Hardware Accelerated Collision Detection —
An Architecture and Simulation Results

ANDREAS

RAABE
Dept. Technical CS

BLAZE]

BARTYZEL
Dept. Technical CS

GABRIEL

ZACHMANN
Dept. Comp. Graphics

JOACHIM K.

ANLAUF
Dept. Technical CS

University of Bonn, Germany

Abstract: - We present a hardware architecture for a single-chip acceleration of an efficient hierarchical collision detection
algorithm as well as simulation results for collision queries using this architecture.

The architecture consists of two main stages, one for traversing simultaneously a hierarchy of k-DOPs, and one for intersect-
ing triangles. Within each stage, the architecture is deeply pipelined and parallelized. For the first stage, we compare and
evaluate different traversal schemes for bounding volume hierarchies.

A simulation in VHDL shows that a hardware implementation can offer a speed-up over a software implementation by orders
of magnitude. Thus, real-time collision detection of complex objects at rates required by force-feedback and physically-based
simulations can be achieved.

Keywords: - Computer Graphics, Bounding Volume Hierarchy.

1 Introduction

Collision detection is a fundamental task in areas like anima-
tion systems, virtual reality, games, physically-based simu-
lation, automatic path finding, virtual assembly simulation,
and medical training and planning systems.

In many of these systems, collision avoidance is the ulti-
mate goal. Most approaches today are reactive, i.e., they first
place objects at a new trial position, then they check for col-
lisions, and then compute new forces or positions, based on
physical laws or constraints, so as to remove any collisions.

This approach poses very high demands on collision de-
tection, because it must perform many collision checks per
simulation cycle. A particularly demanding application is
rendering force-feedback, where updates of about 1000Hz
must be done in order to achieve stable force computations.
Since collision detection is such a fundamental task, it is
highly desirable to have hardware acceleration available just
like 3D graphics accelerators. Using specialized hardware,
the system’s CPU can be freed from computing collisions.

In this paper we present a new efficient architecture for hi-
erarchical collision detection of two rigid objects using high-
end ASIC technology.

We also present simulation results concerning its speed
and size, which show that an implementation in dedicated
hardware can speed up applications by at least an order of
magnitude.

2 Related Work

Collision detection in computer graphics has been an active
field over the past decade [2, 3, 6,9, 10]. Most approaches
dealing with rigid objects utilize some kind of bounding vol-
ume hierarchy, where some of the bounding volumes (BVs)
are spheres, axis-aligned bounding boxes (AABB), oriented
bounding boxes (OBB), and discretely oriented polytopes
(DOP).

Hoever, there is very little literature about the design of
hardware dedicated to collision detection. To our knowl-
edge, [11,12] are the only exception. Their architecture was
designed to minimize chip resources, while our architec-
ture is designed to maximize throughput. In addition, they
presented only a functional simulation, while we have per-
formed a VHDL simulation.

All other hardware-related research in collision detection
so far has tried to utilize existing graphics accelerator boards
[1,4,5,7,8]. While earlier approaches, such as [8], can ba-
sically handle only convex objects, later algorithms, such
as [1, 7], have extended these to more general cases such as
unions of convex objects or closed objects. The general class
of “polygon soups” can be handled by [4], but they use a hy-
brid approach where the graphics hardware only identified
potentially colliding sets.

All of the approaches using graphics hardware have the
disadvantage that they either compete with the rendering
process for the same hardware resource, or an additional
graphics board must be spent for collision detection. The
former slows down the overall frame rate considerably, while



the latter would be a tremendous waste, since most of the re-
sources of the hardware would not be utilized at all. Further-
more, most of these approaches work in image space, which
reduces precision significantly.

3 The Algorithm

3.1 Hierarchical Collision Detection and Bound-
ing Volumes

In this paper we concentrate on hierarchical collision de-
tection. This avoids checking every triangle of an object
A for collision with all triangles of object B by hierarchi-
cally grouping triangles (or other graphical primitives). This
yields a so-called bounding volume hierarchy (BVH), where
each leave corresponds to one triangle and inner nodes cor-
respond to groups of triangles. In order to achieve a feasible
hardware design, we use a binary tree here, but n-ary trees
could be considered as well. Each node of the tree stores
a bounding volume (BV) that encloses all triangles in its
group. Note that only leaves explicitely store any triangles.

