
SystemC design flow for a DES/AES CryptoProcessor

J. CASTILLO, P. HUERTA, J. I. MARTINEZ
Grupo de diseño HW/SW, DIET-ESCET

Universidad Rey Juan Carlos
C\ Tulipan, Mostoles, Madrid

SPAIN

Abstract: - As the complexity of electronic systems increases every day, new ways for describing these systems
also appear. One interesting way consists of capturing the whole system's functionality using a system level
executable specification language. This high level specification is the entry point to a top-down design flow that
results in the final implementation of the system. In this context synthesizable IP cores can be designed ad-hoc or
obtained from third parties, with open source cores being an especially interesting option. A complete
implementation of an AES/DES cryptoprocessor, from SystemC[1] specification to FPGA implementation -
comparing an ad-hoc solution to one with open source IP cores - is fully described in this paper. Verification of
the design in various levels using Transaction Level Modelling Style is presented. This methodology is extended
in order to verificate the physical implementation presenting the concept of Physical Transactors.

Key-Words: - SystemC, DES, AES, Cryptography, Reusability, Open source.

1 Introduction
The goal of this paper is to describe the complete
design flow of an AES/DES cryptoprocessor, from
the System Level specification of the design to the
final implementation on a prototype board. The
verification methodology using Transaction Level
Modelling style along all the design flow is also
described. The design was done using SystemC 2.0, a
modeling language based on C/C++.

In sections 1.1 and 1.2 the main characteristics of
SystemC and a brief overview of AES/DES
algorithms are presented. In section 2 the executable
specification of the system is described, as well as a
complete verification environment from the earliest
stages of the design, using the SystemC Verification
Library and the Transaction Level Modeling Style.
Section 3 analyzes how to get from the system level
specification to the synthesizable description. Section
4 describes the integration of Open Source cores in
the design to compare with an ad-hoc solution. An
estimation of the time/money saved by this approach
is included. Section 5 describes the environment used
to verify the system. Section 6 shows the synthesis
flow. The physical implementation on a development
board and the verification of this implementation
using Physical Transactors concept is shown in
section 7. Finally, the conclusions are presented in
section 8.

1.1 SystemC 2.0 overview
Nowadays the common way to describe hardware is
the use of HDLs such as VHDL and Verilog.
However, software and system designers program in
C/C++. Hardware/software codesign becomes a very
hard task, due to the problems of using different
languages at each abstraction level, or even in the
same level (IP exchange). In this context, a single
language that can be used in all the design stages is
needed.

SystemC is a library of classes for C++ and a
simulation kernel that provides all the features needed
to describe a system in all its abstraction levels and a
reference platform for IP exchange. SystemC also
provides a specification called the SystemC
Verification Standard (SCV)[2]. This library provides
classes and methods to build a verification
methodology called Transaction Model Style (TLM)
based on the use of transactors. One of the most
important features of the SCV is the constrained
random generator that combined with self-checking
testbenches allows to detect many corner cases in the
design. This verification methodology can be used
with designs made with other HDLs. Many EDA
vendors provide tools that allow SystemC to be
mixed with other languages.

This work has been supported by the Spanish PROFIT and Medea+ programme under FIT-0700000-2003-930 contract.

mailto:jcastillo@escet.urjc.es
mailto:phuerta@escet.urjc.es
mailto:j.martinez@escet.urjc.es

1.2 AES and DES overview
Cryptography is becoming a crucial part of modern
electronic systems. Applications such as data secure
transmission or user autentification are being
implemented in many devices. Regarding this
demand for encryption/decryption systems, many
algorithms have been proposed. The two most used
algorithms are DES/3DES[3] and its successor
AES[4]. Both are Federal Information Processing
Standard (FIPS) methods for symmetric
encryption/decryption.

DES takes an input and a key of 64 bits length each
and generates an encrypted data block of 64 bits. To
decrypt the cypher message the same key must be
used. 3DES is an extension of the DES algorithm
where the data is encrypted three times instead of
once, using different keys. The second stage of 3DES
is a decryption, but with a different key, so the result
is another cypher.

In January 1997, the National Institute of Standards
and Technology (NIST) started a process to select an
encryption algorithm for the AES standard. NIST
stated that they were looking for an algorithm "as
secure as 3DES but much more efficient". In October
2002, NIST announced that Rijndael was the
algorithm selected to become the AES. The AES
takes an input of 128 bits and a key of 128, 196 or
256 bits and generates an output of encrypted 128
bits. The decryption is made with the same key used
in the encryption process with a similar process.

