
Finite Valued Control Laws Design 
 

G. CELENTANO, R. IERVOLINO 

Dipartimento di Informatica e Sistemistica 
Università degli Studi di Napoli, Federico II 

Via Claudio, 21, 80125 Napoli 
ITALY 

 
 

Abstract: - The possibility of implementing finite valued control laws more and more easily by making use of 
microcontrollers, the consequent costs reduction of multi-level actuators and the obtainable high efficiencies 
motivate the development of new methodologies for the design of multi-level control laws for a class of 
systems that is wider than the class of systems that can be approximated by first order models.  
In this paper a method for the synthesis of a discrete valued control law is provided that makes use of 
diagrams and tables. Such diagrams and tables are obtained by an analytical/numerical optimisation technique 
with respect to a minimal number of normalised parameters that characterise both the plant as well as the 
controller.  
The effectiveness of the method is illustrated by the solution of a practical engineering problem.  
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1   Introduction 
There are many industrial plants (especially power 
systems) that, for construction simplicity and/or in 
order to attain better efficiencies, may be controlled 
through control signals assuming a finite number of 
different values, with a relatively slow switching. 
Moreover, the advent of modern microcontrollers 
and the relatively lower costs of multi-level actuators 
allow the easy implementation of control strategies 
based on the appropriate switching of the control 
values chosen from a finite discrete set.  
The above considerations have motivated the interest 
of the authors in the development of new 
methodologies for the design of discrete valued 
control laws for a class of systems that is sufficiently 
wide. In particular, it is treated here the problem of 
control law synthesis for the sufficiently general 
class of hybrid systems consisting of continuous-
time dynamical systems, approximated by high order 
linear time-invariant models, whose control inputs 
take value from a finite discrete set. 
The specific literature about hybrid control laws 
synthesis is relatively recent and the recently 
published papers document how both theoretical and 
practical problems are still open (see [7] and the rich 
bibliography therein). In [5],[6],[8] the controllers 
with control signals without constraints on their 
amplitude, but constant in prescribed intervals of 
time, are discussed. Vice-versa, in [3] control laws 

are proposed with two or infinite number of levels, 
with an infinitely fast switching (see also [4],[9] for a 
detailed discussion).  
In this paper a practical and systematic method is 
presented for the design of a control law with a finite 
number of levels, which guarantees the fulfillment of 
a given set of requirements in terms of both system 
performance and control effort. The proposed 
approach is based on the construction of diagrams 
and tables by a mixed analytical/numerical 
optimisation technique of the number of parameters 
that characterise the plant and the controller.  
A numerical example illustrates the effectiveness of 
the technique. 
 
 

2   Problem Statement 
The block diagram of Figure 1 shows a typical 
control feedback system:  
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Fig. 1: The block diagram of a typical control 
feedback system 

 



where: ℜ∈ry  denotes the constant reference signal, 
u ℜ∈ and y ℜ∈  indicate the plant scalar input and 
output respectively, d ℜ∈  is the constant disturbance 
signal and yye r −=  is the regulation error. 
The controller that is examined is a generalization of 
the classic two-valued (on/off) relay control with 
hysteresis, in the sense that the controller output may 
now assume one of three or more levels, according to 
both the current value of the error signal and the 
output value of the controller after the last switching. 
For the sake of illustrative simplicity and without 
loosing generality, the input-output characteristic of 
the considered N+1-valued controller with hysteresis 
(with the inclusion of the null level) is the one 
depicted in Figure 2 relative to the case N=2, where 

iU , iε , 2,1=i  denote the control (non null) levels 

and the (symmetric) error thresholds, respectively.  
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Fig. 2: The characteristic of the multi-valued 
controller for the case N = 2 
 
It is easy to verify that an alternative and more 
expressive description of the controller characteristic 
is the transition graph of Figure 3. Such a graph is 
relative to an automaton that, among other things, 
offers a method of realization via software or digital 
circuits of the controller.  

For what concerns the plant model, it is supposed to 
be linearised about one of its equilibrium points and 
that the corresponding linear system is 
asymptotically stable, represented by the following 
input/state/output model: 
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where nnA ×ℜ∈ , 1, ×ℜ∈ nFB , nC ×ℜ∈ 1  and ℜ∈H , 
being n the order of the plant.  
 
