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Abstract:-In the paper we present new neuro-fuzzy systems. They are called the AND–type neuro-fuzzy 
inference systems (NFIS). Based on the input-output data we learn not only parameters of membership 
functions but also a type of the systems and aggregating parameters. We propose the weighted t-norm and 
s-norm to neuro-fuzzy inference systems. 
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11..  IInnttrroodduuccttiioonn  
In the literature two approaches have been proposed 
to design neuro-fuzzy systems with linguistic 
consequences. The first approach, called Mamdani 
method, uses “engineering implications” for 
inference (see Mendel [4]) and disjunction to 
aggregate individual rules. In the Mamdani approach 
the most widely used operators measuring the truth 
of the relation between input and output are the 
following: 
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The aggregation is performed by an application of 
s-norm: 
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The other paradigm applies fuzzy implications for 
inference and conjunction for aggregation. For 
example we use an S-implication: 
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For NFIS with a logical implication the aggregation 
is realized by a t-norm: 
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It should be noted that the aggregation of antecedents 
in each rule is performed by the same formula (4) for 
both Mamdani and logical-type systems. Various 
structures of NFIS are discussed in [1-9]. 

  In this paper we propose a new class of 
neuro-fuzzy inference systems characterized by 
automatic determination of a fuzzy inference in the 
process of learning. Consequently, the structure of 
the system is determined in the process of learning. 
We refer to this class as to AND-type fuzzy systems. 
The performance of neuro-fuzzy structures is tested 
on typical classification and approximation 
problems. 

22..  FFlleexxiibbiilliittyy  iinn  NNFFIISS  
2.1. NFIS realized by compromise 

implication 

Following by Yager and Filev [12] we propose 
a compromise fuzzy implication given by: 

 ( ) ( ) { } ( ){ } ,,, baNSbaTNbaI λλ +=  (5) 

where [ ] 1,0∈λ , ( ) λλ −=1N , and based on 
implication (5) we derive a compromise neuro-fuzzy 
system. It includes Mamdani-type, logical-type, 
more Mamdani-type than logical-type and more 



 

logical-type than Mamdani-type fuzzy inference 
systems. It should be noted that parameter λ , 
determining a type of the system, can be found in the 
process of learning. 

2.2. NFIS realized by t-norms and s-norms 
with weighted arguments 

We propose the weighted t-norm: 
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For a moment we interpret parameters 1a  and 2a  as 
antecedents of a rule. The weights 1w  and 2w  are 
corresponding credibilities of the both antecedents. 
Observe that: 

 { } { }2121 ,1,1 aaT;,aaT =∗  (7) 

and 
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The s-norm corresponding to the t-norm (6) is 
defined as follows: 

 { } { }22112121 ,, awawSw;w,aaS =∗  (9) 

The weights 1w  and 2w  can be found in the process 
of learning subject to the constraint [ ] 1,0, 21 ∈ww . 
One may apply the weighted t-norm for selection of 
significant inputs. 

33..  CCoommpprroommiissee  wweeiigghhtteedd  NNFFIISS  
In this paper, we consider multi-input, single-output 
NFIS mapping YX → , where nRX ⊂  and RY ⊂ . 
  The fuzzifier performs a mapping from the 
observed crisp input space nRX ⊂  to the fuzzy sets 
defined in X . The most commonly used fuzzifier is 
the singleton fuzzifier which maps 

[ ] Xx ∈= nxx ,,1 K  into a fuzzy set X⊆′A  

characterized by the membership function: 
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  The fuzzy rule base consists of a collection of N  
fuzzy IF-THEN rules in the form: 

 
( ) kkk ByAR  is  THEN  is  IF: x  (11) 

where [ ] Xx ∈= nxx ,,1 K , Y∈y , k
n

kk AAA ,,, 21 K  

are fuzzy sets characterized by membership 
functions ( )iA

xk
i

µ , whereas kB  are fuzzy sets 

characterized by membership functions ( )ykB
µ , 

respectively, Nk ,,1K= . 
  The fuzzy inference determines a mapping from 
the fuzzy sets in the input space X  to the fuzzy sets 
in the output space Y . Each of N  rules (11) 
determines a fuzzy set Y⊂kB  given by the 
compositional rule of inference: 

