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Abstract: - Nowadays, the cryptography field is on the increase in the telecommunications world, because of this 
there is a constant need of more secure and efficient cryptographic algorithms. Thus, a lot of research is being 
done in order to try to improve the current algorithm performance. At present, one of the alternatives under 
research is the implementation of these algorithms in FPGAs (Field-Programmable Gate Arrays), which offer 
excellent features. In this work, we present a detailed research of the IDEA cryptographic algorithm 
implementation in Virtex FPGAs. Nine different hardware implementations are presented, which are compared 
with each other and with the algorithm software implementation. In addition, the conclusions of this detailed 
research and the possible future work lines are shown. In short, the implementation of the IDEA algorithm using 
FPGAs offers advantages over software implementation thanks to the use of the intrinsic parallelism (pipelining 
and replication), resulting in a performance that surpasses in 16 times the software version. 
 
Key-Words: - Computer Security and Cryptography, IDEA Cryptographic Algorithm, FPGA (Field-
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1   Introduction 
Nowadays, the information security has achieved a 
great importance, both when information is sent 
through a non-secure network (as Internet) and when 
data are stored in massive storage devices. The 
cryptographic algorithms are used in order to 
guarantee the security of data sent or stored. Among 
them we find the IDEA algorithm [1], the one used in 
our research. This is one of the most popular 
algorithms; for example, due to its use in the PGP 
(Pretty Good Privacy) system [2]. 
     In this work we present a total of 9 
implementations of IDEA algorithm, using 
reconfigurable hardware, in order to study the 
performance improvement provided by the use of an 
FPGA in the cryptographic algorithm 
implementation. In section 2, the IDEA algorithm is 
briefly described. Then, all the implementations 
performed and their results are explained in detail. 
Finally, in section 4, both the conclusions obtained 
and the future research lines are presented. 
 
 
2   The IDEA Algorithm 
IDEA (International Data Encryption Algorithm) is a 
coding/decoding algorithm of 64-bit text blocks, 
using a key of 128 bits (it is an algorithm of private 
key) that is used to generate 52 subkeys of 16 bits. 
The algorithm consists of 9 phases, 8 identical phases 
(figure 1(a)) and one last phase of transformation 

(figure 1(b)). The 64-bit block is propagated through 
each phase, divided into four 16-bit sub-blocks. See 
[1] for a more detailed explanation of the algorithm. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 1. (a) Structure of an algorithm’s phase.  (b) Structure 
of the algorithm’s transformation phase. 
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     As we can guess, the major problem lies in the 
multipliers, since, aside from taking a great amount 
of computation, they are executed 4 times in each 
phase. The improvement of this component is one of 
the more observed approaches in the literature. In our 
case, we will use the improvement of the Low-High 
algorithm [3] proposed by Biham [4]. 
 
 
3   Implementations and Results 
 
 
3.1 Software Implementation 
A software implementation of the IDEA algorithm 
has been made by means of the programming 
language Visual C++ that will serve as base to make 
performance and functionality comparisons with 
hardware versions. This implementation is strictly 
sequential and consists of a loop that, for each block 
to code, will cross the different phases of the IDEA 
algorithm (figure 1). Table 1 shows the results 
obtained by this version. It is important to emphasize 
that advanced optimizations have not been included 
in this version: assembler code, MMX technology, … 
 

Processor (Clock) Frequency Performance 
Pentium IV 1.7 GHz 3.861 Mbits/s 

Table 1. Software implementation results. 
 
 
3.2 Hardware Implementation 
In this study, a Celoxica RC1000 board with a Xilinx 
Virtex-2000E FPGA is used. The different hardware 
versions implemented result from combining three 
types of algorithms with three types of 
communications between host (computer) and the 
FPGA. This gives a total of nine hardware versions. 
First, the host-FPGA communication types used will 
be shown, following of the algorithm types. Then, the 
results obtained by each of the implementations will 
be presented. 
 
3.2.1   Host-FPGA Communication Types 
 
Communication through RC1000’s Memory Banks 
This communication type establishes the RC1000’s 
memory banks as the only means of data transference 
between the host (computer) and the FPGA, and 
besides, none other data storage auxiliary structure is 
defined. This is the reason why in order to process 
(code/decode) a block is first necessary to read it 
from the board’s memory and, after operating with it, 
to write the result in the memory again. This makes 
the operation time of this algorithm type be highly 

dependent on the memory access time. In addition, 
due to the fact that each block is of 64 bits and the 
RC1000 board’s memory stores 32-bit data, it is 
necessary to perform two readings and two writings 
per block to process, and this limits still more the 
performance of the algorithm that uses this 
communication type. 
     As it is observed in figure 2, the memory is an 
intermediary way in the data transference between the 
host and the FPGA. The arrows represent data transit. 
 
