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Abstract. There are high demands for high capacity switch fabrics due to the data explosion in the internet and
exponential growth in the communication link rates. Different architectures have been proposed to design and build
switches. Nevertheless, it sounds that the shared memory architecture switch fabrics are optimum in delay and
throughput due to the sharing memory among outputs. Furthermore, they support multicast and IP packets
efficiently. In this paper, we report the design and implementation of a switch fabric memory manager, which has
been implemented, on FPGA, VIRTEX II from Xilinx. The scheduler is completely distributed, thus multicast
prioritized packets can be supported easily with the most possible speed. Likewise, the memory manager is scalable
and can scales up to two. Also the switch support IP packets internally by using linked lists in memory manager.
Moreover, we compare the switch with other switch fabrics, supporting multicast packets in inputs, in delay and
throughput. The implementation of scheduler and linked lists are explained in detail and we can reach to 40Gb/s
capacity on FPGA. Since outputs work in parallel, implementation of the system is easy and can reach to high
speed.

Keywords: shared memory switch, memory management, distributed scheduler, ATM/IP switch, high capacity
switching

Introductionl packets on all inputs are multiplexed into a single
Broadband ISDN networks require fast packet stream that is fed to the common memory for. storage.
switches to transfer IP packets and ATM cells along Inside the shared memory, packets are organized into
their appropriate paths. The main purpose of an separate optput queues, one for each outpu.t port. At
ATM/IP switch is transferring incoming cells or the same time, an output stream of packets is formed
packets to one or more particular outputs, which is by retrieving packets from the output queues
called the output ports related to destinations [1]. sequentially. The Outpl.lt stream is then demultiplexed
Two main methods have been proposed to and.packets are t.rans.mltted on the output ports [2]..
accomplish the switching function: space division Besides the switching function of switch fabrics,
and shared memory [2]. A simple example for space queuing is also an important function which needs
division is crossbar switch, composing of some special attention. Queuing is necessary due to the
matrix cross points to create some paths among output contention meaning existing more than one
inputs and outputs. The inputs and outputs in a packet destined to an output in a cell time [2]. Three
crossbar switch are connected at cross points in a different queuing policies exist in switch fabrics:
matrix structure. “input queuing”, “output queuing” and ‘“shared
The main building block of a shared memory switch queuing” which buffers packets internally between
[3], [5], [6], [8] is a central dual port memory, which all outputs. . .
is shared by all input and output ports. Arriving Input queued switches buffer packets at inputs.

Therefore; the memories need only to operate at the
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FIFOs at their inputs, suffer from a Head of Line
blocking (HoL) problem. This problem can be solved
b y using Virtual Output Queuing (VOQ), in which
there is a separate queue in each input port for each
output [13],[9],[4],[11].

Output queuing switches are like the shared memory
architecture. Nevertheless, for each output there is a
separate memory. Unfortunately, the memory isn’t
used efficiently in this scheme. Modifying the
memory management control circuit makes the
shared memory switch flexible enough to perform
functions such as priority control and multicast [10].
A nice property of the shared memory switches
compared to the input queuing is supporting
multicast and IP packets. In input queued switches,
the multicast packets are converted to unicast packets
and, then; send into switch. In this manner,
obviously, the throughput decreases. Furthermore to
support IP packets in input switches, they have to
assign N” queues for inputs and N* queues in outputs
for assembly and reassembly of cells to packets and
vice versa. In shared memory switches, using the port
mapping mechanism, supporting multicast and IP
packets is simple.

It sounds that the central scheduler of the shared
memory is the main bottleneck of the switch fabric.
In this paper, we report design and implementation of
a new shared memory switch memory management
that uses distributed scheduler for managing unicast
and multicast packets besides balancing partitioned
memory in order to cope with memory bottleneck.
Our design is optimized for IPv4 & IPv6 packets
with unicast and multicast capabilities. It supports 8
level priority classes with strict priority in outputs.
Switching is performed based on segments. Each cell
consists of two segments. So the switch can be
changed to support different packet formats like
frame relay and POS.

