

DETECTING STEGO-OBJECTS IN STILL IMAGES: AN INTEGRATED
APPROACH

TARIQ AL HAWI, MAHMOUD AL QUTAYRI AND HASSAN BARADA

College of Engineering and Information Sciences
Etisalat University, Sharja, UAE

Abstract - This paper proposes a testbed environment for
evaluating the security and robustness of the major
steganography techniques. The testbed environment
allows the embedding of messages into still images, pre-
processing to detect the hidden messages and a post
processing stage to perform further analysis on an image.
The environment was used to test the survivability of
stego-images. This was achieved by using cover images
and hidden messages of different formats and sizes. A
large set of images were subjected to a wide range of
steganography tools. The output of the pre-processing
stage achieved a high success rate in indicating the
presence of hidden messages in the tested images.

Key-Words: Stego, Image, Detecting, Integrated, Internet

I. INTRODUCTION

Although security concepts have been around for years,
the impact it has nowadays on the Internet is undeniable.
Nowadays, we are surrounded by a world of secret
communication where people are able to transmit secret
information through innocent looking carriers [1]-[2]-[3].

 Steganography is the art of hiding and transmitting
data through apparently innocuous carriers in an effort to
conceal the existence of the data [1]. It has some
similarities to other forms of data hiding, such as
watermarking [4]. However unlike watermarking where
the cover and the signature are the ones to be protected
steganography is only concerned with the concealment and
protection of the hidden message underneath the cover.
Steganalysis is the art as well as the science of discovering
and rendering useless such covert messages.

 There are two important aspects to information
hiding system: security and robustness [5]-[6]. Security
refers to the inability of an eavesdropper to detect the
hidden message. Robustness refers to the amount of
distortion that the digital cover can withstand before the
hidden message is destroyed.
 The paper describes and discusses a testbed
environment for evaluating the security and robustness of
steganography techniques. It describes the methods
implemented in each component of the environment and
explains the testing methodology used. Testing results
using various types and sizes of images and hidden
messages are also reported and analyzed.

II. THE TESTBED ENVIRONMENT

A testbed environment has been devised in an effort to
build a system that is capable of monitoring Internet traffic
and detecting or distorting the hidden information in
digital images of various types. Figure 1 illustrates the
testbed environment, which consists of two subsystems: a
steganography system that consists of a steganography
toolbox, and a Steganalysis subsystem that consists of
three stations namely, capturing and preprocessing station,
steganalysis station, and a distortion station. The
environment is used to accomplish the following
objectives:

• Apply some of the major steganographic
techniques on still digital images of various types
and sizes.

• Test the security of the applied steganography
techniques by launching attacks on stego-images
using different steganalysis approaches.

• Test the robustness of embedded information by
applying various distortion techniques on stego-
images.

 The following is a description of the four stations
that the environment consists of:
1) Steganography toolbox: This station contains a
collection of the most commonly used image
steganography software packages such as S-Tools, J-Steg,
Jpegx, Invisible Secrets 2002, Hide and Seek, and
Camouflage [7]-[8]. This station is responsible for
producing stego-images containing a secret message using
the various software tools.
2) Capturing and preprocessing station: This station has
two major functions. In the first function, it acts as a
network sniffer that captures stego-images passing through
in their raw format (i.e. Hexadecimal). The sniffer has the
capability to reconstruct any image into its original format.
After getting captured, the stego-image is preprocessed in
order to make initial assessment whether it contains a
hidden message or not. If an image draws suspicion, then
it is passed to the steganalysis station. Otherwise, the
image passes the test and assumed to be free from hidden
messages. Suspicion is raised depending on few
parameters that are analyzed by examining the
hexadecimal representation of the stego-image. These
parameters may include the addition of a specific software
signature, replacing the LSBs with all zeros or ones,
addition of blocks of spaces at the end of the file and

increasing the number of duplicate colors in an image. The
goal of this stage is to drop the images that do not raise
suspicion from the steganalysis phase in order to speedup
the process of monitoring the Internet for hidden
information.
3) Steganalysis station: This station, which is used to
evaluate the security of the steganography techniques, is
responsible for trying to detect hidden messages in the
stego-images. This is achieved by using statistical analysis
techniques that depend on the steganography tools used in
the steganography toolbox [9]. Statistical tests can reveal
that an image has been modified by steganography by
determining how much the statistical properties of the
image deviate from the norm.
4) Distortion station: The last resort for a steganalyst is to
disable the hidden message and render it useless if the
stego-image raised any suspicion but the message cannot
be detected. The aim of this phase is to destroy the hidden
information while maintaining the integrity of the original
cover. This station, which is used to evaluate the
robustness of the steganography techniques, will apply
various image processing techniques such as filtering,
blurring, etc. to destroy the hidden message.