 
 
 
 
Fig. 2. Host-FPGA data transference using memory banks. 
 
Communication by means of Control & Status Ports 
In this communication type, the memory is 
eliminated and the information is transferred through 
the Control port (from the host to the FPGA) and 
Status one (from the FPGA to the host) of the 
RC1000 board. Due to the ports can only transmit 8-
bit data, it is necessary to divide the blocks into eight 
segments of that size, and to perform for each block 
so many host FPGA and FPGA host transferences 
as segments into which the block is divided. 
 
 
 
 
 
Fig. 3. Host-FPGA data transference using Control & 
Status ports. 
 
     The way in which the elements are distributed in 
the data communication is perfectly observed in 
figure 3, where arrows represent the information flow 
between the elements that they connect. 
     Like the previous case, the data transference and 
data processing are closely tied, being impossible to 
separate the transference and the processing. In 
conclusion, the processing (coding/decoding) of the 
blocks is penalized by the ports’ transference speed. 
 
Communication by means of Memory using an 
Internal Array 
This type of communication, like the first type, uses 
the memory to perform the communication between 
the host and the FPGA, but with the proviso that, in 
this case, the FPGA should have an internal array 
implemented that will serve as auxiliary storage. 
Therefore, the data transference and data processing 
(coding/decoding) are totally separated. 
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     As it can be observed in figure 4, the array serves 
as intermediary between the memory and the 
computation module, separating the processing of the 
communication. In this figure, the arrows represent 
data flows between elements. Therefore, for each x 
characters, where x stands for the size of the internal 
array (1496 for the sequential and sequential with 
replication versions, and 1200 for the pipelined 
version -see section 3.2.2-). The host sends data to 
the memory, and then the internal array receives 
those data coming from the memory. Afterwards, the 
computation module only uses the internal array, both 
to obtain the blocks to code/decode and to store the 
resulting blocks. Finally, the data pass from the array 
to the memory, and from this to the host. This process 
would be repeated if the size of the data to 
code/decode was larger than the array size. 
 
 
 
 
 
 
 
 
 
 
Fig. 4. Host-FPGA data transference by means of memory 
using an internal array. 
 
     This independence between communication and 
processing allows us to examine better the 
performance characteristics of the algorithm used, 
although the resources considerably increase because 
the internal array must be implemented within the 
FPGA. 
 
3.2.2   Hardware Algorithm Types 
 
Sequential Hardware Algorithm 
This algorithm is similar to the software 
implementation, that is, it is strictly sequential, with 
the only advantage of being executed in a hardware 
device. In this algorithm type, before an operation is 
performed the previous one must have been finished, 
as it can be seen in figure 5. In this implementation 
type, the replication of the multipliers, significant 
elements of the design, is not made. However, the 
replication of both adders and XOR gates is allowed 
in order to simplify the design in Handel-C, although 
their executions are not performed in parallel. 
     Analyzing figure 5, the phase operation time 
(PTseq) can be computed by means of equation 1, 
where mt represents the multiplier operation time, at 
refers to the adder operation time, xt stands for the 

XOR operation time, and ct represents the time that 
the signal takes going through the connections. 

PTseq = 4*mt + 4*at + 6*xt + ct (1) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 5. Execution flow of sequential hardware algorithm. 
 
Sequential Hardware Algorithm with Replication 
In this algorithm type, the inherent parallelism of the 
IDEA algorithm phase is used. The idea is that, by 
means of hardware replication, some parts of each 
phase of the IDEA algorithm will be executed in 
parallel, as figure 6 shows. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 6. Execution flow of sequential hardware algorithm 
with replication. 
 
     This produces a performance improvement 
compared with the previous version, in which all the 
operations are performed in sequential. As we can see 
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in figure 6, the operations in each box are executed in 
parallel. This is the reason why the operation time of 
each of these boxes is the major operation time of all 
its elements. Furthermore, we can verify that using 
two multipliers by phase is enough, since only two of 
them will be executed in parallel, the other two 
multiplications can be done by using the two existing 
multipliers. 
     The operation time of each phase (PTs+r) of this 
algorithm can be computed like equation 2 shows, 
where mt, at, xt and ct represent the same values as in 
the previous equation. As it can be observed, the 
operation time between the sequential algorithm and 
the sequential algorithm with replication is reduced in 
(mt+2*at+4*xt). This result is obtained from 
subtracting equations 1 and 2. Therefore, the 
performance has been increased notably with a little-
significant increase of hardware resources (just one 
more multiplier). 

