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Abstract: - The possihility of implementing finite valued control laws more and more easily by making use of
microcontrollers, the consequent costs reduction of multi-level actuators and the obtainable high efficiencies
motivate the development of new methodologies for the design of multi-level control laws for a class of
systems that is wider than the class of systems that can be approximated by first order models.

In this paper a method for the synthesis of a discrete valued control law is provided that makes use of
diagrams and tables. Such diagrams and tables are obtained by an analytical/numerical optimisation technique
with respect to a minimal number of normalised parameters that characterise both the plant as well as the

controller.

The effectiveness of the method isillustrated by the solution of a practical engineering problem.
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1 Introduction

There are many industrial plants (especially power
systems) that, for construction simplicity and/or in
order to attain better efficiencies, may be controlled
through control signals assuming a finite number of
different values, with a relatively slow switching.
Moreover, the advent of modern microcontrollers
and the relatively lower costs of multi-level actuators
alow the easy implementation of control strategies
based on the appropriate switching of the control
values chosen from afinite discrete set.

The above considerations have motivated the interest
of the authors in the development of new
methodologies for the design of discrete valued
control laws for a class of systems that is sufficiently
wide. In particular, it is treated here the problem of
control law synthesis for the sufficiently general
class of hybrid systems consisting of continuous-
time dynamical systems, approximated by high order
linear time-invariant models, whose control inputs
take value from afinite discrete set.

The specific literature about hybrid control laws
synthesis is relatively recent and the recently
published papers document how both theoretical and
practical problems are still open (see[7] and therich
bibliography therein). In [5],[6],[8] the controllers
with control signals without constraints on their
amplitude, but constant in prescribed intervals of
time, are discussed. Vice-versa, in [3] control laws

are proposed with two or infinite number of levels,
with an infinitely fast switching (see also [4],[9] for a
detailed discussion).

In this paper a practical and systematic method is
presented for the design of a control law with afinite
number of levels, which guarantees the fulfillment of
a given set of requirements in terms of both system
performance and control effort. The proposed
approach is based on the construction of diagrams
and tables by a mixed analytical/numerical
optimisation technique of the number of parameters
that characterise the plant and the controller.

A numerical example illustrates the effectiveness of
the technique.

2 Problem Statement
The block diagram of Figure 1 shows a typical
control feedback system:
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Fig. 1: The block diagram of atypical control
feedback system




where: y, OO denotes the constant reference signal,

udOand yOO indicate the plant scalar input and
output respectively, dCJ 0 isthe constant disturbance
signal and e=y, —y istheregulation error.

The controller that is examined is a generalization of
the classic two-valued (on/off) relay control with
hysteresis, in the sense that the controller output may
now assume one of three or more levels, according to
both the current value of the error signal and the
output value of the controller after the last switching.
For the sake of illustrative simplicity and without
loosing generality, the input-output characteristic of
the considered N+ 1-valued controller with hysteresis
(with the inclusion of the null level) is the one
depicted in Figure 2 relative to the case N=2, where
U;,&,, 1=12 denote the control (non null) levels

and the (symmetric) error thresholds, respectively.
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Fig. 2. The characteristic of the multi-valued
controller for thecase N = 2

It is easy to verify that an aternative and more
expressive description of the controller characteristic
is the transition graph of Figure 3. Such a graph is
relative to an automaton that, among other things,
offers a method of realization via software or digital
circuits of the controller.
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For what concerns the plant model, it is supposed to
be linearised about one of its equilibrium points and
that the corresponding linear system s
asymptotically stable, represented by the following
input/state/output model:

[Xx=Ax+Bu+Fd
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where AOO™", B,FOO™, cOO™ and H OO,
being n the order of the plant.

The aim of the paper is to solve the following
problem.

Problem. Consider the feedback control system of
Figure 1 with the finite discrete valued controller
with hysteresis described by the example case of
Figure 2 (or of Figure 3) and the linear plant (1). For
a given constant reference value vy, , in the presence
of a constant disturbance d , design the multi-valued
controller parameters U; and &, i=12,...,N, in

order to satisfy the following requirements about:

Transient:
1.the 0-100% rise time, T.O(T,

S smin !
Tsmax 2Tsmin 20;

2. the overshoot/undershoot, SO (S, S )
Siax = Sin 20;

max = “~min
Seady-state:
3.the maximum absolute steady state regulation

error, ED(Eins Erex )» Ermex = Eriny 2 0;

min =

T

e )

Control effort:
4.the control

T =T 20.

min =

signal  period T (Tmin Ve )'
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Fig. 3: The transition graph of the multi-valued controller for the case N = 2



It is evident that, due to the limited number of
degrees of freedom, the solution of the Problem does
not always exist; moreover, in the case that such a
solution exist, it may be not unique and the
determination of the link between the controller
parameters and the prescribed requirements, for a
given reference signa and a given disturbance,
presents notable difficulties.

