
Performance Prediction & Physical Design of J2EE Based Web
Applications

UMESH BELLUR, AKHILESH SHIRABATE

School of Information Technology
Indian Institute of Technology, Bombay

Powai, Mumbai - 400076
INDIA

Abstract: - With the widespread use of N tier computing technologies in the enterprise and the increased
dependence on the services provided by these applications, greater emphasis is now being placed on the
performance and health of these applications. It’s now not enough that the application merely functions, but it
needs to meet the QoS1 metrics that is expected of it. It turns out that QoS is dependent, not just on how well
the application has been designed and built but also on how is gets deployed and distributed. We present here
ongoing work in the area of autonomic computing of distributed component based applications – an effort that
seeks to make distributed enterprise applications and the environments in which they run self-configuring and
self-healing.

Key-Words: - J2EE, performance prediction, analytical models, queueing Petri-nets, QoS of Web
Applications.

1 QoS – Quality of Service

1. Introduction
As distributed applications become mainstream
enterprise solutions, there have been
considerable advances in making the
development of these applications simpler. The
development of server side component models
followed by standardization of server side
“software containers” to host these components
have helped considerably shorten the
development lifecycles of large applications.
Indeed it is not uncommon to see release cycles
of 6 months or less in the enterprise for major
features and 3 months or less for minor feature
adds. In addition, the expectation on the
application performance and reliability has
gone up to the point where well defined QoS
measures are expected to be adhered to by these
complex distributed applications. The impact
of these rapid application development
paradigms has shifted the complexity from
what used to be application development to
deployment and beyond – tasks that are
commonly handled by the IT Operations staff
in the enterprise. Once the application has been
developed, the first task would be to map it to a
physical architecture given the expected
workloads and the availability of shared
physical resources (CPU, disk, network
bandwidth etc.). Once resource mapping is
done, the various resources need to be
configured with the appropriate parameters to
handle the application. This in itself is a task of
great complexity not only because of the
dependencies between the various components
making up an application but also because one
needs to map any QoS requirements of the
application (such as response times and uptime)
to the selection of the different physical
components that the application will run on.
For example, network QoS may have to be
negotiated appropriately since network
communication quality can have a significant
impact on application performance of
distributed applications. The complexity also
arises from the numbers of parameters that
have to be tuned on resources such as
application servers and relational databases.
The modern J2EE2 application server has over
300 parameters that have to be tuned in order to
extract the best value. Of late, there has been an
increased focus on “autonomic computing”

2 J2EE is a trademark of SUN and denotes the server side

Java component architecture commonly used to build
enterprise applications today.

techniques – techniques that determine how
application environments can configure and
heal themselves in the event of problems. For
example, an application server (or middleware
server) can have over a hundred different
parameters that have to be tuned and the
configuration needs to be consistent with that
of other servers that it may depend on.

We have started an effort to focus autonomic
computing techniques on the system design,
application deployment and problem diagnosis
and correction of enterprise class distributed
applications. For simplicity, we are looking
only at J2EE applications currently although
the techniques are likely to be useful across a
variety of similar component models such as
.NET and CORBA. This is termed the Lights-
out Automated Management of Distributed
Applications (LAMDA). As part of LAMDA
we are investigating increasingly complex N
tier architectural models for autonomic
computing (self configuration and healing
purposes) starting at the low end of a web
application that needs no other resources such
as the DB or any other business logic to the
high end which consist of N tiers of servers
with business logic, workflow, rules engines as
well as a relational DB.

The first of these models is that of a web
application that consists of a simple Web
Server/Servlet container that hosts dynamic
content generation pieces of Java code known
as Servlets. As a simplification in our first
model, Servlets execute independently and
don’t need to access backend resources for
either business logic or data. Given a servlet,
we are able to model it’s execution analytically
using Queuing Petri-net models which can be
used to predict performance based on reward
rates of the underlying Markov chains. We are
using this information to then configure the
Web Server and container according to the QoS
needs of the application.

The rest of this paper is organized as follows.
The next section gives an introduction to
LAMDA and the different aspects of LAMDA
that we are working on. It also defines the
notions of “service” versus “application” and
other terms that are used in the rest of the
paper. After that, we discuss the different
methods of analytical modeling that we can
chose for such a problem. We then turn our
attention to the specific problem of predicting

performance of JSPs/Servlets using analytical
models in the selected modeling techniques.
Finally we conclude with a discussion on the
related efforts that we are aware of and the
current status of the effort and future directions.

