
Improving the Performance of the IDEA Cryptographic Algorithm
Using FPGAs

JOSE M. GRANADO, MIGUEL A. VEGA, JUAN M. SANCHEZ, JUAN A. GOMEZ

Univ. Extremadura. Dept. Informatica
Escuela Politecnica. Cam

 FAX:+34-927-257-202
pus Universitario s/n. 10071 Caceres. SPAIN

Abstract: - Nowadays, the cryptography field is on the increase in the telecommunications world, because of this
there is a constant need of more secure and efficient cryptographic algorithms. Thus, a lot of research is being
done in order to try to improve the current algorithm performance. At present, one of the alternatives under
research is the implementation of these algorithms in FPGAs (Field-Programmable Gate Arrays), which offer
excellent features. In this work, we present a detailed research of the IDEA cryptographic algorithm
implementation in Virtex FPGAs. Nine different hardware implementations are presented, which are compared
with each other and with the algorithm software implementation. In addition, the conclusions of this detailed
research and the possible future work lines are shown. In short, the implementation of the IDEA algorithm using
FPGAs offers advantages over software implementation thanks to the use of the intrinsic parallelism (pipelining
and replication), resulting in a performance that surpasses in 16 times the software version.

Key-Words: - Computer Security and Cryptography, IDEA Cryptographic Algorithm, FPGA (Field-
Programmable Gate Array), Performance, Experience using Handel-C

1 Introduction
Nowadays, the information security has achieved a
great importance, both when information is sent
through a non-secure network (as Internet) and when
data are stored in massive storage devices. The
cryptographic algorithms are used in order to
guarantee the security of data sent or stored. Among
them we find the IDEA algorithm [1], the one used in
our research. This is one of the most popular
algorithms; for example, due to its use in the PGP
(Pretty Good Privacy) system [2].
 In this work we present a total of 9
implementations of IDEA algorithm, using
reconfigurable hardware, in order to study the
performance improvement provided by the use of an
FPGA in the cryptographic algorithm
implementation. In section 2, the IDEA algorithm is
briefly described. Then, all the implementations
performed and their results are explained in detail.
Finally, in section 4, both the conclusions obtained
and the future research lines are presented.

2 The IDEA Algorithm
IDEA (International Data Encryption Algorithm) is a
coding/decoding algorithm of 64-bit text blocks,
using a key of 128 bits (it is an algorithm of private
key) that is used to generate 52 subkeys of 16 bits.
The algorithm consists of 9 phases, 8 identical phases
(figure 1(a)) and one last phase of transformation

(figure 1(b)). The 64-bit block is propagated through
each phase, divided into four 16-bit sub-blocks. See
[1] for a more detailed explanation of the algorithm.

Fig. 1. (a) Structure of an algorithm’s phase. (b) Structure
of the algorithm’s transformation phase.

16 Bits 16 Bits 16 Bits 16 Bits

16 Bits 16 Bits 16 Bits 16 Bits

Z1
i Z2

i Z3
i

Z5
i

Z6
i

Z4
i

 : 216 module adder
 : XOR bit to bit
 : 216+1 module mult.
Zj

i : Subkey j of the
 phase i

(a)

16 Bits 16 Bits 16 Bits 16 Bits

16 Bits 16 Bits 16 Bits 16 Bits

Z1
9 Z2

9 Z3
9 Z4

9

(b)

 As we can guess, the major problem lies in the
multipliers, since, aside from taking a great amount
of computation, they are executed 4 times in each
phase. The improvement of this component is one of
the more observed approaches in the literature. In our
case, we will use the improvement of the Low-High
algorithm [3] proposed by Biham [4].

3 Implementations and Results

3.1 Software Implementation
A software implementation of the IDEA algorithm
has been made by means of the programming
language Visual C++ that will serve as base to make
performance and functionality comparisons with
hardware versions. This implementation is strictly
sequential and consists of a loop that, for each block
to code, will cross the different phases of the IDEA
algorithm (figure 1). Table 1 shows the results
obtained by this version. It is important to emphasize
that advanced optimizations have not been included
in this version: assembler code, MMX technology, …

Processor (Clock) Frequency Performance
Pentium IV 1.7 GHz 3.861 Mbits/s

Table 1. Software implementation results.