Furthermore, our proposed switch scales up to two
switches working in parallel. To support this feature,
we have to take into account two parameters: the
scheduler and the internal cell format. When the
switch scales to N, the capacity of switch grows
proportional to N. For instance, a switch processing
16 cells in the single mode, must be able to process
N*16 cells when it scales up to N. Due to the
distributed structure of the scheduler our switch can
easily scale to 2 with respect to the base switch.
Internal cell format of the switch is based on
segments and each cell consists of two segments.
Thus; in the input port interface cells are divided into

segments and, in the output, they are reassembled
into cells.

The rest of the paper is organized as follows: Our
internal architecture is presented in section 2. In
section 3, we present simulation results. Section 4
concludes the paper.

2 Memory management Architecture
We call the memory management as pointer path
occasionally in our design. Pointer path is the heart
of the system. It is responsible for receiving headers
of input cells, putting each cell in its appropriate
output queue and taking cells from output queues
with special mechanism and transferring them into
outputs. We implement this mechanism using 16
separated linked lists with 800 cells capacity in each
output. Separating linked lists enables us to read from
and write in each output in parallel. This scheme can
handle multicast packets easily and increase the
switching capacity of the system. The total shared
memory size is 5500 cells. To prevent starvation of
an output in a high load (when the shared memory is
fully shared, few highly loaded outputs can allocate
all of the memory and starve other outputs [13]) and
better usage of the shared memory, we choose a
middle way. We use at most & *MEMS for each
output where MEMS is the size of the shared

memory and 1/N < [ < 1. In our design [ is equal
to 0.15.
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Fig. 1 Two Dimensional Linked List Structure

Our design supports four types of cells. ATM cells
and three cell types belonging to the IP packets,
which are segmented into the switch internal format.
These cell types are starting cell, middle and the last
cell of an IP packet. We use a “two dimensional
linked list” architecture to handle these types of cells.



ATM cells are put into the appropriate output queues
according to their destination addresses and class of
service. Since different cells of an IP packet are
considered as a whole, they must be sent out
sequentially. Therefore, when the first cell of an IP
packet departs the switch, others should follow. This
conveys that it is not necessary to keep the addresses
of the whole IP packet in the output linked lists, but
holding the address of the head is sufficient. The
internal link of an IP packet is formed using the
Fanout/Next memory discussed later in the paper. In
this way, we construct a two dimensional linked list
as depicted in figure 1.

Figure 2 illustrates the main parts of the pointer path.
Write scheduler provides 16 free addresses for the
memory (data path) in each cell-time. It also writes
the input cell addresses in their appropriate linked
lists. Shared Memory Free Address (SMF) contains
free addresses of the shared memory. Each cell of
Fanout/Next memory stores information of the stored
cells in the shared memory which are the number of
desired outputs of each cell, in other words its fanout,
next cell of an IP packet and cell type. Linked List
part includes output queues in which the address of
each cell targeting that output is saved. It consists of
16 linked lists, one for each output. In each cell time,
read scheduler assigns packets going to outputs. With
freeing each cell of memory, its address is added to
SMF and Fanout/Next memory is updated. The
followings explain these parts individually.
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Fig. 2 Pointer Path Block Diagram

Shared memory Free (SMF) Address

This memory contains the shared memory free
addresses and is implemented as a FIFO. Its reading
port is used by the write scheduler to provide free
addresses for the data path (Memory section). Its
writing port is used by the read scheduler to return
the outgoing cell addresses back to SMF. At the
beginning, all of the shared memory addresses are
here.

Fanout/Next memory

This memory is equal to the shared memory in the
number of memory cells. There is a one-to-one
correspondence between each cell of this memory
and the shared memory. Each cell of this memory
saves the information about a cell that is stored in the
same address in the shared memory. The information
maintained in this memory is the number of
requested outputs, next IP cell address and cell type.
Figure 3 shows this memory structure.
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Fig. 3 Fanout/Next Memory

As shown in the figure, each cell of the memory is
composed of three fields. The first is the number of
requested outputs, the second is the cell type (ATM,
start/middle/last cell of an IP packet) and the third is
used by IP cells to show the next addresses of the
successive cells of an IP packet.