2 System Level Description
One of the main bottlenecks in a design flow is the
verification stage[5], thus it is also a problem in IP-
based design[6]. It is estimated that at least 60% of
the design effort is made in the verification stage.
Traditional verification schemes also have the
problem that the System Level Verification is the last
stage of the design, extending the critical path and
making architectural redesign almost impossible.

Fig. 1: Traditional design flow

New solutions to avoid this kind of problem are
proposed. One of them is the Transaction Level
Modeling Style described in the SystemC

Verification Standard. With this verification
methodology, the verification effort begins in parallel
with the system level design.
The components made in the system level description
can be reused in the block verification step and in the
final verification step, where all the blocks are
replaced with their synthesizable models. Also, new
architectural optimizations can be evaluated with low
effort.

Fig. 2: TLM design flow

The model below is a behavioral description of the
system, which means that no time and no information
about the final implementation is included. It only
reflects the required functionality of the whole
system, and it will be used in later verification stages
as the golden model for the designed blocks. This
kind of model is called an "Untimed Functional
Model" (UTF) for the reasons explained before.

Fig. 3: Functional model

One of the most important parts of the verification
methodology is the testbench generation. Using SCV
features, a testbench that generates random keys and
data for the AES/DES models was designed. The
transactor takes the stimuli generated by the random
testbench and applies them to the model. If the
abstraction level of the model is changed, the same
testbench can still be used by simply changing the
transactor.

At this stage the cryptoproccesor model is a set of
C++ functions with a SystemC wrapper and many
sc_fifo channels to connect them to the testbenches
and the display.

3 Refining the model
Before the module design phase can begin, it is
necessary to go down in the abstraction level. In this
level, information about the interfaces of the modules
is added, as well as a clock. In this case no accurate
time information is added to the model at this stage
because no time specifications exist.

Fig. 4: Pin accurate model

The cryptoprocessor is described in four parts:

1 Bus interface
2 Controller of AES/DES module
3 Random number generator
4 DES encryption/decryption module
5 AES encryption/decryption module

The bus interface depends on the system bus. In this
case, the bus is Wishbone[7] compatible. Wishbone is
a bus with separate data and address lines with
multiple masters and slaves whose specification is
freely downloadable at www.opencores.org.
Wishbone is also the standard bus for OpenCores[8]
designs. OpenCores is an initiative for creating and
distributing Open Source hardware designs via their
webpage. In OpenCores, nearly a hundred
downloadable designs from a complete RISC
processor to communication controllers such as
Ethernet or USB can be found.

Fig. 5: Cryptoprocessor modules

The controller of AES/DES modules takes the
configuration word of the cryptoprocessor and
generates the signals to manage the AES/DES
modules. It also takes the data and the keys from the
data registers and applies them to the modules,

writing back the cyphered block in the output
registers.

The random number generator is based on the
scheme[9] below, where an LFSR and a CASR in
parallel are used to generate a random number
generator with good statistical properties and a cycle
length of 2^80. It is important to notice that the seed
of the random number generator can be changed
writing in the data register of the random generator.

Fig. 6: RNG structure

When designing the AES and DES blocks we have
the possibility of using:

1 Ad-hoc solution
2 Third party solution

- Commercial IP
- Open Source IP

The ad-hoc solution is expensive in time and money.
However, reusability is one of the best ways to save
time in the current design process. But even so, the
main cost involved in reuse must be analyzed. There
are three primary metrics[10] that can determine the
magnitude of cost and saving via reuse: original
development time, amount of design modification
and verification effort.

4 Comparing solutions
As mentioned in the previous section, two approaches
to the design were used: an ad-hoc solution and the
use of Open Source IPs freely available on the
Internet.

The first step in the design is writing the executable
specification following the Transaction Level
Modeling style. This specification took one week to
be developed. For the ad-hoc solution, AES and DES
encryptor/decryptor blocks were developed in
SystemC following the FIPS standards. The goal for
these modules was a very low area occupation and a
low critical path, with no concern for throughput.
With this objective, a multicycle architecture for both

was selected. These modules could be useful for
small embedded systems with low cryptographic
requirements.

In the table below the time spent by one engineer
working full time in the design can be seen. The
development time includes the bus interface, the
random generator and the controller written in
SystemC. It also contains a week spent in
documenting the DES and AES algorithms, and a
week used in block and module verification.

