
Improving Web proxy caching on browsing
JPEG 2000 remote images with JPIP

J.P. ORTIZ, V.G. RUIZ, I. GARCIA
Computer Architecture and Electronics Department

University of Almeria
04120 Almeria, Spain

ABSTRACT
This paper presents a set of minimal modifications of
the JPIP standard architecture to improve the Web proxy
caching in those applications designed for progressive and
interactive remote browsing of JPEG 2000 images, using
the JPIP architecture with HTTP as base protocol, and
employing Internet connections through proxies. Results
show that the images reconstruction velocity is highly in-
cremented in a progressive way.

KEY WORDS
JPEG 2000, JPIP, HTTP, proxy, cache, data-bin.

1 Introduction

JPEG 2000 is a recent image compression standard
[1][2][3], developed by the Joint Photographic Expert
Group (JPEG), and it is based on the Discrete Wavelet
Transform (DWT) and the Embedded Block Coding with
Optimized Truncation (EBCOT) [4]. One of its main fea-
tures is its high scalability, allowing quality, resolution and
spatial scalability.

The basic format of a JPEG 2000 compressed image
is the code-stream, compound of a set of markers that ref-
erence useful information (compression parameters, image
features, beginning or end of a packet, etc.), and a set of
variable length packets, each of them containing the com-
pression result of a specific area of the original image.

The order in which code-stream packets are stored de-
termines the kind of progression when decompressing the
image. This order is indicated by referencing the 4 levels
of scalability that the standard affords, so, for example, the
RLCP order indicates that packets are stored by resolution
(R), by quality layer (L), by component (C) and by precinct
(P). This progression determines the default progression
existing in the code-stream, but it is possible to access to
the desired packets independently, and extract them in any
order.

In order to offer a higher flexibility and functionality
to image files, JPEG 2000 defines a highly configurable
and extending file format in which, besides being able to
encapsulate one or more code-streams, permits to include
diverse additional information.

The high scalability offered by the JPEG 2000 stan-
dard makes it ideal for progressive and interactive remote
images browsing applications, in which a client, due to the
user’s interaction, carries out requests to a server asking for
a specific region, within a specific resolution level, and hav-
ing the ability to indicate others parameters like the number
of quality layers or the number of desired components.

With the aim to broach the implementation of this
kind of systems, Part 9 of the JPEG 2000 standard proposes
a server/client architecture and a communication protocol
called JPIP [5][6]. In this architecture, that can be observed
in Figure 1, the client indicates to the server a region and
the highest resolution level associated to a window of inter-
est (WOI) within a remote image. The JPIP server would
answer the client the necessary information to reconstruct
in the client the requested WOI, that the server would col-
lect from the local image.

JPIP protocol can be implemented over different pro-
tocols, being HTTP/1.1 protocol [7] one of the most in-
teresting, since it easily allows to encapsulate requests and
responses in HTTP messages, being able to exploiting the
Web infrastructure.

The Web infrastructure offers many advantages in re-
lation to another more specific, as for example, the caching
system, which can be used not only at a client level, but
also at the level of the different proxies that exist through
the communication between clients and servers.

The JPIP protocol, running on HTTP, does not exploit
all the performance of the Web caching system. The here
proposed system tries to exploit to the maximum proxies
caches in applications for progressive and interactive re-
mote browsing of JPEG 2000 images.

The rest of this paper is structured as follows: in the
Section 2, the current working JPIP architecture is detailed,
showing its deficiency for the task of exploiting the Web
caching system, and proposing a solution for it; in the Sec-
tion 3, a possible implementation of the suggested system
is explained; in the Section 4, the achieved results with the
proposed system are exposed, and finally, in the Section 5,
we conclude with the pertinent conclusions about our pro-
posal.



