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Abstract: - As the complexity of electronic systems increases every day, new ways for describing these systems 
also appear. One interesting way consists of capturing the whole system's functionality using a system level 
executable specification language.  This high level specification is the entry point to a top-down design flow that 
results in the final implementation of the system. In this context synthesizable IP cores can be designed ad-hoc or 
obtained from third parties, with open source cores being an especially interesting option. A complete 
implementation of an AES/DES cryptoprocessor, from SystemC[1] specification to FPGA implementation -
comparing an ad-hoc solution to one with open source IP cores - is fully described in this paper. Verification of 
the design in various levels using Transaction Level Modelling Style is presented. This methodology is extended 
in order to verificate the physical implementation presenting the concept of Physical Transactors. 
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1 Introduction 
The goal of this paper is to describe the complete 
design flow of an AES/DES cryptoprocessor, from 
the System Level specification of the design to the 
final implementation on a prototype board. The 
verification methodology using Transaction Level 
Modelling style along all the design flow is also 
described. The design was done using SystemC 2.0, a 
modeling language based on C/C++.  
 
In sections 1.1 and 1.2 the main characteristics of 
SystemC and a brief overview of AES/DES 
algorithms are presented. In section 2 the executable 
specification of the system is described, as well as a 
complete verification environment from the earliest 
stages of the design, using the SystemC Verification 
Library and the Transaction Level Modeling Style. 
Section 3 analyzes how to get from the system level 
specification to the synthesizable description. Section 
4 describes the integration of Open Source cores in 
the design to compare with an ad-hoc solution. An 
estimation of the time/money saved by this approach 
is included. Section 5 describes the environment used 
to verify the system. Section 6 shows the synthesis 
flow. The physical implementation on a development 
board and the verification of this implementation 
using Physical Transactors concept is shown in 
section 7. Finally, the conclusions are presented in 
section 8. 
 

1.1 SystemC 2.0 overview 
Nowadays the common way to describe hardware is 
the use of HDLs such as VHDL and Verilog. 
However, software and system designers program in 
C/C++. Hardware/software codesign becomes a very 
hard task, due to the problems of using different 
languages at each abstraction level, or even in the 
same level (IP exchange). In this context, a single 
language that can be used in all the design stages is 
needed. 
 
SystemC is a library of classes for C++ and a 
simulation kernel that provides all the features needed 
to describe a system in all its abstraction levels and a 
reference platform for IP exchange. SystemC also 
provides a specification called the SystemC 
Verification Standard (SCV)[2]. This library provides 
classes and methods to build a verification 
methodology called Transaction Model Style (TLM) 
based on the use of transactors. One of the most 
important features of the SCV is the constrained 
random generator that combined with self-checking 
testbenches allows to detect many corner cases in the 
design. This verification methodology can be used 
with designs made with other HDLs. Many EDA 
vendors provide tools that allow SystemC to be 
mixed with other languages. 
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1.2 AES and DES overview 
Cryptography is becoming a crucial part of modern 
electronic systems. Applications such as data secure 
transmission or user autentification are being 
implemented in many devices. Regarding this 
demand for encryption/decryption systems, many 
algorithms have been proposed. The two most used 
algorithms are DES/3DES[3]  and its successor 
AES[4]. Both are Federal Information Processing 
Standard (FIPS) methods for symmetric 
encryption/decryption. 
 
DES takes an input and a key of 64 bits length each 
and generates an encrypted data block of 64 bits. To 
decrypt the cypher message the same key must be 
used. 3DES is an extension of the DES algorithm 
where the data is encrypted three times instead of 
once, using different keys. The second stage of 3DES 
is a decryption, but with a different key, so the result 
is another cypher. 
 
In January 1997, the National Institute of Standards 
and Technology (NIST) started a process to select an 
encryption algorithm for the AES standard. NIST 
stated that they were looking for an algorithm "as 
secure as 3DES but much more efficient". In October 
2002, NIST announced that Rijndael was the 
algorithm selected to become the AES. The AES 
takes an input of 128 bits and a key of 128, 196 or 
256 bits and generates an output of encrypted 128 
bits. The decryption is  made with the same key used 
in the encryption process with a similar process. 
 