2. LAMDA
There are several facets to autonomic
computing all of which form part of the
LAMDA vision.

a. Physical Design and deployment – Self
Configuration. There are two aspects to
this – static and dynamic. Static design
lays out certain constraints on location
of the application components and
maps it initially to a physical topology.
The dynamic version ensures that these
constraints continue to be met and may
move application components, add or
remove computing resources and
reconfigure the infrastructure.

b. Root Cause Isolation and correction -
Self Healing. Self healing can be for
the purposes of correcting a structural
constraint or property that has been
broken such as those related to
performance, availability or capacity.

c. Self Protection – Related to the second
facet, this is for the purposes of healing
a security breach that has occurred. The
techniques and the basis for self
protection are often very different from
those used for self healing and so will
be considered separately.

As a part of this effort (especially part a), we
have also developed meta models for
describing application and service QoS
parameters and resource needs which we use in
trying to come up with the physical design.

2.1 The Basis of LAMDA

2.1.1 Application versus Service

Applications

Web Component Business Logic Component

DB Component

eBusiness Portal Order Mgmt. Inventory Billing

B
U
S
I
N
E
S
S

S
V
C
S

Ordering
Service

Online
Bill Payment
Service

In LAMDA, we differentiate between applications
and services as follows. Applications are
considered as units of deployment which bind
together a set of components to be deployed as a
group. For example the Order Management
application can have 2 EJBs3 representing order
processing business logic, a DB component
representing the order schema and a set of JSPs4
that represents the interface into ordering, order
status determination etc.

Business services are transactions that have a clear
customer access point such as a web site link or a
GUI button that can start the transaction. Business
services thread through various applications
touching individual components along the way.
Quality of Service (QoS) requirements should
exist on business services such as the bill payment
service will have availability of 99.9% with 85%
of the transactions exhibiting response times of
less than 1 second! Applications themselves may
have individual QoS but that is relatively less
important.

The two of these concepts are orthogonal.
Developers are concerned with applications
that encapsulate some functionality while IT
administrators are concerned with managing
services as seen by the customer.

2.1.2 Structural Basis - Topology
The starting point for self-healing or self

3 EJB stands for Enterprise Java Beans which are server

side components in the J2EE architecture.
4 JSP stands for Java server pages which are server side

pages than are used to generate dynamic web pages in
web applications.

configuration is to know one self and so
determining the topology of the application in
relation to its execution environment is critical.
An application cannot be deployed without
knowledge of the various components that
make it up. Both the static parts of the
component (viz, it’s packaging) as well as it’s
physical footprint need to be well understood
for problem isolation and correction.
Topology therefore is a description of:

a. The infrastructure (both physical such
as compute servers as well as logical
such as server component containers),
its configuration and its dependence on
the underlying network.

b. The static view application components
and their configurations.

c. The dynamic or run time view of
application components that execute on
the infrastructure. This specifies the
physical footprint that the component
exhibits at run time. For example, an
EJB can be deployed on several J2EE
containers either as a cluster or singly.

d. Dependencies that exist between
application components, between
application components and
infrastructure (software, hardware and
network).

Topology is a realization of the meta-model
that characterizes applications and their
execution environments and provides a
canonical language for common understanding
of what an application is and what it depends
on. Every tool in the LAMDA arsenal works
off of topology. Since the topology of a
distributed shared execution environment is
constantly changing (applications are being
added, removed or updated, machines are
upgraded or added, the network is being tuned
etc.), we need a process that will keep up-to-
date the topology of the existing environment
including any applications that are currently
executing on it.

2.2 LAMDA Architecture

LAMDA is essentially a closed loop
optimization process. The input to this process
is a set of applications along with their QoS
needs and expected workloads. Initial physical
design is a byproduct of the analysis and
optimization process of the architecture but we

expect this is a continual process driven by
changes in the underlying infrastructure as well
as workloads.