Development time Design modification Verification effort
5 weeks 0 weeks 1 week

Table 1: Ad-hoc solution metrics

The other solution proposed was the use of Open
Source cores. Both the AES and DES
implementations were found on the OpenCores
webpage. They are very similar to the ad-hoc ones
developed, meaning a multicycle non-pipelined
implementation focused on area constraints. The
development effort in this case is spent on designing
the bus interface, the controller and the random
generator in Verilog and integrating the IPs. No
modification to the IPs was needed.

Development time Design modification Verification effort
1 week 0 weeks 0.5 weeks

Table 2: Open Source solution
metrics

Now a comparison between the two approaches can
be made. The first metric is the original development
time. It is important to notice that in the ad-hoc
solution, knowledge of the system to be implemented
is needed, where as in the Open Source based one,
such knowledge is not needed. In this particular
implementation this represents one week saved
compared with the ad-hoc solution. Two weeks were
spent on the design of the modules and one on
module verification. Many of the problems arising
from the use of Open Source designs come from poor
verification methodology and poor documentation.
This problem can appear depending on the source of
the design. It is important to select this source
carefully. OpenCores provides cores from some well-
known IP companies that distribute some of their
designs under an open license and can be used with
the same guarantee as a commercial IP. In this case
the cryptographic modules used are designed by
asics.ws[11] a well-known IP company, so the
functionality can be trusted. Finally, the design level
verification step takes one week in the ad-hoc
solution and only half a week in the Open Source
one. In this step, the verification environment

designed in the System Level specification stage is
applied to the design. In the ad-hoc solution, some
errors appeared in the cryptographic modules that had
to be corrected. In the Open Source solution, only a
few errors in the bus interface needed solving. In
brief, 6 weeks are spent in the ad-hoc solution
compared with 1.5 weeks in the Open Source one,
which represents a saving of 75% of the time spent in
the design process.

5 Verification environment
To guarantee the IP quality, a complete verification
environment must be developed. Verification of the
design must cover different levels, from the IP blocks
created in the ad-hoc solution to whole system
verification.
Three verification levels are proposed:

• Block level verification
• Module level verification
• System level verification

A block is a component of the system that must be
verified before being integrated in a module. An
example of block could be the key generation block
of the DES and AES modules. In order to verify these
blocks, classic signal-oriented testbenches were
applied.

Another verification level is the module one. In this
level the modules that compose the cryptoprocessor
are verified using a classic testbench as in the block
level, and also a random verification in the case of
DES and AES blocks. This module random
verification is very similar to the one used in the
System level verification. In both cases the random
testbench applies stimuli to the RT model to be
verified and to the C code used as a golden model.

The outputs of both modules are passed to the
checker that compares them. If a mismatch between
the data is found, an error is reported and the
simulation ends. The test was executed with several
different seeds during long periods of time.

In the System Level case the testbench developed for
the System Level specification is reused by simply
changing the transactor functionality. At this level,
the transactor applies the stimuli to the RT
synthesizable design and to the C++ model of the
cryptoprocessor used as a golden model.

The system level verification environment is
presented in the figure below:

Fig. 7: Verification environment

6 Synthesizing SystemC
The last step in the design flow is the RTL synthesis.

No commercial synthesis tools support synthesizing
SystemC, except Synopsys Cocentric[12] SystemC
Compiler. But in fact this tool does not synthesize
SystemC, it translates a SystemC description to a
Verilog equivalent and then applies the Verilog
synthesis flow to the design.
In order to resolve this problem, a SystemC to
Verilog translator has been developed. The translator
takes as input a synthesizable SystemC design and
gives as output an equivalent Verilog one. The
translator was written in ANSI C and uses Flex and
Bison, a text scanning program generator and a
parser generator respectively, distributed under the
GNU GPL license. The SystemC to Verilog translator
will be distributed under the same license.

The modules written in SystemC are translated to
Verilog using this tool and then synthesized using
FPGA vendor tools.