 
2 System Level Description 
One of the main bottlenecks in a design flow is the 
verification stage[5], thus it is also a problem in IP-
based design[6]. It is estimated that at least 60% of 
the design effort is made in the verification stage. 
Traditional verification schemes also have the 
problem that the System Level Verification is the last 
stage of the design, extending the critical path and 
making architectural redesign almost impossible. 
 

 
Fig. 1: Traditional design flow 

 
New solutions to avoid this kind of problem are 
proposed. One of them is the Transaction Level 
Modeling Style described in the SystemC 

Verification Standard. With this verification 
methodology, the verification effort begins in parallel 
with the system level design.  
The components made in the system level description 
can be reused in the block verification step and in the 
final verification step, where all the blocks are 
replaced with their synthesizable models. Also, new 
architectural optimizations can be evaluated with low 
effort. 
 

 
Fig. 2: TLM design flow 

 
The model below is a behavioral description of the 
system, which means that no time and no information 
about the final implementation is included. It only 
reflects the required functionality of the whole 
system, and it will be used in later verification stages 
as the golden model for the designed blocks. This 
kind of model is called an "Untimed Functional 
Model" (UTF) for the reasons explained before. 
 

 
Fig. 3: Functional model 

 
One of the most important parts of the verification 
methodology is the testbench generation. Using SCV 
features, a testbench that generates random keys and 
data for the AES/DES models was designed. The 
transactor takes the stimuli generated by the random 
testbench and applies them to the model. If the 
abstraction level of the model is changed, the same 
testbench can still be used by simply changing the 
transactor.  
 
At this stage the cryptoproccesor model is a set of 
C++ functions with a SystemC wrapper and many 
sc_fifo channels to connect them to the testbenches 
and the display. 

 
 



3 Refining the model 
Before the module design phase can begin, it is 
necessary to go down in the abstraction level. In this 
level, information about the interfaces of the modules 
is added, as well as a clock. In this case no accurate 
time information is added to the model at this stage 
because no time specifications exist. 

 

 
Fig. 4: Pin accurate model 

 
The cryptoprocessor is described in four parts: 
 
1 Bus interface  
2 Controller of AES/DES module 
3 Random number generator 
4 DES encryption/decryption module 
5 AES encryption/decryption module 
 
The bus interface depends on the system bus. In this 
case, the bus is Wishbone[7] compatible. Wishbone is 
a bus with separate data and address lines with 
multiple masters and slaves whose specification is 
freely downloadable at www.opencores.org. 
Wishbone is also the standard bus for OpenCores[8] 
designs. OpenCores is an initiative for creating and 
distributing Open Source hardware designs via their 
webpage. In OpenCores, nearly a hundred 
downloadable designs from a complete RISC 
processor to communication controllers such as 
Ethernet or USB can be found. 
 

 
Fig. 5: Cryptoprocessor modules 

 
The controller of AES/DES modules takes the 
configuration word of the cryptoprocessor and 
generates the signals to manage the AES/DES 
modules. It also takes the data and the keys from the 
data registers and applies them to the modules, 

writing back the cyphered block in the output 
registers. 
 
The random number generator is based on the 
scheme[9] below, where an LFSR and a CASR in 
parallel are used to generate a random number 
generator with good statistical properties and a cycle 
length of 2^80. It is important to notice that the seed 
of the random number generator can be changed 
writing in the data register of the random generator. 
 

 
Fig. 6: RNG structure 

 
When designing the AES and DES blocks we have 
the possibility of using: 
 
1 Ad-hoc solution  
2 Third party solution  

- Commercial IP 
- Open Source IP 
 

The ad-hoc solution is expensive in time and money. 
However, reusability is one of the best ways to save 
time in the current design process. But even so, the 
main cost involved in reuse must be analyzed. There 
are three primary metrics[10] that can determine the 
magnitude of cost and saving via reuse: original 
development time, amount of design modification 
and verification effort.  
 
 
4 Comparing solutions 
As mentioned in the previous section, two approaches 
to the design were used: an ad-hoc solution and the 
use of Open Source IPs freely available on the 
Internet.  
 