3.2 Hardware Implementation
In this study, a Celoxica RC1000 board with a Xilinx
Virtex-2000E FPGA is used. The different hardware
versions implemented result from combining three
types of algorithms with three types of
communications between host (computer) and the
FPGA. This gives a total of nine hardware versions.
First, the host-FPGA communication types used will
be shown, following of the algorithm types. Then, the
results obtained by each of the implementations will
be presented.

3.2.1 Host-FPGA Communication Types

Communication through RC1000’s Memory Banks
This communication type establishes the RC1000’s
memory banks as the only means of data transference
between the host (computer) and the FPGA, and
besides, none other data storage auxiliary structure is
defined. This is the reason why in order to process
(code/decode) a block is first necessary to read it
from the board’s memory and, after operating with it,
to write the result in the memory again. This makes
the operation time of this algorithm type be highly

dependent on the memory access time. In addition,
due to the fact that each block is of 64 bits and the
RC1000 board’s memory stores 32-bit data, it is
necessary to perform two readings and two writings
per block to process, and this limits still more the
performance of the algorithm that uses this
communication type.
 As it is observed in figure 2, the memory is an
intermediary way in the data transference between the
host and the FPGA. The arrows represent data transit.

Fig. 2. Host-FPGA data transference using memory banks.

Communication by means of Control & Status Ports
In this communication type, the memory is
eliminated and the information is transferred through
the Control port (from the host to the FPGA) and
Status one (from the FPGA to the host) of the
RC1000 board. Due to the ports can only transmit 8-
bit data, it is necessary to divide the blocks into eight
segments of that size, and to perform for each block
so many host FPGA and FPGA host transferences
as segments into which the block is divided.

Fig. 3. Host-FPGA data transference using Control &
Status ports.

 The way in which the elements are distributed in
the data communication is perfectly observed in
figure 3, where arrows represent the information flow
between the elements that they connect.
 Like the previous case, the data transference and
data processing are closely tied, being impossible to
separate the transference and the processing. In
conclusion, the processing (coding/decoding) of the
blocks is penalized by the ports’ transference speed.

Communication by means of Memory using an
Internal Array
This type of communication, like the first type, uses
the memory to perform the communication between
the host and the FPGA, but with the proviso that, in
this case, the FPGA should have an internal array
implemented that will serve as auxiliary storage.
Therefore, the data transference and data processing
(coding/decoding) are totally separated.

HOST

FPGA Memory

HOST

FPGA

Control

Status

 As it can be observed in figure 4, the array serves
as intermediary between the memory and the
computation module, separating the processing of the
communication. In this figure, the arrows represent
data flows between elements. Therefore, for each x
characters, where x stands for the size of the internal
array (1496 for the sequential and sequential with
replication versions, and 1200 for the pipelined
version -see section 3.2.2-). The host sends data to
the memory, and then the internal array receives
those data coming from the memory. Afterwards, the
computation module only uses the internal array, both
to obtain the blocks to code/decode and to store the
resulting blocks. Finally, the data pass from the array
to the memory, and from this to the host. This process
would be repeated if the size of the data to
code/decode was larger than the array size.

Fig. 4. Host-FPGA data transference by means of memory
using an internal array.

 This independence between communication and
processing allows us to examine better the
performance characteristics of the algorithm used,
although the resources considerably increase because
the internal array must be implemented within the
FPGA.

3.2.2 Hardware Algorithm Types

Sequential Hardware Algorithm
This algorithm is similar to the software
implementation, that is, it is strictly sequential, with
the only advantage of being executed in a hardware
device. In this algorithm type, before an operation is
performed the previous one must have been finished,
as it can be seen in figure 5. In this implementation
type, the replication of the multipliers, significant
elements of the design, is not made. However, the
replication of both adders and XOR gates is allowed
in order to simplify the design in Handel-C, although
their executions are not performed in parallel.
 Analyzing figure 5, the phase operation time
(PTseq) can be computed by means of equation 1,
where mt represents the multiplier operation time, at
refers to the adder operation time, xt stands for the

XOR operation time, and ct represents the time that
the signal takes going through the connections.

