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Abstract: - A method for minimizing power dissipation in CMOS sequential circuits during test application is 
presented. Initially, the set of test sequences with the transition counts corresponding to each detected fault is 
mapped on a Transition Covering Matrix. On this matrix three reduction techniques are applied in cycles in 
order to reduce the size of the selection problem and thus speed-up the subsequence selection process that 
follows. After the reductions, on the remaining sequences a Branch and Bound method is applied to select 
proper subsequence parts so as to reduce transitions while maintaining the fault coverage. Additionally, by 
exploring the don’t care conditions of certain circuit inputs better subsequences are generated. Substantial 
savings in power dissipation were observed in the experimental results. 
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1  Introduction 

With the proliferation of portable battery 
operated devices and the trend toward low power 
VLSI circuits, the power issues for testing these 
circuits are becoming increasingly important. In [1] 
it is shown that the power consumption during test 
application may be significantly higher than during 
normal circuit operation. The increased power 
consumption can cause problems with heat 
dissipation and this fact must be taken into 
consideration when testing circuits designed for 
low-power. Several approaches [4-9, 11] have been 
proposed for minimizing power (circuit activity) 
during testing. 

In [4] the reduction of the switching activity in 
the circuit is effected by reordering the initial test 
vectors, while exploiting the don’t care input values 
that exist in the test set. For the proper reordering 
TSP (Traveling Salesman Problem) techniques are 
recursively applied. 

In [5] the number of circuit transitions is reduced 
by producing new test patterns, using a PODEM-
based [2] ATPG to assign logic values to 
unassigned primary inputs. 

We must note that the above methods [2, 4, 5] are 
applied to combinational or full scan sequential 
circuits. For sequential circuits, which are our 
objective here, it is more complicated to find don’t 
care (Xs) input values since a change of only one 

value in a test vector may affect the detection of 
faults for vectors applied later. Also TSP techniques 
or PODEM based ATPG methods are more time 
consuming in the sequential circuit case. 

In [6] a low power test method is applied to 
sequential circuits. This method assumes that an 
external reset signal is available and the test set is 
composed of several independent sequences (each 
starting from the reset state). Initially, a large set of 
test sequences is generated and then a set of 
sequences is selected by a Genetic Algorithm so 
that the power consumption is reduced while at the 
same time the fault coverage is retained. 

In [7] the test vectors within a test sequence are 
modified by inverting the values of the primary 
inputs one by one, while trying to preserve the 
original fault coverage. Although this method may 
be also applied to sets of test sequences it is more 
beneficial, as was experimentally asserted by us, to 
first find the don’t care input values and then 
change them. 

In [8] the essential sequences within the test set 
are exploited. The initial test set is enriched by 
addition of new GA generated test sequences by 
only targeting multiple essential faults. Afterwards 
a Branch and Bound method is applied in order to 
select a set of subsequences with reduced number of 
transitions.  

In this paper the power minimization problem, 
during testing, for CMOS sequential circuits is 



modeled as a set covering problem [14]. Given a set 
of independent test sequences (i.e. sequences that 
start from the unknown state or sequences that start 
from the reset state) a set of subsequences is 
generated and from these subsequences are selected 
those that cover all the initial detected faults with 
minimal power consumption (minimal number of 
circuit transitions). The problem of “subsequence 
selection vs. circuit transitions” is, initially, 
formulated with the help of a Transition Covering 
Matrix (section 3) on which efficient reduction 
rules, devised for other purpose [10], are applied to 
simplify the matrix. Then with the help of a Branch 
and Bound algorithm a set of subsequences is 
selected (section 4) from the reduced matrix (from 
the smaller set of candidate subsequences). A final 
attempt to further reduce the transitions is made by 
identifying bits in the sequences that may be 
modified (section 4). 

Our proposed method though it uses the 
formulation of the Transition Covering Matrix as in 
[8] it is different from [8] in that, here, (a) are 
applied stronger reduction rules that lead to a more 
compact matrix and (b) instead of the time 
consuming GA of [6, 8] a more dedicated method is 
used for generating better sequences (modification 
of selected bits).  

The paper is organized as follows: In sections 2 
and 3 the power model is explained and the main 
lines of our method are analyzed. In section 4 the 
proposed methodology is presented. In section 5 
experimental results are given, supporting the 
potential of the proposed method. 
 