Stego
Application

Monitoring station

Re-processor

Check hidden
message against

specific parameters

Capturing function

Capture HEX
representation of

stego-image using
network sniffer

Steganalysis station
Image raise
suspicion

Security test

Detect hidden
message

Detected
Distortion station

Robustness test

Distort hidden
message

Distorted

Message did
not survive

Message
survived

YES

NO

NO

NOYES

YES

iMac
Source

iMa c
Destination

Stego
Image Internet

Figure 1
Testbed Environment

III. TESTING AND RESULTS

A collection of images of various formats and sizes were
used as cover carriers. The format included JPEG, GIF, 8-
bit BMP, 16-bit BMP and 24-bit BMP and the sizes were
in the range from 1-600kb. Each category consisted of 50
different images to be tested in the environment. The
steganography tools currently used in the environment are

based on Data Insertion, LSB (Least Significant Bit),
palette manipulation and DCT (Discrete Cosine
Transform) steganography techniques. An extensive set of
test sets has been processed and the analysis of these tests
is categorized depending on the steganography techniques
used.

A. Data Insertion Technique

Once the stego-image created using Data Insertion
Technique is captured the system will look for very unique
signatures created by the different steganography tools. In
the case of Camouflage, the program inserts a block of
spaces before attempting to embed the secret message.
Figure 2 shows the Hexadecimal representation of two
images. At the top is the original image with no hidden
data embedded and at the bottom is the stego-image with a
medium sized image as a hidden message. Notice the
addition of spaces (Hex = 20) at the end of the file. Almost
all the tested images were defeated using this detection
mechanism. This concludes that the steganography
algorithm used by Camouflage is relatively easy to detect.

Figure 2
Output of a Sniffer (Camouflage)

 In the case of Jpegx 1.00.6, the program performs
similar techniques for embedding messages as
Camouflage. It does that by inserting the secret message at
the end of JPG files. But before it does that it adds a fixed
signature of the program. The signature is the following
number of bytes [5B 3B 31 53 00]. The detection
mechanism was to look for that very signature to raise
suspicion. Figure 3 shows the Hexadecimal output of two
images. The top is an image with no hidden messages and
the bottom is the image with text hidden in it. Notice the
signature highlighted at the end of the stego-image in
figure 3.

B. Least Significant Bit Technique

For this technique, after embedding the secret message,
the program replaces the remaining LSBs with either all
0’s or all 1’s data. The detection method was first to
extract the LSBs of a stego-image and then look for the
block of 0’s or 1’s. The tested steganography tool for this
technique is Invisible Secrets 2002. When hiding different

messages of various sizes and formats, Invisible Secrets
2002 prompts for a secret message size restrictions. Figure
4 shows the LSB extracted from two different images. On
the right is the image with no hidden message while on the
left is the stego-image. Notice the blocks of 1’s after
extracting the LSB of the stego-image.

Figure 3
Jpegx Signature

Figure 4

LSB Extraction of Stego-image Created Using Invisible Secrets

C. Palette Manipulation Technique

Using Palette Manipulation Technique always leads to a
small change in the carrier file size [10]. However this will
not look unusual since the original cover is assumed to be
not available to the steganalyst. Stego-images created
using such technique have many duplicate colors in their
color table. This is because the technique hides data by
reducing the total number of colors in the color table and
creates duplicates of them. These are not exact duplicates,
but rather are colors so close to the original that the
difference cannot be noticed by the human sensory system.
It is very critical when embedding hidden messages that
any degradation of the carrier file cannot be noticed by the
human eyes. In order to achieve this goal only specific
numbers of bytes are allowed to be embedded as hidden
message. This is a variable that depends on the size of the
carrier image file.
 In order to detect hidden messages embedded in
stego-images created by this technique, the color table of

the stego-image is examined for duplicate colors. A
program was written that extract the duplicate colors of an
image in addition to other useful information. An example
of the program output is shown Figure 5.

Figure 5

Palette Manipulation Program Output

 From Figure 5, the original cover had only 2
duplicate colors in the color table to start with. After
embedding the secret message it increased to 1046
duplicates. A threshold of 200 was set for this test.
If the reported number is above 200 there is a good chance
that hidden exist. The test included only 8-bit color bmp
images. A set of secret messages of different sizes and
formats where used. This detection mechanism was used
to detect secret messages in stego-images created by S-
Tools and Hide and Seek steganography tools.

D. Discrete Cosine Transform Technique

DCT in its simplest form is a transformation mechanism to
compress information in a file. Because the hidden data is
embedded in the spatial domain, hidden messages in
stego-images created by DCT technique are very difficult
to detect. However these stego-images will raise suspicion
if some statistical analysis were performed on them.
Checking the DCT coefficients is the ultimate key to
discover whether data have been hidden or not. In ordinary
JPEG images that have no hidden messages, the DCT
coefficients have nearly a symmetric distribution,
smoothly falling away from the central value. In stego-
images created by this technique the smoothness and
symmetry are interrupted.
 Normal detection techniques used for the previous
steganography tools are useless in the case of DCT
technique. Due to this fact, a program called “StegDetect”
that performs statistical analysis for the DCT coefficients
is used. StegDetect is mainly used to detect hidden
messages in stego-images created by J-Steg, however
many developers have added other routines to the program