With this architecture, we can support multicast
packets in the best fashion. If we use only one linked
list for memory management, when all inputs want to
send their data to all outputs 16*16 (256) clock
cycles are required. Then; we should queue input
cells for processing in the coming clock cycles. By
using this method, the multicast cells are stored in the
shared memory like unicast ones in only one memory
location. The address of that memory location is
saved in all of its desired output linked lists.
Fortunately, as we will see later, this can be done in
parallel and in one clock cycle. In addition, the
fanout part of the Fanout/Next memory for that
address should be set to the sum of its desired
outputs. Therefore, the system would know that the
cell in that address will be read out “fanout” times.

Write Scheduler
The write scheduler has three minor parts as can be
seen in figure 4. These parts are:

* Free Address Provider

*  Cell Header Shift Register

e Controller
“Free Address Provider”, is responsible for receiving
free shared memory addresses from SMF serially and
providing them to the data path in parallel. As
discussed in [14], the data path requires 16 shared
memory free addresses at the beginning of each cell



time. There is a possibility that an input does not
have any valid cell in a cell time. Free Address
Provider does not write back the unused free
addresses in this situation. In other words, once
extracted a free address it is held until is used by the
data path. Because the cell information should be
written when the cell enters the switch, the write
address of the Fanout/Next memory is driven by this
part too. Additionally, when a sequence of IP packet
cells enter the switch, this part link them using
Fanout/Next memory.

We have a cell time which consists of at least 16
clock pulses [14], and we can process every input
cell entering from one of 16 input ports, in a clock
cycle from those 16. Cell Header Shift Register
stores 16 cell headers of the input cells and shifts out
them for processing. The majority of write data into
the Fanout/Next memory (fanout and cell type) are
driven from this part.

The last component of the write scheduler is its
controller. It drives the write command to the
Fanout/Next memory and the linked lists when a
valid cell enters the switch. There are 16 different
write commands for the linked lists. The controller
drives several linked lists write commands in the case
of a multicast input cell. Also, it controls the cell type
before driving the write commands to the linked lists.
Only ATM cells and IP start cell type addresses
should be stored in linked lists.
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Fig. 4 Write Scheduler Block Diagram

Linked List

The main part of the pointer path is linked lists.
F igure 5 shows a diagram of a linked list. 16 blocks
of this architecture make up the linked lists part in
figure 2, each of them holds the output queue for an
output port. The linked list is designed in such a way
that it is able to hold and implement 8 separate linked
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Fig. 5 Linked List Structure

The list RAM, which can be seen in the center of the
picture, holds 8 linked lists. As mentioned before its
capacity is 800 memory cells. The left side of the
picture is mainly responsible for adding a shared
memory address to the output queue. When the write
scheduler controller drives the write command to a
linked list (the wr signal in the above picture), the
input SMA (Shared Memory Address) is written at
the end of its related class queue. The input class
signal drives the select of the List RAM write address
multiplexer. There are eight tail registers in which the
tail addresses of the 8 linked lists exist. The
multiplexer is used to select the suitable tail register,
according to the input class. After a write, the related
tail register will be updated too. It is replaced by a
free List RAM address which is extracted from the
Free List Addresses. Free List Addresses is just like
the SMF block in the main architecture and its duty is
the same. It should be noticed that shared memory
addresses are treated as the data parts of the linked
lists.

The right side of the linked list block diagram is in
charge of reading a shared memory address which its
contents should be sent out from the related output
port. It is very similar to the write part; the 8 head
registers store the head of the linked lists and a
multiplexer selects among them. One important note
about this part is that a controller makes decisions
about the outgoing addresses. Although the decision
policy which is used in this architecture is "strict
priority", every other policy can be used without any
major changes. This is because the controller can be
changed to reflect the new course of actions without
affecting the other parts. The current decision
strategy is that the controller checks all of the class
linked lists from the highest priority. The first linked
list which is not empty is chosen ignoring the others.

Rd



The last point worth noting is that the read part of the
linked list does its duty after receiving a read
command from the read scheduler. This is necessary
because there are circumstances that any address
should not to be read. We will see this in the next
section.

Read Scheduler

The remaining part of the pointer path is the read
scheduler. The decision making among different
classes is done inside the linked lists as explained
before. Read scheduler has some elements itself and
some other functionality.