Table 1. Data-bin types

Type Information
Precinct data-bin Precinct data

Tile-header data-bin
All tile-part headers concate-
nated of a tile

Tile data-bin
All tile-parts concatenated of a
tile

Main-header data-bin Main header

Metadata-bin
Collection of boxes of a JPEG
2000 family file

2 The proposed system

The JPIP protocol divides any JPEG 2000 imageI (either
in raw format or in a more complex format) into a set of
N parts called data-bins,I = {d1, d2, . . . , dN}, so that,
when a client performs a request in a instantt, about a spe-
cific window of interest of the imageI, WOI

(I)
t , the in-

formation that the server sends in response,r(WOI
(I)
t ), is

the subset of image data-bins that permit to reconstruct that
petition,F (WOI

(I)
t ). Therefore,

r(WOI
(I)
t ) = F (WOI

(I)
t ) = {dl, . . . , dk} ⊂ I (1)

As it can be observed in Figure 1, the server can op-
tionally maintain a client cache model, in order not to send
information (data-bins) that it has already sent. It is only
incumbent upon the requests of a same client.

The different types of data-bins existing can be seen
in Table 1. It has to be pointed up that the most impor-
tant data-bins are the concerning to the code-stream packets
(Precinct data-bin).

The Web infrastructure caching system that we mean
to use is maintained by the existing proxies in the connec-
tion between client ant server. A proxy is a special server
that acts as intermediary between one or more clients and
one or more servers (as much the clients as the servers
can be themselves proxies), in order to offer one or more,
among others, these functions:

• Protocol conversion, when the client and the server
use different protocols.

• Security control, allowing to establish a set of security
rules in connections, in one or other direction.

• To provide with a caching system, profiting from
redundant requests of the clients, to reduce the re-
sponses latency. Many times the requests of one or
more clients are, either equals or they share informa-
tion, and they can be solved by using proxy cache,
without turning to the server.

With regard to the JPIP protocol, it is true that a proxy
could store in its cache the requests results, but in order to

this one could use the cache information with other differ-
ent requests, these one had to be identical to the first one.
This is rather inefficient, since many of the different re-
quests for a same image will share information. Currently,
for two different requests from the same image, from two
different clients, that require a common set of data-bins, the
server response for the last request is complete, although
existed a proxy/cache hierarchy in the communication be-
tween client and server. More concisely,

P (WOI
(I)
t+∆t) 6= φ ⇒

r(WOI
(I)
t+∆t) = F (WOI

(I)
t+∆t)

(2)

whereP (WOI
(I)
t+∆t) = F (WOI

(I)
t ) ∩ F (WOI

(I)
t+∆t) is

the set of common data-bins for the different requests, that
could be saved in the proxies.

The most efficient way would be that the cache of
the existing proxies in the communication should avoid a
server complete response, profiting from the common data-
bins stored due to previous requests, i.e.,

P (WOI
(I)
t+∆t) 6= φ ⇒

r(WOI
(I)
t+∆t) = F (WOI

(I)
t+∆t)− P (WOI

(I)
t+∆t)

(3)

Although actually it is not in this way, we will assume
that two requests made to the same server relating to the
same image in different moments of time, if they are equals,
then the requests results are equal too, and therefore,

WOI
(I)
i = WOI

(I)
j ⇒ F (WOI

(I)
i ) = F (WOI

(I)
j ) (4)

It is true that, due to the features of the standard, it
is possible to implement an application for remote brows-
ing of images, without necessarily using the JPIP protocol.
For example, it would be possible only to use the HTTP/1.1
protocol and, using byte-ranging, a client would access to
those necessary data-bins for a certain WOI. The problem
is that the most of proxies do not cache byte-ranges effi-
ciently, because of which the most of them, either are ig-
nored, that is, they pass through proxies without caching,
or, when receiving a byte-ranging request, they ask the
server for the whole associated file and, once received, they
sent the client the requested byte-ranges. We can not assure
that the possible proxies existing between us and the final
server make an efficient caching of the byte-ranges.