The aim of the paper is to solve the following 
problem. 
Problem. Consider the feedback control system of 
Figure 1 with the finite discrete valued controller 
with hysteresis described by the example case of 
Figure 2 (or of Figure 3) and the linear plant (1). For 
a given constant reference value ry , in the presence 
of a constant disturbance d , design the multi-valued 
controller parameters iU  and iε , Ni ,,2,1 != , in 

order to satisfy the following requirements about:  
 
Transient: 
1. the 0-100% rise time, ( )maxmin , sss TTT ∈ , 

0minmax ≥≥ ss TT ; 

2. the overshoot/undershoot, ( )maxmin , SSS ∈ , 

0minmax ≥≥ SS ; 
Steady-state: 
3. the maximum absolute steady state regulation 

error, ( ) 0,, minmaxmaxmin ≥≥∈ EEEEE ; 

Control effort: 
4. the control signal period ( )maxmin ,TTT ∈ , 

0minmax ≥≥ TT . 

Fig. 3: The transition graph of the multi-valued controller for the case N = 2 



It is evident that, due to the limited number of 
degrees of freedom, the solution of the Problem does 
not always exist; moreover, in the case that such a 
solution exist, it may be not unique and the 
determination of the link between the controller 
parameters and the prescribed requirements, for a 
given reference signal and a given disturbance, 
presents notable difficulties.  
In the next Section a mixed analytical-numerical 
method is presented for the general case of high 
order plant models that is based on the normalisation 
of a reduced order representation of the plant. 
 
 

3   Synthesis procedure 
In the case of high order plants, explicit formulae for 
the design of the controller are not available; it is 
possible to proceed numerically and found those 
relationships in a table/graphical format. In order to 
reduce the amount of simulations, the next 
preliminary steps are performed: 
 
1) The input/state/output model (1) is converted 

into an equivalent input/output model:  
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with the disturbance signal (supposed known) 
taken to act at the plant output as shown in 

Figure 4, where ( )dFACHyd
1)( −−+= . 
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Fig. 4: Alternative representation of the plant 

2) The n-th order transfer function (2) is reduced to 
a second order equivalent model of the type:  
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by using an optimal model reduction technique 
(see for example [1]).  
 

3) the second order model (3) is normalized as in 
Figure 5 (see Appendix): 
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Fig. 5: Reduced order and normalized model  

where: 
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with: 
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If ζ >1 the plant can be also normalised as 
follows: 
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with: 
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being maxτ  and minτ  the time constants of the 
reduced plant (3). 
 

4) The controller parameters Ui and εi are 
normalized as follows: 
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where: 
 

GyyU drn )( −= ,  (18) 



is the nominal control level (i.e. the level that, if 
available, would guarantee a zero steady-state 
regulation error), being G the plant static gain.  
Note that in order to assure the regulation the 
control level UN  must satisfy the following 
conditions: 

 
)sgn()sgn( drN yyGU −= , (19) 

NdrN yyGU ε+−> , (20) 

 
i.e. the maximum normalised level Nσ  is always 
greater than 1. 

 
Once the above Steps are performed, the following 
quality indices of the control system are considered: 
 

'
sT  = rise time, 
'S   = overshoot, 

E’ = max { }||, ''
−+ EE  maximum steady-state error, 

T ’ = steady-state control signal period. 
 
Such quality indices are nonlinear functions of the 
controller parameters σi and iχ  and of the plant 
parameters α  and ζ  (or also, if ζ >1, of β  and 

nτ ). The parameters iχ  are usually assigned in 

percentage with respect to their maximum value Nχ . 

Moreover, the values of Nχ  are limited in the 

practice (a typical value for Nχ  is 0.05). As a result, 
each of the above defined quality indices can be 
essentially considered as function of  σi , ζ  and α  

only (or of σi , nτ  and β ). Such functions can be 
numerically evaluated and, for a easier use of them, 
can be tabled and/or diagrammed.  
To have an idea, in Figures 6,7,8,9 the diagrams 

relative to '
sT ,S’,E’,T’ are reported for the case N=2, 

05.0,025.0 21 == χχ , 5.2:15.0:10.0=ζ , 0=α  
and with the normalized control levels chosen as 
follows: 
 
− 25.1,8.0 21 == σσ , i.e. the intermediate level 

less than the nominal level; 
− 50.1,25.1 21 == σσ , i.e. the intermediate level 

greater than the nominal level. 
 