In the next Section a mixed analytical-numerical
method is presented for the general case of high
order plant models that is based on the normalisation
of areduced order representation of the plant.

3 Synthesis procedure

In the case of high order plants, explicit formulae for
the design of the controller are not available; it is
possible to proceed numerically and found those
relationships in a table/graphical format. In order to
reduce the amount of smulations, the next
preliminary steps are performed:

1) The input/state/output model (1) is converted
into an equivalent input/output model:

W(s)=C(sl -A)'B=

bys™ +bs™t +...+b 2
- On bln_1 m1m<n
s"+as"t+..+a,

with the disturbance signa (supposed known)
taken to act at the plant output as shown in

Figure 4, where y, = (H +C(-A)*F)d.
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Fig. 4: Alternative representation of the plant

2) The n-th order transfer function (2) is reduced to
a second order equivalent model of the type:
bys+ Db,

W(s) =—
s®+as+a,

©)

by using an optima model reduction technique
(seefor example [1]).

3) the second order model (3) is normalized as in
Figure 5 (see Appendix):
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Fig. 5: Reduced order and normalized model
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where;
t'=,a,t |, (4)

u't) =ut/yfa,) (5)

v(t/fa,)

() =—2L 6
Vi(t') b/, (6)

v = Yd 7
Y b /2, ) (7)

y(t/\a,)

"(t' , 8
y'(t') b,/ (8)
and

v 1+Sa
W'(s) EreToovct (9)
with:

b2,

= , 10
a b, (10)

- q
z_z - (12)

If { >1 the plant can be also normalised as
follows:

N R
W)= re)arsr) (12)
with:
, t
p=—t, (13)
Tmax
_ by
g, = Lmn (15)
Tmax

being 7., and 7., the time constants of the
reduced plant (3).

The controller parameters U; and & are
normalized as follows:

0,=LLJJ—:],|=:L2, N, (16)
E )
Xi = ! ,i=12,...,N, a7
|yr _yd|
where;
U, =(y, —¥4)/G, (18)



is the nominal control level (i.e. the level that, if
available, would guarantee a zero steady-state
regulation error), being G the plant static gain.
Note that in order to assure the regulation the
control level Uy must satisfy the following

conditions:
sgn(GU ) =san(y, — Yq), (19)
GU | >y, = Y| +&y, (20)

i.e. the maximum normalised level o isaways
greater than 1.

Once the above Steps are performed, the following
quality indices of the control system are considered:

T, =risetime,

S' = overshoot,

E' = max {E;,| = |} maximum steady-state error,
T’ = steady-state control signal period.

Such quality indices are nonlinear functions of the
controller parameters ¢ and x; and of the plant

parameters a and ¢ (or aso, if ¢>1, of B and
T,). The parameters x; are usualy assigned in
percentage with respect to their maximum value x .
Moreover, the values of x, are limited in the
practice (atypical value for x, is0.05). Asaresult,
each of the above defined quality indices can be
essentially considered as function of ¢, { and a
only (or of ¢, 7,, and B). Such functions can be
numerically evaluated and, for a easier use of them,
can be tabled and/or diagrammed.

To have an idea, in Figures 6,7,8,9 the diagrams
relative to TS' ,S,E', T arereported for the case N=2,
X, =0.025, x, =005, ¢=010:0.15:25, a=0

and with the normalized control levels chosen as
follows:

- 0,=08,0,=125, i.e the intermediate level
less than the nominal level;

- 0,=125,0,=150, i.e. the intermediate level
greater than the nominal level.
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Fig. 6: The normalized rising time
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Fig. 7: The normalized overshoot/undershoot
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Fig. 8: The maximum absol ute steady-state error
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Fig. 9: The control signal period

Remark 1. From the diagrams of T, ,S ,E’,f’ that are

not reported results that the finite-valued control
does not guarantee high performance for plants with
excessive delay (i.e. a< -0.25) and/or with relatively
low damping coefficient (i.e. {<0.25). ¢

Remark 2. In principle, by virtue of conditions (19)-
(20) the synthesis problem can be solved by using, of
the available control levels, the maximum and the
minimum levels only. Theintermediate levels are not
indispensable for the reference trajectory tracking,
but they are useful for aleviating the average
switching frequency. This result is particularly
evident when at least one of the intermediate levels
is greater than the nominal control level: in this case
the maximum level serves to reduce the rising time.
.