The underlying infrastructure which is pre-built
based on our knowledge of the functioning of
the containers, is augmented with the
knowledge about the topology of the
application. So, for example, if the application
calls for a particular servlet to talk with a
specific DB schema, then we can build the
underling analytical model for performance
analysis. We then solve the analytical model
and obtain the expected QoS under a particular
physical design. This is iteratively refined by
moving around components to optimize for the
QoS parameters till we meet or beat the
expected QoS of the application.

Of course, this optimization has to be
performed with all the applications that share a
common infrastructure, else it will not be of
much use in a real environment. The same
approach can be used to optimize the number of
resources used as well and output the best
expected QoS from the application.

Auto
Discover
y

Topology

Analysis of
Performability

Physical
Design

Runtime
Designer

Monitoring,
Fault
Detection,
Correction

Application QoS
Requirements

Workload
Characterization

3. Analytical Modeling Approach and
Justification
Many modeling formalisms exist, some
developed to do quantitative modeling such as
queuing networks and some developed to do
qualitative modeling such as Petri-Nets.
As developed originally, queuing networks
were limited by their lack of exclusivity of
synchronization constructs. The extended
queuing networks (EQNs)[[12]] are an effort in
the direction to remove this limitation of
queuing network theory. EQNs are QNs that
have been augmented with passive resources,
fork nodes, join nodes and split nodes. Each
passive resource consists of a number of tokens
representing the resource units available for
customers arriving at the allocation node.
Special nodes are defined in the extended
notation where customers can acquire, release,
create or destroy a resource token. Besides
EQN, there are various other models which
extend the queuing models. A model called
Queuing system with flag mechanisms [[14]]
was proposed by D. Mailles et el. The model
was based on the integration of concepts from
petri nets into queuing networks.
Petri Nets or Place Transition nets on the other
hand originated to perform qualitative
(reachability) analysis and petri nets have
simple ways of arranging the places and
transitions to give various constructs. Some
common constructs are sequence, choice,
concurrency and synchronization. For further
details about the place/transition nets, refer
[13]. Petri Nets were then augmented with
timing information for quantitative analysis.
There are two principal ways of integrating
timing aspects into Petri nets:

• specification of a dwelling time for
tokens on a place (Timed places Petri
nets - TPPNs)

• specification of a firing delay for
enabled transitions (Timed transition
Petri nets - TTPNs)

The most important representatives of TTPNs
are stochastic Petri nets, e.g. generalized
stochastic Petri nets (GSPNs), describing
Markov processes. The main disadvantage of
these time augmented Petri nets is the very
difficult description of scheduling strategies.
For easier description of scheduling strategies
additional elements are often integrated into the

stochastic Petri net world, like e.g. inhibitor
arcs, with the problem of raising the modeling
power up to Turing machines even for the
untimed model causing the undecidability of
important analysis problems [13].
These issues were gotten around by integrating
the notion of queues into Petri net places and
adding the notion of timed transitions to create
Queued Petri Nets (QPN). The main idea in
creation of the QPN [11] was to add timing
aspects to the places of a (coloured) Petri net.
In QPNs time is integrated in a more powerful
way, because we don’t restrict our model to the
specification of a dwelling time for tokens. In
QPNs a whole queue (station) may be
integrated into the definition of a place. Such a
timed place consists of two components, the
queue (station) and a "repository of deposit"
for served tokens (customers). The behaviour
of the net is like follows. Tokens, fired by the
input transitions of such a timed place, are
inserted into the queue due to the specified
scheduling strategy. Tokens in a queue are not
available for the transitions of the QPN. After
completion of service the token (customer) is
placed on the "place of deposit". Tokens on this
"repository" are available for all output
transitions of the timed place. Like in TTPNs,
an enabled timed transition will fire after a
certain delay specified by a random variable.
Enabled immediate transitions will fire due to
relative firing frequencies. We assume that no
token is generated or destroyed in a queue, so
that qualitative analysis can be partially done
by analyzing the underlying colored Petri net.
We believe that these are the most effective
modeling formalisms for the kinds of entities
(Web servers and application servers) that need
to be modeled. We are however interested
mainly in the quantitative results delivered by
solving the underlying Markov Chains.

4. Tomcat and It’s QPN Model
In order to study the performance and
subsequently apply it to physical design, we use
the Apache Tomcat Servlet container as our
reference architecture.