 
2 Power Dissipation Model 

It is assumed here that the sequential circuit is 
implemented in CMOS technology and the zero 
delay fault model [11] is considered. The power 
dissipation in CMOS circuits can be divided into 
static, short circuit, leakage and dynamic [12]. 
Static power dissipation is negligible for correctly 
designed circuits. The power consumed by leakage 
currents and short-circuits (during switching) 
contributes up to 20% to the total power dissipation. 
The remaining 80% is attributed to the dynamic 
power dissipation during switching, caused by the 
transient currents required to charge or discharge 
the high load capacitances of the CMOS [12]. 

In CMOS circuits the average dynamic power 
consumed by a gate g is: 

switchgLddg fswECVP )(5.0 2=   (1) 
where Vdd is the supply voltage, CL is the physical 
capacitance at the output of the gate, Eg(sw) is the 

average number of output transitions per 1/fswitch 
time i.e. the switching activity factor [13] of the 
output of the gate g, and fswitch is the clock 
frequency. 

For a test pattern of length N, the power 
consumption during test application is [6, 13]: 
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gate g at time t. The switching activity factor for our 
model is: 
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∑∑
=

=
N

t g

t
g swEQ

1

)(  

i.e. the total number of transitions, this term 
becomes our quantitative measure of power 
dissipation. 
 
 
3 Proposed Methodology 

Let the test set T=[S1, S2,…, Sn] consisting of the 
n test sequences detecting the m circuit faults from 
the set F=[f1, f2,…,fm]. The problem of test 
sequence selection for low power dissipation is to 
find from T a set of subsequences TC=[SC1, …, SCn] 
that will cover the set F with the minimum 
collective number of transitions. 

We define, here, the transition count Q(v) of 
vector v within sequence S as a (monotonically 
increasing) function counting the transitions 
(switching changes in the circuit) from the first 
vector of S up to v. For example in Fig. 1, vectors 
v1 and v2 in sequence S1 have Q1(v1)=4 and 
Q1(v2)=13 so Q1(v2)>Q1(v1). 

Each sequence may be analyzed into several 
subsequences, where every one has its own number 
of transitions e.g. S3 (Fig. 1) consists of 4 
subsequences namely: S31(v1, v2) with Q3(v2)=12, 
S32(v1,..,v3) with Q3(v3)=18, S33(v1,..v5) with 
Q3(v5)=33, and S34(v1,..v6) with Q3(v6)=41. 
Obviously, only subsequences covering at least one 
fault at their tails are worth considering. 

With the analysis into subsequences the selection 
problem is formulated here as a set covering [14] 
problem. However, the complexity of the problem 
is high (NP-complete) and it becomes desirable to 
try, first, to minimize the size of the initial problem. 
As explained in section 3.1 the proposed 
formulation makes the present problem formally 



similar to other problems [10] for which reduction 
techniques exist. Following the simplification, a 
Branch and Bound algorithm is applied to reduce 
the transition count. Finally, inputs that don’t affect 
fault coverage are identified and a subset of them is 
modified in order to save transitions. The complete 
algorithm is presented in section 4. 
 
 
3.1 Transition Matrix Formulation 

Our method will be illustrated with the following 
example. 

Let the test set T=[S1, S2, S3] of Fig. 1 where 
sequence S1 covers the faults f1, f2, f4, f6, f7,  S2 the 
faults f2, f5, f6, f7, and S3 the faults f1, f2, f3, f4, f5. 

Fig.1. A set of test sequences 
 

For the test set of Fig.1 we build the Transition 
Covering Matrix of Fig.2a, whose element 
qij=Qi(vk) where vector vk detects fault fj (i.e. qij is 
the respective number of transitions until fj is 
detected). If Si does not detect fj then it is set qij=q∞ 
= a very large integer. 