 
Fig. 6: The normalized rising time 

 
Fig. 7: The normalized overshoot/undershoot 

 
Fig. 8: The maximum absolute steady-state error 



 
Fig. 9: The control signal period 
 

Remark 1. From the diagrams of '
sT ,S’,E’,f’ that are 

not reported results that the finite-valued control 
does not guarantee high performance for plants with 
excessive delay (i.e. α< -0.25) and/or with relatively 
low damping coefficient (i.e. ζ<0.25).  ♦  
 
Remark 2. In principle, by virtue of conditions (19)-
(20) the synthesis problem can be solved by using, of 
the available control levels, the maximum and the 
minimum levels only. The intermediate levels are not 
indispensable for the reference trajectory tracking, 
but they are useful for alleviating the average 
switching frequency. This result is particularly 
evident when at least one of the intermediate levels 
is greater than the nominal control level: in this case 
the maximum level serves to reduce the rising time.
 ♦  
 
For a given plant α and ζ , for a given number of 
control levels N and a given maximum threshold 

Nχ , the diagrams of '
sT ,S’,E’,T’ allow to determine 

the interval of the values of σi  (as intersection of 
various intervals) that, when not empty, solve the 
Problem. If the Problem does not admit a solution 
and we are far from the maximum allowable 
switching frequency, the value of Nχ  can be 
reduced compatibly with the output transducer 
precision. In the hypothesis that it is not possible to 
attain a solution in this way it is necessary to be 
satisfied with the values of '

sT ,S’,E’,T’ obtained by 

the most onerous values of σi and Nχ . 
 
 

4   Example 
Consider the problem of controlling the temperature 
of an industrial refrigerator where a body has been 
placed inside. The linear model of the plant is the 
following: 
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where: fθ , bθ and eθ  respectively denote the 

refrigerator, the body and the environmental 
temperatures; q is the subtracted heat power and u 
denotes the control input. 
If the reference refrigerator temperature is Cr °= 0θ , 
and the environmental temperature (disturbance) is 

Ce °= 20θ , design a finite discrete valued controller 
with N=2 control levels (non-null levels), in order to 
satisfy the following set of requirements: 
 
1. the rise time has to be ≤sT  250 sec ; 

2. the undershoot has to be %7% ≤S  ; 
3. the absolute maximum steady state error that is 

tolerated is CE °≤ 5.1 ; 
4. the control signal period 60≥T sec . 
 
The transfer function between u and fθ  is, including 

the compressor (actuator) dynamics: 
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According to the synthesis procedure described in 
Section 3, the first step consists of reducing the 
system model to the second order. In this case, by 
neglecting the actuator high order dynamics it is: 
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The corresponding normalised transfer function is: 
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where 17.1,58.1 ≅≅ ζα . By interpolating the 
diagrams and/or the tables relative to the normalized 
closed loop system, with the values of α and ζ 
above, 025.01 =χ , 05.02 =χ  and for the cases: 



− 0.1,80.0 21 == σσ , 

− 50.1,25.1 21 == σσ , 
 

the estimated (and denormalised) values of the 
rising time (in seconds), of the undershoot (in 
percentage), of the maximum absolute regulation 
error (in Celsius degrees) and of the control period 
(in seconds), are: 

 

{ }233,355≅sT sec , 

{ }%04.5,%52.2% ≅S , 

{ } CE °≅ 995.0,998.0  , 

{ }7.78,139≅T  sec . 
 

From the above results it is clear that all of the 
control system requirements are satisfied for the case 

50.1,25.1 21 == σσ . In terms of denormalised 
control parameters, the solution has been found for: 

750,625 21 −=−= UU  and 0.1,50.0 21 == εε . 
The simulation values of the quality indices for the 
(real) multi-valued control system are sufficiently 
close to the estimated values above, which confirms 
the validity of the proposed method. 
 
 

5   Conclusions 
In this paper the synthesis of a finite discrete valued 
control system has been presented. The design of the 
oversupply factors and the thresholds values passes 
through a direct synthesis approach based on 
simulation results. A normalisation procedure has 
been also presented that allows reducing the number 
of parameters to vary and therefore the number of 
simulations required to evaluate the closed loop 
system performance 
 

6   Appendix 
By multiplying both members of the relationship: 
 

)()()( sUsWsY =  (A1) 
 

by 2a  and substituting s with '2 sa  it is: 
 

)'()'()'( 22222 saUasaWsaVa =  (A2) 

( ) ( ))'()'()'( 222 atusaWatv LL =  . (A3) 
 

By dividing both members of (A3) by the static gain 
of system (3): 
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then 
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hence the normalised transfer function is: 
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If the following parameters are introduced: 
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the (A6) becomes: 
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which is the final synthetic representation of the 
normalized plant model.  
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