PTs+r = 3*mt + 2*at + 2*xt + ct (2) 

 
Phase-Pipelined Hardware Algorithm 
Until now, we have seen two algorithm types in 
which, in order to code a block, all the IDEA 
algorithm’s phases must be executed before being 
able to begin with another block. In the phase-
pipelined algorithm, when a block leaves a phase and 
goes through the following one, the next block to 
code will enter the phase that the present block 
leaves. This is the reason why parallelism degree is 

increased by making a phase-level pipelining, as 
figure 7(b) presents. 
     All that is possible thanks to an ECB (Electronic 
CodeBook) version of the IDEA algorithm is being 
used, version in which the coding of a block is totally 
independent of the rest. In conclusion, this 
implementation increases the performance in such a 
way that a coded block is obtained in every phase 
operation time. 
     In order to make the pipelining, apart from 
replicating all the hardware relative to each phase, it 
is necessary to add between phases pipelining 
registers of the same size as the block, that is, 64 bits. 
Obviously, in this implementation, there is a notable 
increase of hardware resources, however the 
performance improvement also is outstanding. 
     Figure 7(a) shows the execution flow of the phase-
pipelined version. We can observe that it is very 
similar to the sequential algorithm with replication 
(figure 6), where the only difference is that one of the 
multipliers has been removed from the parallel 
execution zone of the beginning of the phase. This 
decision has been taken to reduce the hardware used, 
that is, a single multiplier will be used for each phase. 
The phase operation time of this algorithm (PTpipe) 
can be seen in equation 3. If we compare this 
equation with equation 2 of the previous algorithm, 
we see now the phase time increases in mt. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 7. (a) Execution flow of phase-pipelined hardware algorithm. (b) Pipeline of the hardware algorithm. 
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     Nevertheless, the performance increase is obtained 
thanks to a block is coded in each PTpipe (from the 
ninth block, since the pipeline is filled in the 8 
previous cycles), whereas in the sequential algorithm 
with replication (as well as in the sequential one) a 
coded block is obtained from each 8 PT plus the time 
of the transformation phase. In short, the latency is 
nine times smaller. 

PTpipe = 4*mt + 2*at + 2*xt + ct (3) 

 
3.2.3   Obtained Hardware Results 
In this section we study the results obtained by the 
different implemented hardware versions. The 
parameters of the elements used in our experiments 
are the following: 
• Computer: 1.7-GHz Pentium IV with 

768 MB of RAM. 
• FPGA: Virtex XCV2000E with a –8 

speed grade. 
• FPGA clock: 20 MHz (always). 
• Total number of FPGA slices: 19200. 
• Coded data size: 31880 characters. 
 
     Resource use, Maximum frequency and Minimum 
period columns of table 2 have been obtained from 
the reports generated by the Flow Engine tool of 
Xilinx Foundation Series 4.1, after the synthesis of 
each hardware module. Therefore, they are real 
measurements on implementations already carried 
out, and not estimations. The Performance column of 
this table has been computed obtaining the average 
value after several (around 10) practical experiments. 
The nomenclature of the Algorithm column is the 
following. The prefix I represents the cryptographic 
algorithm used, in this case IDEA; then the type of 
algorithm used is indicated: S (Sequential), SR 
(Sequential with Replication) and P (Pipelined by 
phase); finally, the communication type used appears: 
MEM (memory banks), PORT and ARRAY. 
     Let us analyze the data of table 2 in detail. The 
first we can observe is the resource use of the FPGA. 
As it can be seen, both in the sequential 
implementation and sequential implementation with 
replication, if the communication is made by means 
of ports or memory banks, the occupation is small 
enough, since none expensive element is used. This 
does not happen in their respective phase-pipelined 
versions, where the resource use is tripled, due to the 
replication of the hardware necessary for each 
pipelining stage. In the versions where the internal 
array is used, we observe that all the implementations 
surpass a 90% of the FPGA occupation. This is due to 
the great size of the internal array. There is little 
difference between the sequential version and 

sequential version with replication as opposed to the 
phase-pipelined one, since this last contains a smaller 
array. 
 