 
 S1 S2 S3  S1 S2 S3 

f1 40 - 41  40  23 
f2 61 56 12  - - - 
f3 - - 18  - - - 
f4 21 - 18  - - - 
f5 - 5 33   5 15 
f6 13 17 -  - - - 
f7 30 17 -  30 17 - 

   (a) Initial Matrix            (b) Intermediate Matrix  
Fig. 2. Transition Covering Matrix 

 
After the formulation of the Transition Covering 

Matrix, as in Fig 2a, the problem of selecting a 
subset of subsequences that cover all faults with the 
minimum number of transitions is formally similar 
to the problem presented in [10], where the 
detection costs of [10] are replaced with the 
transition counts in the present case. In [10] a set of 
efficient Reduction Rules were proposed to reduce 
the size of the Matrix so that the remaining, smaller, 
problem (matrix) becomes easier to be solved by a 
Branch and Bound algorithm. Here, similar 
reduction rules, modified and extended for the 

present case, are applied to the Transition Covering 
Matrix as the first phase in our minimization 
problem. The important characteristic of these rules 
is that their reductions preserve the optimality of the 
solution. 

 
Rule 1 (Essentiality) 

A column j of the Transition Covering Matrix is 
an essential column if it is the only column that 
covers a row i (row i is called essential). 

For every column j that is identified as essential: 
• Set Zj= max(qij , row i is essential). 
• Remove every row i with qij < Zj. 
• Set qij=qij-Zj when qij>Zj 

In this procedure given the initial test set T and 
the covered fault set F΄, the essential faults (if any) 
and their respective minimum-transition detection 
subsequences are identified. 

The cost of applying Rule 1 is linear on the 
number of rows and gradually becomes smaller as 
rows are removed. 

 
Rule 2 (Row elimination) 

Given rows i and p, row p may be removed, 
without affecting the optimality of the solution, if 
and only if: 

• For all columns j it is:  qij ≥ qpj. 
• For at least one column k it is: qik < q∞. 

Proof: We have two cases: 
a) The Set of columns J={j, where q∞ > qij ≥ qpj}: 

i.e. only the columns covering row i. Selection of a 
column j in order to cover fi will result in covering 
of fault fp with no additional increase of transition 
counts, because qij ≥ qpj. 

b) The Set K={k, where q∞ = qik ≥ qpk}: i.e. the 
columns not covering row i. Since column k, does 
not cover row i, the only choice to cover row i is to 
select a column from subset J (case a). Columns 
from J cover also fp (row p), so selecting a column 
from K to cover row p will not lead to a minimum 
transition count. 

The cost of applying Rule 2 on a Transition 
Covering Matrix with dimensions m.n is O(m2n) 
and becomes smaller as the matrix is reduced. 

 
Rule 3 (Set column dominance) 

Let column j is covering the set of faults Fj={f0, 
f1, f2,...,fn}, having transition counts: 

0,j 1,j 2,j n,jq q q ...q≤ ≤ ≤ . 
Let the set of columns C={k0, k1,..., kq} (j∉C) is 

covering at least Fj and let ci be the minimum 
transition count for fault fi within C. 

Then we say that set C dominates j if and only if: 
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In this rule, if column set C dominates column j 
then column j may be removed without affecting the 
optimality of the solution. 

Proof: From the above relations, we have that 
every fault and every subset of faults covered by 
column j may be also covered by a proper 
combination of subsequences from C with an equal 
or smaller collective transition count. Therefore, by 
removing column j solution optimality is retained. 

Rule 3 is applied as follows (cost O(mn)): 
For j=1 to n 

1. Let C consist of the n-1 columns (j∉C): 
k1, k2,…,kn-1 

2. The n-1 columns are replaced with a 
temporary column c with elements ci 
such that for every fault i covered by the 
column set C it is ci = min {qi,1, 
qi,2,…,qi,n-1}. 

3. Column j is checked against c for 
possible dominance. 

 
Rules 1, 2 and 3 are applied iteratively until a 

cyclic core is reached (no further reductions are 
possible). The remaining matrix is the Reduced 
Transition Covering Matrix. The total cost of 
applying Rules 1, 2 and 3 is O(m2n). 

As an example of applying the rules, from fig 2a 
we see that fault f3 is covered only by sequence S3 
and therefore it is an essential fault. We retain 
subsequence S3(v1,…,v3) with the corresponding 
transitions q33=18 (Fig. 2b). Next we update the 
Transition Covering Matrix by setting every 
element with qi3>q33 to q13=q13-q33 and removing all 
rows with q13<q33 (Fig 2b). By applying Rule 2 
(row elimination) fault f6 is removed due to fault f7. 
Next, by applying Rule 3 (set column dominance) 
column S1 is removed due to the set of columns S2, 
S3. Now, faults f1, f7 become essential and we retain 
the respective subsequences S2(v1,…,v3) and 
S3(…,v6). Finally, the Reduced Transition Covering 
Matrix contains S2(v1,…,v3) and S3(v1,…,v6). After 
restoring the values subtracted due to the removal of 
essential faults the final transition count is 
Q=17+(23+18)=58 which, in this case, is the 
minimum that can be obtained from the matrix 
alone (no Branch and Bound algorithm is needed 
for further selection because S2(v1,…,v3) and 
S3(…,v6) are essential so both must be included in 
the final test set). 
 