Read scheduler consists of three components. The
first part is 16 "port read schedulers" and a
multiplexer to select among them. Every of these
"port read schedulers” belongs to one of the linked
lists. Every "port read scheduler" receives the shared
memory address from its related linked list in every
cell time and stores it. Then, it receives and saves the
information of the shared memory address obtained
from the Fanout/Next memory. The multiplexer
directs the stored addresses of the different port read
schedulers to the Fanout/Next memory address port,
each one in a clock cycle. It processes the cell type of
the memory address. In the case that a cell type is the
start cell of a long IP packet the next IP address,
which is a field of the Fanout/Next memory content,
is stored and used in the coming cell time. The read
command to the linked list driven by the “port read
scheduler” is not activated after a start cell of an IP
packet. In other words, the task of sending out cells is
done by the “port read scheduler” when an IP packet
is going to leave the switch. Consequently, when the
flow of IP packet cells finishes, in other words the
current cell type is the last cell of an IP packet, “port
read scheduler” reactivates the read command to the
related linked list to continue the read procedure
from the output queue.

Figure 6 illustrates a very simple block diagram of a
typical “port read scheduler”. With respect to the
picture, every block has a register to hold the next IP
cell address. The controller controls the select signal
of a multiplexer to either feed the “Read Address”
from the coming address from the linked list or the
stored next address register. In the latter case, the
controller does not activate the read signal to its
linked list (Rd). Furthermore, it has an input from the
control path part (BPIn), which simply deactivates
that output port.
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Fig. 7 Return Shared Memory Address

Since the system supports multicast cells, we should
use a block named “Return Shared Memory Address”
in picture 7. It has a memory just like the
Fanout/Next memory which has identical memory
cells to the shared memory and there is a one to one
correspondence between the memory cells of this
memory and the shared memory ones. In the cells of
this memory, the number of times that a memory cell
has been read is stored. Whenever a cell is read out
from the shared memory and sent out, the number of
reads from that cell incremented by one and the result
is compared to the fanout of that cell. If they are
equal, the cell is read “fanout” times and its address
can be returned back to SMF. Otherwise, we should
not return back the cell address, because its contents
will be used in future. In figure 7, we give a picture
of the “Return Shared Memory Address”. As it can
be seen from the picture, when the Shared Memory
Address is ready to be returned to SMF, its
associated number of reads is reset to zero. This is
because a new cell is coming to be written in that
address.

3 Simulation

Few simulations have been done using a software
model of the architecture, in order to study different
system parameters such as throughput and delay. The
simulation system works based on the discrete event.
All programs have been written in C+4+ and
implemented with the Visual C++ compiler.



First, we compare the proposed architecture
(distributed scheduler) to switches that convert a
multicast packet to some unicast packets in inputs.
F igure 8 shows the delay and throughput of our
switch compared to the central switches that support
multicast in inputs like [7, 12] for multicast packets.
However, when packets are unicast both schedulers
behave the same.

The picture illustrates the fact that our distributed
scheduler supporting multicast packets internally
performs better in throughput and delay especially
for bursts and IP packets. The reason is the
distributed scheduler that manages multicast packets
on the fly, like unicast packets. For example, in a
multicast packet with 1 and 3 destination outputs, in
the distributed scheduler the address of packets will
be put in output queues 1 and 3. But in central
scheduler, first, the packet will be sent to the output
queue 1 and, then, to the output queue 3. We can
conclude that the internally allocated memory for one
packet in a distributed scheduler is less than the other
one, thus, the memory is used optimally.
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Fig.8 The delay and throughput of distributed and central
switch with multicast Bursty traffic.

Conclusion and Future works
In this paper, we present a 40 Gbps ATM/IP switch
fabric memory manager. The advantage point of this
switch memory manager is its scheduler. The
scheduler is distributed, which means we have 16
independent linked lists for managing output queues.
Thus, supporting multicast packets in high speed is
simpler while the switch clock and capacity can be
increased. Furthermore, the switch scales up to two
parallel switches. In addition, the scheduler supports
IP packets naturally using separated linked lists and
has special queue for each class of priority. The
simulation results show that in comparison to the
other switches its delay and throughput for multicast
packets are better. Furthermore, the implementation

of the switch is simple and can reach to high capacity
very easily. The internal switch format is segment
base implying that each cell is composed of two
segments. Then the switch can support other network
technologies like frame relay and POS easily.
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