The output of a clean file:
C:\stego\ stool image.bmp
File Name: image.bmp
Actual size: 66132 Reported 66132
Duplicate colors: 2
File Header: Bytes 0-13
Bitmap header: Bytes 13-53
Color map: Bytes 54-609
Image data: Bytes 610-66131
The output of a stego-image:
C:\stego\ stool stegoimage.bmp
File Name: stegoimage.bmp
Actual size: 66614 Reported 66614
Duplicate colors: 1046
File Header: Bytes 0-13
Bitmap header: Bytes 13-53
Color map: Bytes 54-1077
Image data: Bytes 1078-66613

to detect hidden messages in stego-images created by
other steganography tools such as Camouflage and Jpegx.
Throughout our test, it was noticed that the accuracy and
efficiency of StegDetect for other programs than J-Steg
has a very low percentage.
 Since StegDetect was originally designed to perform
statistical analysis on only JPEG stego-carriers, the
experiment performed the tests on only JPEG images to
find out whether secret messages have been embedded or
not. Table I shows the percentage of detection for three
tools: Camouflage, Jpegx and J-Steg. Notice that
Camouflage and Jpegx results had a very low percentage
of accuracy while J-Steg results had a percentage of
accuracy that is quite high. The reason being is that
StegDetect was created mainly to detect hidden messages
in stego-images created by J-Steg. During the
development process of this program other developers
added other routing to detect hidden messages in stego-
images created by other softwares such as Camouflage and
Jpegx, however the results were inaccurate.

Table I
Detection Percentage

Tool Hidden Message
Total # of
Processed

Images

Total # of
Images Raised

Suspicion
Camouflage Text 50 2
 Small-size image 15 1
 Medium-size image 5 1
 Large-size image 2 0
 Oversized image 12 1
Jpegx Text 50 2
J-Steg Text 50 14
 Small-size image 50 50
 Medium-size image 50 50
 Large-size image 50 50

 The table above shows that for all 50 stego-images
created by both Camouflage and Jpegx only 2 hidden
messages were detected. This is mainly because
StegDetect depends on the output of the DCT statistical
analysis on stego-images while both programs use the
LSB technique for steganography. The two softwares were
included to show that StegDetect doesn’t work accurately
with other programs than J-Steg.

IV. CONCLUSION AND FURTHER WORK

The paper proposed a tested environment for evaluating
the security and robustness of some of the major
steganography techniques. This was achieved by capturing
images and processing them using two subsystems. In the
first subsystem, the steganography toolbox, four different
techniques were used to produce stego-images. In the
second subsystem these stego-images are examined first
by a pre-processing stage. In that stage we were able to
raise suspicion about all tested stego-images using
different parameters, hence defeating the tested
steganography techniques. The steganalysis workstation
conducted the security test and it was found that most
hidden messages were detected. All images that survived
the test were injected to the distortion station where the
hidden messages were either destroyed or distorted. In

general the pre-processing stage played an important role
in raising suspicion about most captured stego-images.
Future work will concentrate on designing an analysis
stage that will be capable of dealing with a wider range of
steganography algorithms.

V. REFERENCES
[1] Katzenbeisser S., and F. A. P. Petitcolas, Information Hiding

techniques for steganography and digital watermarking, Boston,
USA, Artech House, 1999.

[2] M. K. Simon, J. K. Omura, R. A. Scholtz, and B.K. Levitt, “Spread
Spectrum Communication”, Computer Science Dept. at Rockville
University, vol. 1, 1985.

[3] F. A. P. Petitcolas, R. J. Anderson, and M. G. Kuhn, “Information
Hiding – A Survey”, Proceeding of the IEEE, vol. 87, no. 7, July
1999, pp. 1062-1078.

[4] P. Bassia, and I. Pitas, “Robust Audio Watermarking in the Time
Domain”, Findings report, Department of Electrical Engineering,
Information Theory Group, Delft University of Technology, 1997.

[5] Westfeld A. and Pfitzman A., “Attacks on Steganographic
Systems”, proceedings of the Third International Information
Hiding Workshop, Dresden, Germany, September/October, 1999,
pp. 61-76.

[6] R. J. Anderson, and F. A. P. Petitcolas, “On The Limits of
Steganography”, IEEE journal of selected areas in
communications, vol. 16, no. 4, May 1998, pp. 373-381.

[7] N.F. Johnson, and S. Jajodia, “Steganalysis of Images Created
Using Current Steganography Software”, Proceeding of the 2nd
International Workshop on Information Hiding, vol. 1525, 1998,
pp. 273-289.

[8] W. Bender, D. Gruhl, N. Morimoto, and A. Lu., “Techniques for
Data Hiding”, IBM Systems Journal, vol. 35, no.3, Feb. 1996, pp.
313-336.

[9] Fridrich J. and Goljan M., ”Practical Steganalysis – State of the
Art”, proceedings SPIE Photonics West, Electronic Imaging 2002,
Security and Watermarking of Multimedia Contents, San Jose,
California, Vol. 4675, January, 2002, pp. 1-13.

[10] Y. Tseng, “Data Hiding in 2-Color Images”, IEEE transaction on
computers, vol. 51, no. 7, July 2002, pp. 873-880.