For a given plant a and ¢ , for a given number of
control levels N and a given maximum threshold

X the diagrams of T.,S,E’,T alow to determine

the interval of the values of ¢ (as intersection of
various intervals) that, when not empty, solve the
Problem. If the Problem does not admit a solution
and we are far from the maximum allowable
switching frequency, the value of x, can be

reduced compatibly with the output transducer
precision. In the hypothesis that it is not possible to
attain a solution in this way it is necessary to be
satisfied with the values of T.,S,E’, T’ obtained by

the most onerous values of g; and x .

4 Example

Consider the problem of controlling the temperature
of an industrial refrigerator where a body has been
placed inside. The linear model of the plant is the
following:

@, 0 +54E-3 04E-3 02E-3006,0
b,orD2E-3 -22-3 o 53,0
b (7 [ ERCIE
Hag B 0 0 -05 HHaH
000 BE-30
U, 0. .0
+H0 ity 0 @,
B55 H O H
(21)
6:(0)=6,(0=6.,9(0)=0 (22)
where: 8, ,6,and 6, respectively denote the
refrigerator, the body and the environmental

temperatures; q is the subtracted heat power and u
denotes the control input.
If the reference refrigerator temperatureis 6, =0°C,

and the environmental temperature (disturbance) is
6, =20°C, design afinite discrete valued controller

with N=2 control levels (non-null levels), in order to
satisfy the following set of requirements:

1. therisetimehastobe T, < 250 sec;
2. theundershoot hasto beS,, < 7% ;

3. the absolute maximum steady state error that is
tolerated is E<1.5°C;
4. thecontrol signal period T = 60sec.

The transfer function between uand 6; is, including
the compressor (actuator) dynamics:

0.1E-3s+0.2E-6

s® +0.5074s® +3.71E -3s+5.0E -6
(23)

Wu - 05 (S) =

According to the synthesis procedure described in
Section 3, the first step consists of reducing the
system model to the second order. In this case, by
neglecting the actuator high order dynamicsitis:

0.2E -3s+0.4E -6
S’ +74E-3s+01E-4

W, 4, (50 (24)

The corresponding normalised transfer function is:

as+l

_— 25
1+ 27 s'+s'? (25)

W'u'ae', (SI) =

wherea 01.58,¢ 01.17. By interpolating the
diagrams and/or the tables relative to the normalized
closed loop system, with the values of a and ¢
above, x, =0.025, x, =0.05 and for the cases:



- O'l :0.80,02 :1.0,
- ¢,=125,0,=150,

the estimated (and denormalised) values of the
rising time (in seconds), of the undershoot (in
percentage), of the maximum absolute regulation
error (in Celsius degrees) and of the control period
(in seconds), are:

T, 0{355,233 sec,
S,, 0{2.52%,5.049%¢ ,
E 0{0.998,0.993 °C ,
T 0{139,78.% sec.

From the above results it is clear that all of the
control system requirements are satisfied for the case
0,=125,0,=150. In terms of denormalised

control parameters, the solution has been found for:
U, =-625U, =-750 and &, =0.50,¢, =1.0.

The simulation values of the quality indices for the
(real) multi-valued control system are sufficiently
close to the estimated values above, which confirms
the validity of the proposed method.

5 Conclusions

In this paper the synthesis of a finite discrete valued
control system has been presented. The design of the
oversupply factors and the thresholds values passes
through a direct synthesis approach based on
simulation results. A normalisation procedure has
been also presented that allows reducing the number
of parameters to vary and therefore the number of
simulations required to evaluate the closed loop
system performance

6 Appendix
By multiplying both members of the relationship:
Y(s) =W(s)U(s) (AL)

by J/a, and substituting swith ,/a, s’ itis:

Ja,V (2, 8) =W(|/a,8)\a,U([a,s) (A2
Lt/ Ja))=W(a s)Llut/\a)) . (A3)

By dividing both members of (A3) by the static gain
of system (3):

Lt/ a))_wia,s) (-
b, /a, ) b, /a, L(U(t/\/g)) (A9

then

Lt/ (a)= J_ le/van),  @s

hence the normalised transfer function is;

b,
2 s+l
()= VG:s)
W'(s') = (AB)
bl/ 2 al\/g
2
If the following parameters are introduced:
b,+/a
a=-2VN"2 (A7)
b,
— al , (A8)
2\a,
the (A6) becomes:
o 1+s'a
W'(s') = U T—— (A9)
1+2( s+s

which is the final synthetic representation of the
normalized plant model.
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