The first solution could be to divide a WOI request
into a request of data-bins references, and a set of requests,
one for each data-bin reference. Thus, the client would
send to the server the WOI that it needs to browse, and the
server would return the necessary data-bin references. The
client would ask the server for one by one every data-bin,
in different requests. This would make that, when encap-
sulating every request in HTTP messages, proxies could
cache them in an independent way, making (3) possible. It
would only have to add to the JPIP server the possibility



Decompress/

Rendermodel

Cache Client

cache

WOI

WOI

status

JPEG2000

image file

WOI

JPIP
response

JPIP ClientJPIP Server Browser

data−bins

imagery

ClientServer

Figure 1. Client-Server JPIP architecture.

of answering the requests of (i) the references of the nec-
essary data-bins for a WOI and (ii) a specific data-bin. Be-
sides, the JPIP server had to implement the HTTP protocol
caching system, handling the different associated headers
(Cache-Control , If-Modified-Since , etc.).

This first solution, a priori, would efficiently use the
caching system of the Web infrastructure, besides it would
not need the own caching system of the protocol JPIP.
However, this solution has a overload problem because of
the own ASCII headers of the HTTP protocol. Depend-
ing on the type of the messages, an HTTP message can
have200 additional bytes on average, due to the ASCII
headers. To reconstruct an area of a JPEG 2000 image of
2954×1976, with 7 resolution levels and10 quality layers,
with a precinct size of128 × 128, we need a total of1260
packets, for what we would have252000 overload bytes
on average when effecting the corresponding data-bins re-
quests.

Besides, this overload per request is not homoge-
neous, so that for very large data-bins, the overload is
small, but for very small data-bins (for example, the data-
bin associated to an empty packet, of a1 byte), the overload
can be higher than20000%.

We find the solution by grouping data-bins in blocks.
For each imageI, we define a minimum block sizes(I),
and we group the image data-bins in blocks, so that each
block contains the minimum number of data-bins that the
total size of all contained data-bins is equal or greater than
s(I). Realize that we only can assure this for all blocks
except the last one.

For a minimum block size equals to0, we would find
that a block would be identical to a data-bin. The minimum
block size would be chosen depending on the average size
of the image data-bins.

When making a request for block, instead of for data-
bin, we control the overload produced by request due to the
HTTP headers. For any response to a request of any block,
we would have a maximum overload of((100h)/(s(I)))%
, beingh the minimum average size of the headers.

This overload assumes that, when requesting a spe-
cific block, all blocks included are necessary, although
many times it is not true. In any case, it would comply with
(3) at block level, with a time delay reduction in responses.

The most important data-bin is the one associated to
the packets, so if we would want the blocks to include the
maximum number of interesting data-bins, it would be rec-
ommendable that the last progression dimension was by
precinct, P (for example, RLCP), that is, the packets would
be organized by lines, within the code-stream.

3 Implementation

The implementation of this proposed solution is not in-
tended for replacing the JPIP’s current, but for being a com-
plement to use in those applications in which it is required
to use efficiently the caching system of the Web infrastruc-
ture. Next we propose the basic modifications to do to a
classic JPIP server in order to implement the proposed so-
lution.

Firstly, we have to modify the server for accepting a
new type of request, with which a client can ask for the
references of the necessary blocks to reconstruct a specific
WOI. For this, we will include the parameterrequest ,
with the valueblocks , in a request. So, for example, a
request of a client asking for the references of the necessary
blocks to reconstruct a WOI with a size of310× 310, with
an origin(10, 10), and at a resolution level within an area
of 512 × 512, for the imagerimage.jp2 , would be as
follows:

GET http://jp2.server/rimage.jp2?roff=
10,10&rsiz=310,310&fsiz=512,512&request=
blocks HTTP/1.1 ←↩
Host: jp2.client ←↩
←↩

The server, when therequest parameter was found,
with theblocks value, it would answer the references of
the necessary blocks to reconstruct the required WOI. The
client can also indicate the wanted minimum block size,
in bytes, with thesblock parameter. This size could be
either accepted or not by the JPIP server, being the server
able to modify it if it is necessary, notifying the client this
modification by means ofJPIP-sblock header. If the
client does not specify any block size, the server will use a
default size and will notify the client of it.