PTseq = 4*mt + 4*at + 6*xt + ct (1)

Fig. 5. Execution flow of sequential hardware algorithm.

Sequential Hardware Algorithm with Replication
In this algorithm type, the inherent parallelism of the
IDEA algorithm phase is used. The idea is that, by
means of hardware replication, some parts of each
phase of the IDEA algorithm will be executed in
parallel, as figure 6 shows.

Fig. 6. Execution flow of sequential hardware algorithm
with replication.

 This produces a performance improvement
compared with the previous version, in which all the
operations are performed in sequential. As we can see

FPGA

HOST

Computation
module

Memory Internal array

in figure 6, the operations in each box are executed in
parallel. This is the reason why the operation time of
each of these boxes is the major operation time of all
its elements. Furthermore, we can verify that using
two multipliers by phase is enough, since only two of
them will be executed in parallel, the other two
multiplications can be done by using the two existing
multipliers.
 The operation time of each phase (PTs+r) of this
algorithm can be computed like equation 2 shows,
where mt, at, xt and ct represent the same values as in
the previous equation. As it can be observed, the
operation time between the sequential algorithm and
the sequential algorithm with replication is reduced in
(mt+2*at+4*xt). This result is obtained from
subtracting equations 1 and 2. Therefore, the
performance has been increased notably with a little-
significant increase of hardware resources (just one
more multiplier).

PTs+r = 3*mt + 2*at + 2*xt + ct (2)

Phase-Pipelined Hardware Algorithm
Until now, we have seen two algorithm types in
which, in order to code a block, all the IDEA
algorithm’s phases must be executed before being
able to begin with another block. In the phase-
pipelined algorithm, when a block leaves a phase and
goes through the following one, the next block to
code will enter the phase that the present block
leaves. This is the reason why parallelism degree is

increased by making a phase-level pipelining, as
figure 7(b) presents.
 All that is possible thanks to an ECB (Electronic
CodeBook) version of the IDEA algorithm is being
used, version in which the coding of a block is totally
independent of the rest. In conclusion, this
implementation increases the performance in such a
way that a coded block is obtained in every phase
operation time.
 In order to make the pipelining, apart from
replicating all the hardware relative to each phase, it
is necessary to add between phases pipelining
registers of the same size as the block, that is, 64 bits.
Obviously, in this implementation, there is a notable
increase of hardware resources, however the
performance improvement also is outstanding.
 Figure 7(a) shows the execution flow of the phase-
pipelined version. We can observe that it is very
similar to the sequential algorithm with replication
(figure 6), where the only difference is that one of the
multipliers has been removed from the parallel
execution zone of the beginning of the phase. This
decision has been taken to reduce the hardware used,
that is, a single multiplier will be used for each phase.
The phase operation time of this algorithm (PTpipe)
can be seen in equation 3. If we compare this
equation with equation 2 of the previous algorithm,
we see now the phase time increases in mt.

Fig. 7. (a) Execution flow of phase-pipelined hardware algorithm. (b) Pipeline of the hardware algorithm.

(a)
P1

P2

P3

P4

P5

P6

P7

P8

TP

P1

P2

P3

P4

P5

P6

P7

P8

P1

P2

P3

P4

P5

P6

P7

P1

P2

P3

P4

P5

P6

P1

P2

P3

P4

P5

P1

P2

P3

P4

P1

P2

P3

P1

P2 P1

(b)

Pi : Phase i
TP: Transformation
 phase

 Nevertheless, the performance increase is obtained
thanks to a block is coded in each PTpipe (from the
ninth block, since the pipeline is filled in the 8
previous cycles), whereas in the sequential algorithm
with replication (as well as in the sequential one) a
coded block is obtained from each 8 PT plus the time
of the transformation phase. In short, the latency is
nine times smaller.

PTpipe = 4*mt + 2*at + 2*xt + ct (3)

3.2.3 Obtained Hardware Results
In this section we study the results obtained by the
different implemented hardware versions. The
parameters of the elements used in our experiments
are the following:
• Computer: 1.7-GHz Pentium IV with

768 MB of RAM.
• FPGA: Virtex XCV2000E with a –8

speed grade.
• FPGA clock: 20 MHz (always).
• Total number of FPGA slices: 19200.
• Coded data size: 31880 characters.