In this work, we use k-DOPs as BVs because they were
proven to yield very fast collision queries by extensive bench-
marking in software [10], and are likely to perform well in
hardware.

If two objects are checked for intersection, both hierar-
chies are traversed starting at both roots. If their BVs inter-
sect, then the next level of BVs is checked. Since two objects
will usually intersect only locally in a very small number of
primitives, this yields a significant speed-up in the average
case. In practical cases, the complexity is in O(logn) (n =
number of primitives) because only a small diagonal “slice”
of constant width down the BVH needs to be visited.

3.2 k-DOPs

As motivated above, we use k-DOPs as BVs. For sake of
reference, we give a quick recap of this particular type of
BV [10,11].

A k-DOP consists of k distances d; along pairwise linearly
independent vectors B ;. Each of these vectors forms the nor-
mal of a halfspace. These vectors are chosen such that they
form k/2 pairs, each of which defines a so-called slab. The
intersection of these slabs forms the BV:

D= ()| Hj, Hj:Bjx—d;<0 (1)
j=1,...k

The orientation matrix B is fixed and equal for all objects.
This yields a very space-efficient description for every k-
DOP: only the k numbers d; need to be stored. To avoid
rounding errors we use single-precision floating-point num-
bers.

Each object O has its own reference frame (RF) F(O) that
describes its rotation Rp and translation Tp with respect to
world coordinates. When an object moves, only Rp and Tp
have to be updated. So checking two DOPs for intersection

Figure 1: Our DOP overlap test gains its speed by transform-
ing DOP Q into O’s reference frame F(0O). The tightness
loss is shown in dark grey. Obviously, each d’ is determined
by exactly three original d’s.

requires transformation of one of them into the RF of the
other.

Assume O and Q to be 2 objects. Let Dp(Q) denote the
minimum DOP which bounds Q with respect to the orien-
tation matrix B in Q’s own reference frame F(Q). Since
calculating Do (Q) is prohibitively expensive, we calculate
Do(Dg(Q)), which is the minimum DOP in F(O) bounding
D (Q). Naturally, this incurs a loss of the BVs tightness to
the underlying geometric structure.

Assume M to be the rotation and o the translation which
transforms F(Q) into F(0). Then, we need to find distances
d! which bound M - Dy (Q) + o0 minimally.

Applying M and o to Equation 1 yields

hj:bjx—d;+bjo<0, whereb;=BM"' (2
Assume Do (Dg(Q)) is the intersection of
Hi:Bx—d <0, i=1,...k 3)

Then, each d; corresponds to exactly one vertex of Dg(Q)
and therefore to three d; (see Fig. 1). These correspondences
are the same for all nodes in an object’s DOP hierarchy. So
they can be determined at startup.

Let j;, 0 <1 <2, be the indices corresponding to d;. Then,

b d bj,
bj | x—1{dj |+ |bj |]o=0 @
b d bj,

bx—d =0 5)
Equating (4) and (5) yields

d; = Cij dj, + Cijpdj, + Cijydjs +ci (6)

bj,
-1
where C and c are chosen to be Cj; := Bi(bjl ) and ¢; :=

J2
bio. Both are the same for all nodes in an object’s DOP
hierarchy; thus, they can be calculated at startup.
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Figure 2: Two objects overlap, iff their projections intersect
on every axis.

Checking Do (Dg(Q)) and D (O) for intersection amounts
to projecting them on the k axes given by B. They over-
lap if and only if there is no axis on which they are non-
intersecting. Since there are always two antiparallel axes,
we need to take that into account (see Fig. 2).

If e denotes the k-vector describing D (0O), then this test
can be expressed as

. k !/ !
overlap < Ai € [1, E] ek > —d; \/d[_+§ >—e  (7)
Due to space limitations, we refer the interested reader

to [11, 12] for the calculations involved in triangle-triangle
intersection tests.

4 The Architecture

To achieve maximum possible speed we assume to be using
high-end hardware components: our target ASIC technol-
ogy is a NEC UXS5 CB-130 in 0.095um-copper-technology.
With a maximum of 61 gates in a row it can establish up to
800 MHz clockrate. Furthermore, we assume DDR2 mem-
ory modules.