Algorithm Resource 
Use (Slices) 

Max. 
Frequency 

(MHz) 

Min. 
Period 

(ns) 

Perform. 
(Mbits/s)

I_S_MEM 2424 (12%) 24.311 41.134 5.175 
I_SR_MEM 2654 (13%) 23.630 42.319 5.175 
I_P_MEM 7760 (40%) 20.621 48.494 5.175 
I_S_PORT 2449 (12%) 23.782 42.048 0.145 

I_SR_PORT 2677 (13%) 21.180 47.215 0.145 
I_P_PORT 7748 (40%) 20.443 48.917 0.145 

I_S_ARRAY 18043 (93%) 23.408 42.721 7.846 
I_SR_ARRAY 18297 (95%) 22.100 45.248 15.202 
I_P_ARRAY 19198 (99%) 21.427 46.609 62.102 

Table 2. Results obtained by hardware implementations. 
 
     As far as the maximum frequency and minimum 
period are concerned, it is not possible to emphasize 
anything, since in all the versions the data are very 
similar. The only thing to indicate here is that, in the 
phase-pipelined cases, a nine times smaller latency 
than in the versions without pipelining is obtained, 
increasing significantly the algorithm performance. 
     Finally, let us analyze the data relative to the 
performance. It can be observed that, in the cases 
where the communication is performed through the 
RC1000’s ports or memory banks, the times of the 
three types of algorithms are equal. This is because 
the input/output time is so high that conceals the 
computation times (we should remember that 4 
memory accesses per block are necessaries in the 
versions with communication through the memory 
banks, and 16 port accesses per block in the versions 
that use the RC1000’s ports to communicate). It must 
be emphasized that the performance of the hardware 
versions that use the memory banks for 
communication (5.175 Mbits/s) is already greater 
than the performance of the software version (3.861 
Mbits/s). 
     When we study the versions that use the internal 
array, we observe how the performance varies among 
the different algorithms, also seeing that the 
performances of the internal-array versions are much 
greater than those of the other versions. Furthermore, 
the performances of the internal-array versions grow 
in an exponential way when changing from an 
algorithm type to another, until reaching a 
performance in the FPGA pipelined version 16.084 
times greater than in the software version. In 
addition, the performance for I_P_ARRAY 
implementation (62.102 Mbits/s) offered by the 
FPGA is higher than the one obtained by other 
authors, both using MMX technology [5] (32.9 
Mbits/s) and by means of FPGAs [6] (0.447 Mbits/s) 
and [7] (1 Mbits/s), VLSI [8] (44 Mbits/s), and 



diverse DSPs: Motorola 56166 [9] (1.25 Mbits/s), 
DEC SA-110 [10] (32 Mbits/s) and TI TMX320C6x 
[10] (53.1 Mbits/s). 
 
 
4   Conclusions and Future Work 
In this work, diverse hardware implementations of 
the IDEA cryptographic algorithm, using a Virtex-
2000E FPGA and Handel-C, have been analyzed. The 
study has verified that the theoretical times computed 
in equations 1, 2 and 3 are fulfilled by the 
performance data of table 2. 
     Furthermore, we have demonstrated that, when we 
use hardware (the FPGA), the IDEA algorithm 
performance increases. Concretely, the obtained data 
indicate that the algorithm implementation by means 
of reconfigurable hardware (FPGAs) surpasses in 
more than 16 times the software version. 
     On the other hand, it is necessary to say that, we 
can still make more advanced improvements in the 
elements that compose the circuits of our hardware 
algorithms. More concretely, in the multipliers, 
critical elements of the design. In fact, although our 
performance results are better than those of other 
authors [5-10], some even higher result can be found 
in the literature, as the one obtained by CryptoBoost 
III [11] (200 Mbits/s). 
     This is one of the research lines that will be 
followed in the future, that is, to implement better 
multipliers at lower level, for example by using 
partial reconfiguration in order to design multipliers 
by constant. We also intend to increase the pipelining 
degree by dividing the IDEA algorithm phases into 
substages, so that we can augment the number of 
blocks that are computed in parallel, and thus 
increasing the performance. In this line, we also 
intend to make hardware implementations duplicating 
the data path, that is, having several separated 
execution lines that are executed in parallel, so that 
the performance increases notably too. 
     Finally, in the future, studies with other 
cryptographic algorithms will be done, as well as 
with other operation modes, such as the CBC (Cipher 
Block Chaining), the CFB (Cipher-FeedBack) and the 
OFB (Output-FeedBack). 
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