4.1 The Tomcat Concrete Architecture

Conceptually, TOMCAT is split into two parts
- a connector which is tasked with handling
the communication protocol and it’s details and
a backend server which is the actual Servlet

container.

 Figure 1: The Architecture of Tomcat

The server itself is built in a pipelined fashion
making it possible to have multiple requests
flowing through the system even as multiple
threads are used to concurrently process
requests. The concrete architecture of Tomcat
is shown in Figure 1. When a HTTP request
arrives at the Tomcat, these are the set of steps
that occur in sequence:

1. It is handled by the Coyote
protocol adapter.

2. The adapter assigns a thread
from the thread pool.

3. The request is then associated
with HttpRequest and
Response objects also obtained
from a pool. The request
HTML is parsed and the
individual fields in the Request
and Response are filled in.
Parsing may be just-in-time as
well.

4. The request is passed through a
user defined pipeline of filters
where each step of the pipeline
does some (user defined)
processing on the Request
and Response objects.

5. It then gets mapped to a virtual
host which then processes the
request through its own
pipeline of filters.

6. The request is then associated
with the context of the web
application with which it is
bound.

7. The appropriate Java classes
are loaded using the right class
loader. This step may be

skipped if the classes have
already been loaded and have
not been invalidated by a new
deployment.

8. Finally, the request is
associated with an instance of
the servelet and the
service() method of the
servlet is called, which in turn
generally maps the type of
HTTP request to appropriate
method of the servlet.

9. After the servlet finishes
processing, the response object
flows through the same path,
freeing up resources which it
had earlier acquired and
returning objects to respective
pools.

10. Finally, the Response is
converted back to HTTP
response over the socket
stream.

The above description shows that simply
modeling the execution of a servlet as a single
queue is not appropriate and we need to ensure
that the different aspects of request processing
need to be taken into account in the analytical
model for it to be accurate.

4.2 The QPN Model of Tomcat
In this section, we present the QPN model of
Tomcat which works as described in the
previous section.

Figure 2: Modeling Resource Unavailability

The model takes explicit care to create QPN
constructs which can be reused often. For
example, the QPN construct for the blocking on
access to hash table can be seen repeatedly in
the Tomcat QPN.

Figure 3: Modeling a closed loop chain of
responsibility

Besides, blocking on service unavailability,
pooling, pipelining or chain of modules are
patterns which appear repeatedly in the Tomcat
architecture and logical processing flow of the
requests. We have created a library of such
high level modeling patterns that we use to
create larger models for efficiency purposes.

Figure 4: The QPN Model of Servlet Execution in
Tomcat

Figure 4 shows the QPN Model of executing a
servlet in Tomcat. It is essentially a composite
of a host of QPN Patterns the likes of which we
described earlier. Each queued place is
populated with the arrival distributions and

timed transitions are populated with the
distribution of the execution times. These
parameters have been culled out of observation
largely and will decide on the accuracy of our
model. We are now going through a cycle of
verifying the accuracy of these parameters.

Parameters such as sizes of the pools for
threads and other objects are fed directly from
the configuration information from the Tomcat
configuration file. This model is rather
simplistic - it does not for example take into
account that a percentage of requests may need
to use the DB or other resources outside
Tomcat. However the extension is fairly
simple, we need to introduce the notion of
colors within our Petri-Net and come up with
the probability distribution of requests of
different types. We are currently working on
verifying the model before moving on to
extending it.

5. Related Work
Our project spans multiple domains, that of
performance prediction, that of autonomic
computing and that of resource management.
We will briefly describe related work in the
former two areas as they are most closely
related.
Our approach to autonomic computing and self-

configuration has an analytical basis in
modeling application execution as Markov
processes, solving the models to get an idea of
the expected QoS and then optimizing the
model for the needed QoS. Other approaches
include biological and adaptive system models
which take inspiration from the human
autonomous nervous system for modeling
system architectures [5], real-time monitoring
and dynamic adjustment based on localized
optimizations [4] and models inspired from
physical models of gravity for placement of
objects in an application on distributed systems
[1].
Regarding performance prediction, there have
been a multitude of efforts mainly using
Queuing network theory for predicting
performance of web applications but most of
these are for CGI based programs where the
model will be significantly different than that
of Servlets and J2EE. In particular, Falko
Bause et. al, [11] have provided a interesting
and usable tool to model Petri nets
hierarchically which will be extremely useful in
describing large models. Kounev and
Buchmann in [15] have used this tool to do
coarse grained modeling of enterprise
applications - the significant difference
between their work and ours is the level of
detail that we feel is necessary to achieve
realistic results. Our approach is extremely fine
grained.