 

4  The LpTestSeq algorithm 
The goal of our algorithm is to retain fault 

coverage while minimizing the transition count 
during testing. The proposed algorithm LpTestSeq 
consists of the following four procedures: 

1) Formulation of the Transition Covering Matrix 
(section 3.1) from the given test sequences by fault 
simulating each sequence to count the transitions. 

2) Reduction of the initial Transition Covering 
Matrix by applying the Reduction Rules of section 
3.1, maintaining the solution optimality of the 
smaller problem. This procedure produces the 
Reduced Transition Covering Matrix. If the 
Reduced Transition Covering Matrix is empty then 
the next procedure, i.e. procedure 3), is skipped. 

3) A Branch and Bound algorithm [18] is applied 
on the reduced Transition Covering Matrix. This 
Branch and Bound algorithm tries to select a subset 
of subsequences, which cover all faults with the 
smallest possible number of transitions. Since the 
size of the matrix is now smaller (reduced) the cost 
of the Branch and Bound algorithm is reasonable. 
However, a flag is raised whenever the Branch and 
Bound method fails to produce a solution within a 
time limit of 1 min. 

4) Modification of the selected subsequences in 
order to generate better subsequences. In this 
procedure inputs that don’t affect fault coverage are 
identified [15] and a subset of them is modified in 
an attempt to further minimize transition count, as is 
explained in subsection 4.1. 

 
 

4.1 Modification of subsequences 
A bit in a selected subsequence is randomly 

selected and inverted and then the modified 
subsequence is fault simulated to establish if (a) 
there are no faults sensitive to this bit position and 
(b) the transition count becomes smaller. 

Because the simulation cost, in our case, may be 
considerable we apply the method from [15] 
according to which the set of subsequences is 
classified into “easy” and “difficult” ones, where a 
subsequence is considered as “difficult” if it covers 
faults covered only by a very limited number of 
subsequences. In our case the essential 
subsequences are the most “difficult” ones. 

To further speed up the process, the condition 
that a modified test subsequence should cover the 
same faults is relaxed here. The resulting (modified) 
test subsequence is acceptable even when the 
number of faults a sequence detects is decreased, as 
long as the deleted faults are covered by some other 
test sequence in the solution (i.e. the total fault 



coverage is maintained). 
The actual process, as applied here, proceeds as 

follows: First are processed the subsequences that 
cover essential faults, then the remaining 
subsequences in order of decreasing “difficulty”. In 
case of a tie, the subsequences are processed in 
decreasing number of transitions. A modified 
subsequence, after a user-defined limit on the 
performed number of fault simulations becomes 
accepted if: a) the total fault coverage is maintained, 
b) it has a reduced number of transitions with 
respect to the original (unmodified) subsequence. 
The accepted (modified) subsequence is added to 
the solution together with the covered faults which 
are crossed out from the remaining fault list. In this 
way, the remaining subsequences need to cover 
fewer faults and the fault simulation cost, which is 
analogous to the size of the fault list, is reduced. 
 
 
5  Experimental Results 

Our algorithm LpTestSeq has been implemented 
in C. The efficiency of the algorithm was measured 
by running the ISCAS'89 benchmark circuits [16] 
and several synthesized benchmarks circuits from 
Illinois [17] on a Pentium PC with 256 Mb. 

In Table 1 are presented the initial test sets (#seq. 
is the number of sequences, #vectors is the total 
amount of vectors and #faults are the detected 
faults) that were obtained by the method of [3]. 

Under columns #transit are presented for every test 
set the respective number of total transitions. 