The results obtained for a Xilinx Virtex 800 FPGA
are:

 LUTs used Per. used Freq. (MHz)
Ad-Hoc 799 4% 64.1

Open Source 1270 6% 97.5
Table 3: DES synthesis results

 LUTs used Per. used Freq. (MHz)

Ad-Hoc 687 3% 67.4
Open Source 719 3% 84.2

Table 4: AES synthesis results

In the ad-hoc solutions, the aim was to find a low
area implementation, and the results obtained are
better than the ones with the Open Source solutions.
In the DES case, the ad-hoc solution is about 37%
smaller, but on the other hand the Open Source
solution is faster. In the AES implementation the

same thing happens: the ad-hoc solution is smaller
than the Open Source one but the second is faster.
The conclusion is obvious, the ad-hoc solution fits
our needs better than the reusable one, but at a cost
that is not always feasible.

7 On board verification
The advantages of using a design methodology
based in the use of Transaction Level Modelling
Style were described earlier. One of the main
advantages shown was that the verification
environment could be reused in other stages by only
changing the transactor functionality. Here, this
concept is extended in order to verify the
functionality of the physical implementation over a
development board.

Fig. 8: On board verification

The Physical Transactor concept is the main fact
introduced in this level of verification.

This kind of transactor converts the data from the
UART on the board to the physical signals applied to
the cryptoprocessor ports. Another Physical
Transactor takes the outputs and send them back to
the verification environment through the UART.

This transactor in combination with the UART
works as a sc_fifo channel that blocks the simulation
until a data from the board arrives. This kind of
model is equivalent to an UTF model, where the
sc_fifo channels connected to the physical
implementation are exchanged by their equivalent
models, made up of the UART and the physical
transactor.

As shown in the System Level verification stage, the
C++ model of the cryptoprocessor is connected in
parallel with the design under verification. The
outputs generated by the board are sent back to the
verification environment via the UART on the board
and compared with the ones generated by the C++
golden model by the checker.

The design was downloaded onto an XESS-800[13]
development board, as shown below:

Fig. 9: XESS-800 development board

The verification environment was run and the results
appeared in the host screen via the display module.

8 Conclusions
This paper presents a complete design from the
System Level Specification in SystemC to the board
implementation. SystemC, as a system level design
was used to develop the system specification. The use
of the TLM style, defined in the SystemC
Verification Standard, allows the designer to begin
the system verification in earlier design stages, saving
a large amount of time and effort, and allowing low
cost architectural exploration.

Two approaches were evaluated in order to
implement the design: an ad-hoc solution and an
Open Source one. The Open Source solution has
many advantages compared with the ad-hoc solution:
it is free, and it saves time and money. On the other
hand the ad-hoc solution fits better with our
specifications. However, before using the Open
Source IP it is necessary to check that it is free of
errors. Some IP providers (such as OpenCores)
distribute designs sufficiently verified to trust them.

In order to synthesize the design, a translator from
SystemC to Verilog was developed. The design was
synthesized and implemented in a commercial
development board successfully.

The concept of Physical Transactor, introduced in
this paper, allows the designer to extend the TLM
style down to the physical verification of the system,
using the same verification environment designed
from the beginning for the System verification.

References:

[1] OSCI, “SystemC 2.0.1”,http://www.systemc.org
[2] OSCI, “SystemC Verification Standard”,

http://www.systemc.org
[3] FIPS, “Data Encryption Standard”, Jan, 1977
[4] FIPS, “Avanced Encryption Standard”, Nov,

2001
[5] The International Technology Roadmap For

Semiconductors. 2001 Edition.
http://public.itrs.net/Files/2001ITRS/home.htm

[6] R. Wilson, “Design reuse expands across
 industry”, EETimes. March, 2003.
[7] OpenCores, "WISHBONE System-on-Chip(Soc)
 Interconnection Architecture for Portable IP
 Cores", http://www.opencores.org. Sep, 2002
[8] OpenCores, http://www.opencores.org
[9] T. Tkacik, “A hardware random generator”,
 CHES 2002
[10] A. Dey, J. Moudy. "Cost Saving via Reuse",
 Electronic Design Process Workshow(EDP),
 2002
[11] asics.ws, http://www.asics.ws
[12] Cocentric System Studio,
 http://www.synopsys.com
[13] XESS Corporation, http://www.xess.com

http://www.systemc.org/
http://www.opencores.org/
http://www.asics.ws/
http://www.synopsys.com/
http://www.xess.com/

	System Level Description
	Refining the model
	Comparing solutions
	In the table below the time spent by one engineer working fu
	Table 1: Ad-hoc solution metrics
	Verification environment
	A block is a component of the system that must be verified b
	Synthesizing SystemC
	On board verification
	The verification environment was run and the results appeare
	Conclusions