 Resource use, Maximum frequency and Minimum
period columns of table 2 have been obtained from
the reports generated by the Flow Engine tool of
Xilinx Foundation Series 4.1, after the synthesis of
each hardware module. Therefore, they are real
measurements on implementations already carried
out, and not estimations. The Performance column of
this table has been computed obtaining the average
value after several (around 10) practical experiments.
The nomenclature of the Algorithm column is the
following. The prefix I represents the cryptographic
algorithm used, in this case IDEA; then the type of
algorithm used is indicated: S (Sequential), SR
(Sequential with Replication) and P (Pipelined by
phase); finally, the communication type used appears:
MEM (memory banks), PORT and ARRAY.
 Let us analyze the data of table 2 in detail. The
first we can observe is the resource use of the FPGA.
As it can be seen, both in the sequential
implementation and sequential implementation with
replication, if the communication is made by means
of ports or memory banks, the occupation is small
enough, since none expensive element is used. This
does not happen in their respective phase-pipelined
versions, where the resource use is tripled, due to the
replication of the hardware necessary for each
pipelining stage. In the versions where the internal
array is used, we observe that all the implementations
surpass a 90% of the FPGA occupation. This is due to
the great size of the internal array. There is little
difference between the sequential version and

sequential version with replication as opposed to the
phase-pipelined one, since this last contains a smaller
array.

Algorithm Resource
Use (Slices)

Max.
Frequency

(MHz)

Min.
Period

(ns)

Perform.
(Mbits/s)

I_S_MEM 2424 (12%) 24.311 41.134 5.175
I_SR_MEM 2654 (13%) 23.630 42.319 5.175
I_P_MEM 7760 (40%) 20.621 48.494 5.175
I_S_PORT 2449 (12%) 23.782 42.048 0.145

I_SR_PORT 2677 (13%) 21.180 47.215 0.145
I_P_PORT 7748 (40%) 20.443 48.917 0.145

I_S_ARRAY 18043 (93%) 23.408 42.721 7.846
I_SR_ARRAY 18297 (95%) 22.100 45.248 15.202
I_P_ARRAY 19198 (99%) 21.427 46.609 62.102

Table 2. Results obtained by hardware implementations.

 As far as the maximum frequency and minimum
period are concerned, it is not possible to emphasize
anything, since in all the versions the data are very
similar. The only thing to indicate here is that, in the
phase-pipelined cases, a nine times smaller latency
than in the versions without pipelining is obtained,
increasing significantly the algorithm performance.
 Finally, let us analyze the data relative to the
performance. It can be observed that, in the cases
where the communication is performed through the
RC1000’s ports or memory banks, the times of the
three types of algorithms are equal. This is because
the input/output time is so high that conceals the
computation times (we should remember that 4
memory accesses per block are necessaries in the
versions with communication through the memory
banks, and 16 port accesses per block in the versions
that use the RC1000’s ports to communicate). It must
be emphasized that the performance of the hardware
versions that use the memory banks for
communication (5.175 Mbits/s) is already greater
than the performance of the software version (3.861
Mbits/s).
 When we study the versions that use the internal
array, we observe how the performance varies among
the different algorithms, also seeing that the
performances of the internal-array versions are much
greater than those of the other versions. Furthermore,
the performances of the internal-array versions grow
in an exponential way when changing from an
algorithm type to another, until reaching a
performance in the FPGA pipelined version 16.084
times greater than in the software version. In
addition, the performance for I_P_ARRAY
implementation (62.102 Mbits/s) offered by the
FPGA is higher than the one obtained by other
authors, both using MMX technology [5] (32.9
Mbits/s) and by means of FPGAs [6] (0.447 Mbits/s)
and [7] (1 Mbits/s), VLSI [8] (44 Mbits/s), and

diverse DSPs: Motorola 56166 [9] (1.25 Mbits/s),
DEC SA-110 [10] (32 Mbits/s) and TI TMX320C6x
[10] (53.1 Mbits/s).