 ( )kkk BAAB →′= o  (12) 

where k
n

kkk AAAA ×××= K21 . Fuzzy sets kB , 

according to the formula (12), are characterized by 
membership functions expressed by the sup-star 
composition: 

 ( ) ( ) ( )  ,sup
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where 
T

∗  can be any operator in the class of t-norms. 
It is easily seen that for a crisp input Xx∈ , i.e. 
a singleton fuzzifier (10), formula (13) becomes: 
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where ( )⋅I  is an “engineering implication” or fuzzy 
implication. The aggregation operator, applied in 
order to obtain the fuzzy set B′  based on fuzzy sets 

kB , is the t-norm or s-norm operator, depending on 
the type of fuzzy implication. 
  The defuzzifier performs a mapping from a fuzzy 
set B′  to a crisp point y  in RY ⊂ . The COA 
(centre of area) method is defined by following 
formula: 
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in the discrete form, where ry  denotes centres of the 
membership functions ( )yrB

µ , i.e. for Nr ,,1K= : 
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Now we propose new structure of NFIS. The novel 
system is characterized by: 
• weights in antecedents of the rules [ ] 10,wτ

i,k ∈ , 

ni ,,1K= , Nk ,,1K= , 

• weights in aggregation of the rules 
[ ] 10agr ,wk ∈ , Nk ,,1K= . 

The weighted soft NFIS of the AND-type is 
presented below: 
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Compromise operator in formula (18) is defined as 
follows: 
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where [ ]1,0∈ν . 

44..  SSiimmuullaattiioonn  rreessuullttss  
Compromise Weighted NFIS, described by formulas 
(17)-(20), is simulated on Iris classification [11] and 
Modelling of Static Nonlinear Function (HANG) [10] 
problems. 

4.1. Iris classification problem 

The Iris data is a common benchmark in 
classification and pattern classification studies. It 
contains 50 measurements of four features (sepal 
length in cm, sepal width in cm, petal length in cm, 
petal width in cm) from each of the following three 
species: iris setosa, iris versicolor, and iris virginica. 
In our experiments, all sets are divided into 

a learning sequence (105 sets) and a testing sequence 
(45 sets). The results are given in Table 1 and Fig. 1. 

Table 1. Experimental results  
(Iris classification problem) 

Mistakes [%]  
(learning 
sequence) 

Mistakes [%]  
(testing  

sequence) 
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λ 
0.5/ 

1.0000 
0,95% 0,95% 4,44% 4,44% 

λ 
0/ 
- 

0,95% 0,95% 6,67% 6,67% 

λ 
0.5/ 

1.0000 
wτ 1/Fig. 1 

wagr 1/Fig. 1 

0,00% 0,00% 4,44% 4,44% 

a)

 4,,1K=i

agrw

2,
,1

K

=
k

τw

  

b)

 4,,1K=i

agrw

2,
,1

K

=
k

τw

 

Fig. 1. Weights representation in the Iris problem  
for AND-type system and a) Zadeh triangular norms, 

b) product triangular norms 

4.2. Modelling of Static Nonlinear Function 
(HANG) problem 

The problem is to approximate a nonlinear function 
given by 

 ( ) ( )25.1
2

2
121 1, −− ++= xxxxy  (22) 

We obtained 50 input-output data by sampling the 
input range [ ]5,1, 21 ∈xx . The results are given in 
Table 2 and Fig. 2. 

55..  FFiinnaall  rreemmaarrkkss  
In this paper we studied a new class of neuro-fuzzy 
systems characterized by a compromise fuzzy 
implication. The final fuzzy reasoning has been 
established in the process of learning of parameter 
λ . Due to the incorporation of weighted triangular 
norms into the construction of neuro-fuzzy systems, 
we have achieved a high accuracy in simulation 
problems given in Section IV. 
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Fig. 2. Weights representation in the HANG problem  
for AND-type system and a) Zadeh triangular norms, 

b) product triangular norms 

Table 2. Experimental results  
(Iris classification problem) 

RMSE  
(learning 
sequence) 
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0.0000 
0,1258 0,1098 
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0,1516 0,1205 
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0.0000 
wτ 1/Fig. 2 

wagr 1/Fig. 2 

0,0964 0,0529 
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