As BVs we chose to use 24-DOPs because extensive soft-
ware benchmarking has shown 24 axes to be a good compro-
mise of tightness and effort.

4.1 Design of the DOP Intersection Test

Our DOP intersection test is the combination of criterion (7)
with (6), which amounts to the function

d! = diCio + dpCit +dnCpp +ci + €k ®)

This can be implemented as the following three-staged macro
pipeline, which we call D_CRITCHK unit:

i

| FP MUL || FP MUL || FP MUL || FP ADD |

FP ADD FP ADD
FP ADD

The macro-pipeline stages were refined furthermore re-
sulting in a pipeline of 15 stages and therefore an initial-
ization delay of 15 clock cycles.

We use 24 D_CRITCHK units in parallel, and their re-
sults are NOR-reduced to check the criterion. To fill the

d, "
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Figure 3: Architecture for DOP intersection testing.

pipeline we use a 756-bit wide bus from the DDR2-RAM.
A hypermultiplexer (D_KLMSEL) routes the correct inputs
of the DOP to the D_CRITCHK units, which will then be
transformed into the reference frame of the other DOP (see
Fig. 3). A D_CNTR unit controls which DOP pair will be
processed next (see Section 4.3).

4.2 Design of the Triangle Intersection Test

Using homogeneous coordinates, the affine transformations
needed for the triangle intersection test (see Section ??) can
be represented as 3 x 4 matrices.

The T_CHECK unit that performs the intersection test gets
as input one triangle V! = [x;y;z;1],1 < i < 2, the precom-
puted matrix

myp My m3 My
Mp = [mjj] := |ma1 myy my3 mo4|, Q)
mi| mz M3z M4

and Myp = [bi j] that transforms O’s reference frame into
Q’s. s

Calculating Vi = Mg x Mg X Vfi is done in the first two
of 5 macro pipeline stages. These will be detailed in the
following.
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Figure 4: Architecture for Triangle Intersection

I’ macro stage: The calculation of M, = [bf j] = Mp X Mup
is split into three substages (marked with different brackets):

bi; = {[(birm1j) + (biamaj)] + (bizmsj) } (10)
by = {[(bitm1a) + (biomaa)] + [(bizmas) + (bu)]}  (11)
ii=1,...3

The forth row of the resulting matrix is always [001]. These
substages are further divided into microstages to gain maxi-
mum clock frequency. With this refinement, the first macro
stage consumes 36 multiplication and 24 addition floating
point units and takes 15 clock cycles delay to produce the
first result.

2" macro stage: Calculating Vi = M), x V/’; works very
similarly. The resulting substages are:

12)

Dividing this into microstages yields 27 multiplications, 27
additions, and another 15 clock cycles delay.

Vi = {[(by Vi) + (BaV)] + [(Ba VD) + (b))}

3™ macro stage: Before checking the edges of T, for inter-
section with the unit triangle, we need to calculate a and b
according to Eq. ?? for all three edges. Therefore, we need
to calculate P.Q,, O.P,, P,0O,, and Q,P, first. Additionally,
we calculate r,. This takes 12 multiplications, 3 additions,
and 8 clock cycles. Calculating a and b from these terms
takes another 6 additions and 4 clock cycles.

4™ macro stage: For all three edges we now need to calculate
a+ b —r,. After division into microstages this consumes 6
additions and 8 cycles.

5" macro stage: Here, we check the signs of a,b, and a +
b — r, for all edges. This needs one clock cycle.

Overall pipeline:Putting all stages together, we get a pipeline
with 52 clock cycles delay.

To fill the pipeline with data we need to buffer the trian-
gle addresses, look them up in the DDR2_RAM which con-
tains vertex data and the transformation matrices, and divide
the data into two sets (because all edges of T4 have to be
checked against 7p and vice versa). The whole TRI_UNIT
is presented in Fig. 4.

4.3 Control

When the two object hierarchies are traversed symmetrically,
each intersecting DOP pair results in 4 child pairs to be
checked for intersection. However, other ways of travers-
ing both BVHs can be more efficient. So far, we have com-
pared those two possibilities that allow a small control unit
and reduce the number of necessary memory accesses and
transformations.

Traversing the two DOP hierarchies in Fig. 5a symmet-
rically basically amounts to traversing the “collision tree”
shown in Fig. 5b.