As a first experiment we computed the size of the 
Reduced Transition Covering Matrix for the method 
of [8] (column ‘Reduced Transition Matrix’ under 
LpCompSeq) by applying the essentiality 
reductions to the initial test sets, without 
considering the new GA generated test sequences. 
The corresponding sizes of the Reduced Transition 
Covering Matrix when the proposed reduction rules 
(section 3.1) are applied to the initial test sets are 
presented in column ‘Reduced Transition Matrix’ 
under LpTestSeq. It is noted that both methods 
(LpCompSeq and LpTestSeq) start from the same 
matrices with the same essential faults (column 
#EssS denotes the number of essential sequences 
within the test set). We see that the application of 
the proposed, here, reductions results in very small 
Transition Matrices and thus speeds-up the Branch 
and Bound Subsequence selection step (in most 
examples the reduced matrix becomes 0x0 
eliminating the need for the Brach and Bound step). 

The final results for LpTestSeq and LpCompSeq 
[8] are presented, respectively, under columns 
‘#transit’. Both methods achieve significant 
reductions in the number of transitions, when 
compared to the initial test set, but LpTestSeq is 
slightly better (average 59.5%) compared to 
LpCompSeq (average 55.1%). 
 
 

Table 1. Problem size and results for LpTestSeq 

Reduced Transit Reduced Transit
Covering Matrix Covering Matrix

circuit #seqs #vectors #faults #transit #EssS #flts x #seqs #transit #flts x #seqs #transit
s298 8   402   265  9 674 3 3 x 4  2 733 0 x 0  2 325
s344 10   183   329  7 415 8 2 x 2  3 166 0 x 0  2 836
s349 9   137   335  5 419 7 2 x 3  2 253 0 x 0  2 021
s382 3   844   357  22 764 3 0 x 0  12 141 0 x 0  9 845
s386 7   606   314  20 952 6 0 x 0  18 907 0 x 0  15 770
s641 17   468   404  34 607 13 1 x 3  17 086 0 x 0  14 476
s713 20   418   476  33 619 14 2 x 4  10 806 0 x 0  9 874
s1196 51  1 866  1 223  243 048 40 5 x 8  135 992 0 x 0  112 260
s1238 87  1 501  1 233  171 025 57 22 x 29  69 104 0 x 0  64 040
s1423 29  1 519  1 314  178 564 24 2 x 2  117 508 0 x 0  100 343
s1488 35  1 258  1 439  186 140 23 5 x 6  103 109 0 x 0  97 223
s1494 23  1 055  1 447  137 484 17 3 x 4  92 528 0 x 0  82 285
s5378 30  1 008  3 091  441 676 20 9 x 10  259 003 3 x 3  212 403
s6669 35   621  6 670  501 828 15 15 x 15  184 834 9 x 10  170 360
s4863 38  1 643  4 615 1 442 768 23 20 x 19  510 550 2 x 3  510 550
s3384 25   813  3 154  451 249 20 2 x 5  232 244 0 x 0  200 313
s3330 60  1 606  2 094  552 721 40 1 x 3  264 720 0 x 0  224 510
s3271 54  2 152  3 227 1 334 128 21 30 x 33  554 375 5 x 7  508 579
am2910 59  1 339  2 101  153 736 46 4 x 6  93 863 3 x 4  80 445
div16 37  1 155  1 702  165 288 11 22 x 21  48 310 7 x 7  45 120
mult16 22   434  1 465  32 697 11 7 x 9  20 036 0 x 0  17 360
pcont2 14   245  6 815  197 231 10 21 x 7  82 698 6 x 5  76 480

LpCompSeq [ 8] LpTestSeq
Initial Test Set

 



 
6  Conclusion 

The problem of reducing power dissipation 
during the testing of CMOS sequential circuits is 
formulated as a set-covering problem. The test 
sequences with the corresponding transition counts 
(switching changes in the circuit), which are 
proportional to the induced power dissipation, are 
set into the form of a Transition Covering Matrix. 
This matrix formulation is shown to make the 
problem formally similar to other problems for 
which techniques for reducing the size of the initial 
problem (matrix) have been devised, while these 
techniques preserve the optimality of the solution. 

After the reduction of the size of the initial 
problem, with a cyclic application of the proposed 
Reduction Rules, a Branch and Bound algorithm is 
applied to solve the smaller problem. A further 
minimization of the circuit transitions is obtained by 
identifying don’t care conditions on certain inputs 
of the circuit and used to generate better sequences. 

Experimental results support the usefulness of the 
proposed method. 
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