The first step in the design is writing the executable 
specification following the Transaction Level 
Modeling style. This specification took one week to 
be developed. For the ad-hoc solution, AES and DES 
encryptor/decryptor blocks were developed in 
SystemC following the FIPS standards. The goal for 
these modules was a very low area occupation and a 
low critical path, with no concern for throughput. 
With this objective, a multicycle architecture for both 



was selected. These modules could be useful for 
small embedded systems with low cryptographic 
requirements.  
 
In the table below the time spent by one engineer 
working full time in the design can be seen. The 
development time includes the bus interface, the 
random generator and the controller written in 
SystemC. It also contains a week spent in 
documenting the DES and AES algorithms, and a 
week used in block and module verification.  

 
Development time Design modification Verification effort 
5 weeks 0 weeks 1 week 

Table 1: Ad-hoc solution metrics 
 

The other solution proposed was the use of Open 
Source cores. Both the AES and DES 
implementations were found on the  OpenCores 
webpage. They are very similar to the ad-hoc ones 
developed, meaning a multicycle non-pipelined 
implementation focused on area constraints. The 
development effort in this case is spent on designing 
the bus interface, the controller and the random 
generator in Verilog and integrating the IPs. No 
modification to the IPs was needed.  

 
Development time Design modification Verification effort 
1 week 0 weeks 0.5 weeks 

Table 2: Open Source solution 
metrics 

 
Now a comparison between the two approaches can 
be made. The first metric is the original development 
time. It is important to notice that in the ad-hoc 
solution, knowledge of the system to be implemented 
is needed, where as in the Open Source based one, 
such knowledge is not needed. In this particular 
implementation this represents one week saved 
compared with the ad-hoc solution. Two weeks were 
spent on the design of the modules and one on 
module verification. Many of the problems arising 
from the use of Open Source designs come from poor 
verification methodology and poor documentation. 
This problem can appear depending on the source of 
the design. It is important to select this source 
carefully. OpenCores provides cores from some well-
known IP companies that distribute some of their 
designs under an open license and can be used with 
the same guarantee as a commercial IP. In this case 
the cryptographic modules used are designed by 
asics.ws[11] a well-known IP company, so the 
functionality can be trusted. Finally, the design level 
verification step takes one week in the ad-hoc 
solution and only half a week in the Open Source 
one. In this step, the verification environment 

designed in the System Level specification stage is 
applied to the design. In the ad-hoc solution, some 
errors appeared in the cryptographic modules that had 
to be corrected. In the Open Source solution, only a 
few errors in the bus interface needed solving. In 
brief, 6 weeks are spent in the ad-hoc solution 
compared with 1.5 weeks in the Open Source one, 
which represents a saving of 75% of the time spent in 
the design process. 
 
 
5 Verification environment 
To guarantee the IP quality, a complete verification 
environment must be developed. Verification of the 
design must cover different levels, from the IP blocks 
created in the ad-hoc solution to whole system 
verification.  
Three verification levels are proposed: 

 
• Block level verification 
• Module level verification 
• System level verification 

 
A block is a component of the system that must be 
verified before being integrated in a module. An 
example of block could be the key generation block 
of the DES and AES modules. In order to verify these 
blocks, classic signal-oriented testbenches were 
applied.   

 
Another verification level is the module one. In this 
level the modules that compose the cryptoprocessor 
are verified using a classic testbench as in the block 
level, and also a random verification in the case of 
DES and AES blocks. This module random 
verification is very similar to the one used in the 
System level verification. In both cases the random 
testbench applies stimuli to the RT model to be 
verified and to the C code used as a golden model.  
 
The outputs of both modules are passed to the 
checker that compares them. If a mismatch between 
the data is found, an error is reported and the 
simulation ends. The test was executed with several 
different seeds during long periods of time.  
 
In the System Level case the testbench developed for 
the System Level specification is reused by simply 
changing the transactor functionality. At this level, 
the transactor applies the stimuli to the RT 
synthesizable design and to the C++ model of the 
cryptoprocessor used as a golden model.  
 