Next we can see an example, with the same last re-
quest, but specifying512 bytes as the minimum block size
required:

GET http://jp2.server/rimage.jp2?roff=
10,10&rsiz=310,310&fsiz=512,512&request=
blocks&sblock=512 HTTP/1.1 ←↩
Host: jp2.client ←↩
←↩

The server could answer a response as follows, in
which the server changes the minimum block size to256
bytes:

HTTP/1.1 200 OK, with modifications ←↩
JPIP-sblock: 256 ←↩
←↩
· · ·

If the server did not find therequest parameter, its
behavior would be the standard. If it is found, it must
not include headers for disabling proxies caching, like
Cache-Control: no-cache , but it must be able to
interact with the Web caching system, supporting headers
like If-modified-since , and ignoring the headers of
the caching system of the JPIP protocol.

The content of a server response is a set of refer-
ences of those necessary blocks to reconstruct the requested
WOI. Every block reference is an index, starting at0, with
a VBAS structure (variable-length byte-aligned segment),
defined in JPIP. This structure, which can be observed in
Figure 2, allows to store a numberB, which binary rep-
resentation would have a length ofLB bits, in a total of
dLB/7e bytes.

011

LSBMSB

Figure 2. VBAS structure.

This first server response will not be cached, due to
the fact two identical requests can produce different server
responses (server could modify any request parameter).
Because of this, it would be more interesting that the server
response was as smaller as possible, performing the com-
pression. It is possible in the HTTP protocol by means
of the Content-enconding header. With this header,
the server could compress the response content, indicating
which algorithm, within the set of supported algorithms
of the protocol, has used (for example, it could indicate
deflate , gzip , etc.).

In Figure 3 we can see the JPIP client structure, with
the proposed modification. It needs two sockets for run-
ning,S1 andS2. It would send references requests through
S1 and, when it is received any reference, it would send the
associated block request through the socketS2. In the pro-
posed client structure, the own pipe-lining of the HTTP/1.1

WOI blocks

references request

WOI blocks
references

JPIP Server/

Proxy

Block
reference

JPIP Client

WOI
Browser

Socket 1

Block request

Block (data−bins)

Socket 2

JPIP Server

data−bins

Cache

Figure 3. JPIP client proposed.

is fully exploited, allowing to make requests and to receive
responses both in parallel.

As soon as the client receives a block reference
through the socketS1, it sends a request about the refer-
enced block, through the socketS2. In order to request
a specific block, it is necessary to use theblock param-
eter, taking value of the wanted block index. In the fol-
lowing example we can observe a client request about the
block number20, of a remote JPEG 2000 image called
rimage.jp2 :

GET http://jp2.server/rimage.jp2?block=
20&sblock=256 HTTP/1.1 ←↩
Host: jp2.client ←↩
←↩

It is necessary that the client indicates in every one
of its requests the minimum block size used, which will
be employed by the server to group the image data-bins in
blocks, and indexing them. This size must be the same that
the signaled by the server as result of the first client request,
about the references of the blocks.

Every read block contains a set of contiguous im-
age data-bins. In order to offer the highest compatibility,
the format of these data-bins is the same that the format
employed in the JPIP protocol. The order in which the
server groups data-bins in blocks, depending on the min-
imum block size, is completely free, although it would be
more efficient to use an order that allows to improve the
progressive visualization in the client. In the same way, the
order of the references sent by the server, due to a WOI re-
quest, is free too, although, for example, for a simple code-
stream, the best one would be that the block which contains
the main header data-bin was firstly sent (and it would be



recommendable that its position within the block was the
first one); it would be also recommended to use an order
in which the packet data-bins follow a quality progression,
like, for example, LRCP.

The server must comply with that, having the same
minimum block size and the same block number, two dif-
ferent requests would produce the same set of data-bins.
This must be complied strictly to avoid incoherence in the
cache of the proxies.

Client 1 Client M

Proxy N

JPIP Server

JPEG2000
images

W
eb

 c
on

ne
ct

io
n

Proxy 1

Figure 4. Architecture used in the experimental tests.

