introduction 
The classical representation of nonlinearities inside an 
electronic device/element are usually modeled 
thorough equivalent circuit, assigning the constitutive 
relations among the current or charge-voltage 
relationships and the controlling voltages. This 
procedure is based on the known physical behavior of 
the modeled device that dictates the model topology. 
For this reason not only the model must be tailored to 
the device, but also the extraction of its parameters 
strongly depends on it. 

Other approaches claim to represent a general 
device and are referred to as black-box model, but that 
it is generally only partially true, since some 
assumption on the device is always done. The 
Volterra expansion approach has been proposed since 
many years, at least in principle, for non-linear 
modeling, through an input-output relationship. Due 
to the difficulties in identifying the higher order 
kernels through experimental data, this approach is 
complex. For this reason it is not effectively used 
within commercially available circuit simulator, 
despite the fact that it can originate intrinsically a 
black-box model and, therefore, device independent 
model.  

On the other side the neural network approach to 
device modeling has received increasing attention in 
recent years since model tailoring to the device under 
study only needs a training procedure based on 
experimental data.  

In this paper we propose a black-box time 
dependent neural network model able to build a 
Volterra series approximation suitable for electronic 
devices, allowing its kernels evaluation as well. In this 
paper we will show, as a case of study, the results 
obtained using a Curtice MESFET model [1] as the 
reference drain current.  

The Volterra series approach is explained in 
Section 2. Our proposed dynamic neural network 
model appears in Section 3. Simulation results are 
presented in Section 4 and the conclusions of this 
work can be found on Section 5. 

 
 

2  Volterra series model of nonlinear 
behavior 
A non-linear dynamical system can be represented 
exactly by a converging infinite series of the form (1), 
that reports the dynamic expansion of a single -input 
single-output system. This equation is known as the 



Volterra series expansion [2]. The functions h0,  h1, 
h2,…,hn are known as the Volterra kernels of the 
system. In general, hn is the nth order kernel of the 
series that completely characterizes the nth order 
nonlinearity of the system. If the continuous Volterra 
series model (1) is express in discrete form, then it 
becomes (2). In practice, the Volterra series must be 
simplif ied to avoid summations over an infinite 
number of terms. A sufficiently accurate model can be 
obtained by using a finite number of term and less 
than infinite memory [3]. 
 

(1) 
 
 
 
 
 

(2) 

 
 
 
 

The Volterra series analysis is well suited to the 
simulation of nonlinear microwave devices and 
circuits, in particular in the weakly nonlinear regime 
where a few number of kernels are able to capture the 
device behavior (e.g. for PA distortion analysis). The 
Volterra kernels allow the analysis of device 
characteristics of great concern for the microwave 
designer, such as harmonic generation and inter-
modulation phenomena in the case of a FET [4].  

The number of terms in the kernels of the series 
increases exponentially with the order of the kernel 
and the delay (k) used . This is the most difficult 
problem with the Volterra series approach and 
imposes restrictions on its application to many 
practical systems, which are restricted to use second 
order models because of the difficulty in kernels 
expression. A common approach for kernels 
identification is the  use of Wiener orthogonal 
functionals, but the problem of number of terms in the 
functionals is still present [5]. Moreover, the use of 
alternative methods for kernels identification [6], 
analytical expression [7] or measurement [8] can be a 
complex and time-consuming task.  

In the Biology field, these authors [9][10] outline a 
method for extracting the Volterra kernels as a 
function of the weights and bias values of a neural 
network. Based on this idea, other works propose 

different strategies for the kernels calculation with 
different neural networks topologies [11] [12] [13].  
However, all of these approaches use a discrete 
temporal behavior by means of multi-delayed samples 
of a unique input variable. Our proposed model, 
instead, is more general in the sense that allows to 
represent not only the time-domain dependence on 
one variable, but also a function depending on two or 
more variables. 

Differently from [14], where different neural 
networks models are used to describe the current 
nonlinearity using measurements of the current and all 
its derivatives, our proposed modeling approach [15] 
(extended here to a general case), instead, is very 
simple and straightforward, and only needs 
input/output measurements for the training of one  
standard MLP model. With only those elements, after 
performing some very simple calculations, the 
Volterra series and its kernels can be obtained. 