The system level verification environment is 
presented in the figure below: 
 

 
Fig. 7: Verification environment 

 
 
6 Synthesizing SystemC 
The last step in the design flow is the RTL synthesis.  
 
No commercial synthesis tools support synthesizing 
SystemC, except Synopsys Cocentric[12] SystemC 
Compiler. But in fact this tool does not synthesize 
SystemC, it translates a SystemC description to a 
Verilog equivalent and then applies the Verilog 
synthesis flow to the design. 
In order to resolve this problem, a SystemC to 
Verilog translator has been developed. The translator 
takes as input a synthesizable SystemC design and 
gives as output an equivalent Verilog one.  The 
translator was written in ANSI C and uses Flex and 
Bison, a text scanning program generator  and a 
parser generator respectively, distributed under the 
GNU GPL license. The SystemC to Verilog translator 
will be distributed under the same license.  
 
The modules written in SystemC are translated to 
Verilog using this tool and then synthesized using 
FPGA vendor tools.  
 
The results obtained for a Xilinx Virtex 800 FPGA 
are: 
 

 LUTs used Per. used Freq. (MHz) 
Ad-Hoc 799 4% 64.1 

Open Source 1270 6% 97.5 
Table 3: DES synthesis results 

 
 LUTs used Per. used Freq. (MHz) 

Ad-Hoc 687 3% 67.4 
Open Source 719 3% 84.2 

Table 4: AES synthesis results 
 
In the ad-hoc solutions, the aim was to find a low 
area implementation, and the results obtained are 
better than the ones with the Open Source solutions. 
In the DES case, the ad-hoc solution is about  37% 
smaller, but on the other hand the Open Source 
solution is faster. In the AES implementation the 

same thing happens: the ad-hoc solution is smaller 
than the Open Source one but the second is faster. 
The conclusion is obvious, the ad-hoc solution fits 
our needs better than the reusable one, but at a cost 
that is  not always feasible. 
 
 
7 On board verification 
The advantages of using a design methodology 
based in the use of Transaction Level Modelling 
Style were described earlier. One of the main 
advantages shown was that the verification 
environment could be reused in other stages by only 
changing the transactor functionality. Here, this 
concept is extended in order to verify the 
functionality of the physical implementation over a 
development board.  
 

Fig. 8: On board verification 
 

The Physical Transactor concept is the main fact 
introduced in this level of verification. 
  
This kind of transactor converts the data from the 
UART on the board to the physical signals applied to 
the cryptoprocessor ports. Another Physical 
Transactor takes the outputs and send them back to 
the verification environment through  the UART. 
 
This transactor in combination with the UART 
works as a sc_fifo channel that blocks the simulation 
until a data from the board arrives. This kind of 
model is equivalent to an UTF model, where the 
sc_fifo channels connected to the physical 
implementation are exchanged by their equivalent 
models, made up of the UART and the physical 
transactor. 
 
As shown in the System Level verification stage, the 
C++ model of the cryptoprocessor is connected in 
parallel with the design under verification. The 
outputs generated by the board are sent back to the 
verification environment via the UART on the board 
and compared with the ones generated by the C++ 
golden model by the checker.   
 
 



The design was downloaded onto an XESS-800[13] 
development board, as shown below: 
 

 
Fig. 9: XESS-800 development board 

 
The verification environment was run and the results 
appeared in the host screen via the display module. 
 
 
8  Conclusions 
This paper presents a complete design from the 
System Level Specification in SystemC to the board 
implementation. SystemC, as a system level design 
was used to develop the system specification. The use 
of the TLM style, defined in the SystemC 
Verification Standard, allows the designer to begin 
the system verification in earlier design stages, saving 
a large amount of time and effort, and allowing low 
cost architectural exploration.   
 
Two approaches were evaluated in order to 
implement the design: an ad-hoc solution and an 
Open Source one. The Open Source solution has 
many advantages compared with the ad-hoc solution: 
it is free, and it saves time and money.  On the other 
hand the ad-hoc solution fits better with our 
specifications. However, before using the Open 
Source IP it is necessary to check that it is free of 
errors. Some IP providers (such as OpenCores) 
distribute designs sufficiently verified to trust them.   
 
In order to synthesize the design, a translator from 
SystemC to Verilog was developed. The design was 
synthesized and implemented in a commercial 
development board successfully. 
 
The concept of Physical Transactor, introduced in 
this paper, allows the designer to extend the TLM 
style down to the physical verification of the system, 
using the same verification environment designed 
from the beginning for the System verification. 
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