Using a FIFO for determining the next DOP pair to be
tested for intersection results in a plain breadth-first search
on the collision tree. The processed DOP-sequence is
Al1-B2B3C2C3-D4D5E4ES-D6D7E6E7-F4F5
G4 G5 - F6 F7 G6 G7

This can easily be optimized so that between testing two
nodes of the same depth only one DOP needs to be fetched
from memory. The resulting sequence is
Al1-B2B3 C3 C2-D4DS5ESE4-E6E7D7D6 - F6 F7
G7 G6 - G4 G5 F5 F4

Using a LIFO the sequence depends on the length of the
pipeline. If we assume the pipeline to be of length one
(for simplicity of presentation) we receive a plain depth first
search.
A1-B2-D4D5ESE4-B3-E6E7D7D6-C2-G4 G5
F5F4 - C3 - F6 F7 G7 G6

If we push and pop nodes pairwise, we can easily reduce
the number of necessary memory accesses as we did before.

Note that our DOP transformation pipeline has 15 stages.
Thus, the traversal is not plain depth-first in the strictest
sense. Instead, it proceeds along several paths in a depth-
first manner.

5 Simulation Results

For benchmarking our architecture we used three different
objects each of which in several polygon complexities (see
Fig. 6). For each of them, two copies are placed at differ-
ent distances from each other and with different rotations.
For each constellation, the collision detection query time is
determined.

Comparing the performance of LIFO and FIFO control,
we see that finding all intersecting primitives takes equally
long (see Fig. 7a).

Since using a LIFO corresponds to depth-first search on
the collision tree, finding the first collision is usually much
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Figure 5: Traversing two BVHs simultaneously amounts to traversing a single “collision tree”. Our new traversal scheme

optimizes memory accesses.

Figure 6: For benchmarking and testing, a number of different
test objects with several polygon complexities were used.

faster than using a FIFO. Our simulation results verify this
(see Fig. 7b).

Another disadvantage of using a breadth-first search is the
size needed for the memory structure. In the worst case,
when all nodes need to be checked for intersection we must
store them all in the FIFO before any leaves are checked and
the queue size reduces.

With a strict depth-first traversal, the LIFO would need
to be only as large as the depth of the BVH. However, as
explained in Section 4.3, our traversal is not strictly depth-
first. Fortunately, memory usage of the LIFO in our design
seems to behave just as well (see Fig. 8).

Fig. 9 shows that our collision detection architecture is up
to 1000 times faster than the software implementation in de-
termining all intersecting triangles of two objects. The soft-
ware times were obtained on a 1GHz Pentium 3.

6 Conclusion and Future Work

In this paper, we have presented, to our knowledge, the first
simulation in VHDL of a hardware architecture for collision
detection.

We showed that hardware acceleration can be an effective
way to speed up hierarchical collision detection. Using sev-
eral pipelining and parallelization techniques, we achieved a
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Figure 7: (a) Comparing LIFO and FIFO controlled intersec-
tion testing shows that finding all intersecting primitives takes
equally long. (b) Our comparison shows that LIFO control is
far superior to FIFO control when finding the first intersecting
primitive. (Object: headlight, 5947 polygons)

speed-up of factor 1000 in VHDL simulations compared to
a software implementation.

We also showed that, for simultaneous traversal of BVHs,
a LIFO-controlled pipeline is far more space efficient than a
LIFO-controlled one, without loss of processing speed.

Since the present paper is one of the first to look at hard-
ware acceleration of collision detection, we believe there are
many avenues for further research.

An important concern is the reduction of the bandwidth in
order to make the bus from chip to memory smaller. Cur-
rently, we are investigating discretization and compression
of the BVs. Furthermore, we will evaluate different kinds of
primitives and BVs.
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Figure 9: Our collision detection architecture is up to 1000
times faster in determining all intersecting triangles of two
objects than the software implementation. (Object: door lock,
several polygon counts)

Another important issue is collision detection of deformable
objects. It remains an open problem exactly which algo-
rithms and data structures are best suited for hardware im-
plementation.

Since we use a pipelined dataflow architecture, advanced
pipelining techniques like speculative execution could be ap-
plied to reduce the number of pipeline stalls.
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