 
 

3  Neural Network based approach 
The topology of the Multi-layer Perceptron (MLP) 
neural network that we propose is a very simple one. 
The first layer, as shown in Fig. 1, has as inputs the 
time samples of independent variables together with 
their delayed values.  In our case, we have two input 
variables, xa and xb, which correspond, in a MESFET 
case, to the control voltages Vds and Vgs, 
respectively. In the hidden layer there are as many 
hidden neurons as input neurons, with the hyperbolic  
tangent as activation function. They receive the sum 
of the weighted inputs plus a corresponding bias value 
bk.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

The output of the neural network model (3) 
(assuming the output is the drain current of a FET) is 
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Fig. 1. Dynamic Neural Network model 
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calculated as the sum of the weighted outputs of the 
hidden neurons plus a bias. The activation function of 
the output neuron is chosen to be linear. 

 
(3) 

where l=[a,b] 

Following the approach in [9], we expand the 
output of our network model (3) as a Taylor series 
around the bias values of the hidden nodes (4) (where 
tanh(j) is the jth derivative of the hyperbolic tangent).  

(4) 

 

where l=[a,b] 

Accommodating the terms according to their 
derivative order, yields (5). 

(5) 

 

 

  

   

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 

Considering now i.e., only the terms that contain 
the variable xa(t), it is easy to recognize the terms 
between brackets in (5) as the Volterra kernels of a 
Volterra series expansion for the relationship 
Ids(xa(t)). Extending the Volterra series approximation 
to more than one variable , we can see now how 
simple is to use the Neural Network parameters to 
obtain the Volterra kernels values for a multivariable 
case as well. 

 
 

4  Case of study and Simulation results 
To clarify our proposed approach and as an initial 
“case of study”, we will present here a simple 
example of a function that depends on two variables, 
and for the analysis we will use a simplified version of 
the neural network model presented in Fig. 1.  

We compare the expression (6), that reports a two 
variables (Vds, Vgs) function Ids approximated 
through its polynomial Volterra series expansion up to 
the 3rd order, with the terms in (5). The coefficients of 
the series are the first order (Gds and Gm), second 
order (Gds2, Gm2 and Gmd) and third order (Gds3, 
Gm3, Gm2d, Gmd2) derivatives of the current with 
respect to the voltages. These coefficients happen to 
be the Volterra kernels of the series. If we consider 
Vds = xa and Vgs = xb, it is straightforward to 
recognize the terms between brackets in (5) as the 
Volterra kernels of the series (6) for this static case.  

(6) 
 
 
 
 
 
 
 
 
 

We use a simplified version of our original neural 
network model in Fig.1 (two input nodes, two hidden 
nodes, one output node , see Fig. 2), while concerning 
the data for the training phase we use data obtained 
from a cubic Curtice model (A0=0.0625, A1=0.05, 
A2=0.01, A3=0.001). The network has been trained 
with 200 samples uniformly distributed. Although the 
Back-Propagation algorithm is generally used for the 
training of MLP networks, its convergence parameters 
have to be finely adjusted to get fast convergence. 
That is why in the simulations in this paper we have 
used the Levenberg-Marquardt algorithm to train the 
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weights and bias values of the networks, which 
provides relatively fast training and no adjusting of 
step and momentum terms are required to obtain 
convergence. The training has been refined up to an 
average relative error of 1e-07.   

 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

At the end of the training procedure, the Volterra 
kernels up to the 3rd order have been extracted and 
compared with the ones analytically computed from 
the Curtice approximations. The approximation was 
found very accurate and the kernels values are 
reported in Table 1. Fig. 3 also reports, for some 

values of the gate current, the drain current obtained 
from the Volterra-Neural-Network approximation (*) 
and the virtual experimental data from the Curtice 
model (-). Keeping in mind that the Volterra series is 
an approximation and that here only up to the 3rd order 
terms have been included in the series, we conclude 
that the agreement is quite good.  

 
 

5  Conclusions 
We have developed a new Neural Network model that 
allows the building of a Volterra black-box model and 
the extraction of its Volterra Kernels in the case of a 
dynamic system with multiple driving voltages, and so 
able to reproduce the non-linear device behavior.  

We have explained how it is possible to obtain the 
Volterra series analytical expression for an electronic 
device nonlinear behavior ,  which sometimes can be a 
difficult task, using parameters of a Neural Network 
model only trained with input/output  measurements, 
and how to calculate its Volterra Kernels. The model 
has been validated: the results on a case of study (a 
Curtice FET current) are here reported. 
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