6. Current Status and Future Work
As outlined we are currently working on the
simplest of the architectural models – one in
which dynamic web content is provided
through servlets which don’t access any
external resources. We have completed the
model and populated it with the various
parameters using observation. We are in the
process of verifying the accuracy of our model
by comparing the predicted results with actual
performance as gathered from an instrumented
version of Tomcat which we have. Obviously
the simplicity of the model is unrealistic and we
intend to take this model through two steps of
refinement:

a. Extend the model to include a data base
which is also modeled at the same level
of detail. Web requests here go to the
DB in some percentage of the cases
and so will be significantly be more

expensive. This will also cause a
refinement of the Tomcat model itself
since it will introduce resources such as
connection pools which don’t exist in
our current QPN Model.

b. Model full blown enterprise
applications using middle tier business
logic technologies in addition to web
front ends and DB back ends. This
might also include workflow and rule
engines as well.

In parallel, we are proceeding along the track of
using the performance prediction for optimized
usage of resources.

7. References

[1] Mario Tokoro, Computational field model:

Toward a new computing model/methodology
for open distributed environment. In proceeding
of ObjectOriented Programming Systems,
Languages and Applications, October 1990

[2] Dashofy E. M.m et al., “Towards Architecture-
based Self-Healing Systems”, ACM WOSS,
Charleston, SC, USA., 21-26, Nov., 2002.

[3] Fox A. and Patterson, D., “When Does Fast
Recovery Trump High Reliability?”,
Proceedings of the EASY 2002, San Jose, CA,
October 2002.

[4] Garlan, D. and Schmerl, B., “Model-based
Adaptation for Self-Healing Systems”, ACM
WOSS, Charleston, SC, USA., 27-32, Nov.,
2002.

[5] George S., et al., “A Biologically Inspired
Programming Model for Self-Healing
Systems”, ACM WOSS, Charleston, SC, USA.,
102-104, Nov., 2002.

[6] Vaidyanathan, K., Selvamuthu, D., and Trivedi,
K. S., Analysis of Inspection-Based Preventive
Maintenance in Operational Software Systems,
Intl. Symposium on Reliable Distributed
Systems, SRDS 2002, Osaka, Japan, October
2002

[7] Probability and Statistics with Reliability,
Queueing and Computer Science Applications,
Kishore S. Trivedi, ISBN 0-471-33341-7, John
Wiley and Sons.

[8] Jakarta Project at Apache Software Foundation,
http://jakarta.apache.org/tomcat/

[9] The J2EE Specification version 1.4,
http://java.sun.com/products/j2ee/1.4/

[10] The Servlet Specification version 2.4,
http://java.sun.com/products/servlet/

[11] F. Bause, P. Buchholz and P. Kemper – QPN
Tool for the Specification and Analysis of
Hierarchically Combined Queueing Petri Nets.
Quantitative Evaluation of Computing and
Communication Systems, Lecture Notes in
Computer Science No. 977, Springer-Verlag,
1995

[12] M.Vernon, J. Zahorjan, E.D Lazowska. A
comparison of performance Petri nets and
queueing network models. Proceedings on the
International Workshop on Modeling
Techniques and Performance Evaluation,
Paris(France), 1987. pp. 191- 202.

[13] G. Rozenberg (ed.). Advances in Petri nets.
Lecture Notes in Computer Science 424, 1989,
pp. 1-29.

[14] D.Mailles and S. Fidda. Queueing systems with
flag mechanisms, Proceedings on the
International Workshop on Modelling
techniques and Performance Evaluation,
Paris(France), 1987. pp. 167-190.

[15] Alejandro Buchmann and Samuel Kounev,
Performance Modeling of Distributed E-
Business Applications using Queuing Petri
Nets, Proceedings of the IEEE International
Symposium on Performance Analysis of
Systems and Software, 2003.