4 Results

For the realization of the tests, it has been employed the
architecture that we can see in Figure 4. In that architec-
ture we can observe that the connection between the clients
and the server is through one (or more) Web proxies, with
a caching system. Several WOIs, all about the same im-
age, are visualized in different moments of time, in dif-
ferent clients. The JPEG 2000 remote image here used is
2954×1976, with 7 resolution levels and10 quality layers.
In order to simplify, the image format will be the raw for-
mat (.j2c), and it will not contain neither tile nor tile-parts.

The image progression will be LRCP. The data-bins
order will be as follows: the first data-bin will be the main
header data-bin, and the next data-bins will be the packets
data-bins, in the same order as the image progression.

As minimum block size will take512 bytes, and, hav-
ing an average header size of100 bytes per HTTP message,
we will have a maximum overload of20%.

For recording the showed results, firstly it is visual-
ized in one of the clients a specific WOI, with a size of

512×512, (100, 100) as origin, at the maximum resolution
level. After this visualization, another different client will
visualize a WOI with a size of512 × 512, with (356, 356)
as origin, and at the same resolution level. These two visu-
alizations will be made for each system to compare, two for
the classic JPIP system, and two for the proposed system.

In Figure 5 we can see the relation between the PSNR
(in dB) of the WOI and the time (in seconds), in every eval-
uated system, for the second visualization. We have sup-
posed here that the server connection bandwidth is 4KB/s
on average. On the other hand, for the connection band-
width of the first proxy in the client/server connection, is
only limited by the architecture of the local net, where the
first proxy is situated. For the tests, we have supposed that
this bandwidth is 4MB/s.

We can see that the velocity for the reconstruction
of the WOI, for the second visualization in the proposed
system, is quite higher than the classic JPIP system. This
velocity would be incremented as much as more requests,
about the same image, are made.

0 5 10 15 20 25 30 35 40 45 50
Time in seconds

10

20

30

40

50

60

P
S

N
R

(d
B

)

Cached JPIP
JPIP

Figure 5. Rate-distortion results from experimental tests.

The time delay, due to the reception of the blocks ref-
erences, has not been analyzed, for it is minimum, because
of, mainly, these two reasons: (i) the requests of blocks are
made in parallel with the reception of the block references,
and (ii) it is possible to compress, as we said in previous
sections, the first server response, exploiting the feature of
all the algorithms proposed in the HTTP/1.1 protocol that
allows to decompress the data “on-the-fly”.

5 Conclusions

For architectures similar to the architecture employed for
the realization of the tests, the classic JPIP system is rather
inefficient, because it does not exploit the redundancy ex-
isting in the requests of different clients for WOIs of a set
of remote images. This redundancy can be absorbed quite
efficiently by the Web proxies using the proposed system.
This proposed system coexists with the classic JPIP system,
and it requires minimal modifications.



Acknowledgments: This work has been partially sup-
ported by the Spanish CICYT through grants TIC99-0361
and TIC2002-00228.

References

[1] ISO/IEC 15444.Information Technology – JPEG2000
Image Coding System – Part 1: Core coding system,
2000.

[2] A. Skodras, C. Christopoulos, and T. Ebrahimi. The
JPEG 2000 Still Image Compression Standard.IEEE
Signal Processing Magazine, pages 36–58, September
2001.

[3] D.S. Taubman and Marcellin. M.W.JPEG2000. Image
Compression Fundamentals, Standards and Practice.
Kluwer Academic Publishers, 2002.

[4] D.S. Taubman. High Performance Scalable Image
Compression with EBCOT.IEEE Transactions on im-
age processing, pages 1158–1170, July 2000.

[5] ISO/IEC 15444.Information Technology – JPEG2000
Image Coding System – Part 9: Interactive tools, APIs
and protocols, 2003.

[6] D.S. Taubman and M.W. Marcellin. JPEG2000: Stan-
dard for Interactive Imaging.Proceedings of the IEEE,
90(8):1336–1356, August 2002.

[7] R. Fielding, J. Gettys, J. Mogul, H. Frystyk,
L. Masinter, P. Leach, and T. Berners-Lee.
Hypertext Transfer Protocol – HTTP/1.1.
http://www.ietf.org/rfc/rfc2616.txt, June 1999.