4 Conclusions and Future Work
In this work, diverse hardware implementations of
the IDEA cryptographic algorithm, using a Virtex-
2000E FPGA and Handel-C, have been analyzed. The
study has verified that the theoretical times computed
in equations 1, 2 and 3 are fulfilled by the
performance data of table 2.
 Furthermore, we have demonstrated that, when we
use hardware (the FPGA), the IDEA algorithm
performance increases. Concretely, the obtained data
indicate that the algorithm implementation by means
of reconfigurable hardware (FPGAs) surpasses in
more than 16 times the software version.
 On the other hand, it is necessary to say that, we
can still make more advanced improvements in the
elements that compose the circuits of our hardware
algorithms. More concretely, in the multipliers,
critical elements of the design. In fact, although our
performance results are better than those of other
authors [5-10], some even higher result can be found
in the literature, as the one obtained by CryptoBoost
III [11] (200 Mbits/s).
 This is one of the research lines that will be
followed in the future, that is, to implement better
multipliers at lower level, for example by using
partial reconfiguration in order to design multipliers
by constant. We also intend to increase the pipelining
degree by dividing the IDEA algorithm phases into
substages, so that we can augment the number of
blocks that are computed in parallel, and thus
increasing the performance. In this line, we also
intend to make hardware implementations duplicating
the data path, that is, having several separated
execution lines that are executed in parallel, so that
the performance increases notably too.
 Finally, in the future, studies with other
cryptographic algorithms will be done, as well as
with other operation modes, such as the CBC (Cipher
Block Chaining), the CFB (Cipher-FeedBack) and the
OFB (Output-FeedBack).

5 Acknowledgments
This work has been supported in part by the Spanish
Government under Grant TIC2002-04498-C05-01.

References:
[1] Schneier, B.: “Applied Cryptography”. John

Wiley & Sons, 2nd edition, 1996.
[2] Garfinkel, S.: “PGP: Pretty Good Privacy”.

O’Reilly, 1995.
[3] Lai, X.: “On the Design and Security of Block

Ciphers”. ETH Series in Information Processing,
nº 1, Hartung-Gorre Verlag, Konstanz, 1992.

[4] Biham, E.: “Optimization of IDEA”. Technical
Report, NESSIE document
NES/DOC/TEC/WP6/026/1, Computer Science
Department, Technion - Israel Institute of
Technology, Haifa, Israel, January 2002.

[5] Lipmaa, H.: “IDEA: A Cipher For Multimedia
Architectures?”, Selected Areas in
Cryptography’98, LNCS 1556, Springer Verlag,
August 1998, pp. 248-263.

[6] Caspi, E.; Weaver, N.: “IDEA as a Benchmark
for Reconfigurable Computing”. Technical
Report, BRASS Research Group. University of
Berkeley, December 1996.

[7] González, I.; Gómez, F. J.; Martínez, J.: “A
HW/SW Co-Design Case Study: Implementing a
Cryptographic Algorithm in a Reconfigurable
Platform”. Proc. of the XVI Conference on
Design of Circuits and Integrated Systems
(DCIS’2001), Porto, Portugal, November 2001,
pp. 504-509.

[8] Bonnenberg, H.; Curiger, A.; Felber, N.; Kaeslin,
H.; Lai, X.: “VLSI Implementation of a New
Block Cipher”. Proc. of the International
Conference on Computer Design: VLSI in
Computer and Processors, Washington, USA,
IEEE Computer Society Press, 1991, pp. 510-
513.

[9] Madhusudan-Sastry, T. R.; Ganesan, T.;
Madhukar, B.; Srinivasa, N.: “Time is Right for
a Good, Secure IDEA”. Electronic Engineering
Times, October 1995.

[10] Mencer, O.; Morf, M.; Flynn, M. J.: “Hardware
Software Tri-Design of Encryption for Mobile
Communication Units”. Proc. of the IEEE
International Conference on Acoustics, Speech,
and Signal Processing, USA, vol. 5, May 1998,
pp. 3045-3048.

[11] Beuchat, J. L.; Haenni, J. O.; Teuscher, C.;
Gomez, F. J.; Restrepo, H. F.; Sanchez, E.:
“Approches Matérielles et Logicielles de
l'Algorithme IDEA”. Technique et Science
Informatiques, vol. 21, nº 2, 2002, pp. 203-204.

