
Design and Verification of an Agent-Based System

J. SEBESTYÉNOVÁ
Institute of Informatics

Slovak Academy of Sciences
Bratislava, Dúbravská cesta 9

SLOVAKIA

Abstract: - The paper describes design and verification problems of agent-based systems. An agent-based system for
support decision making for physicians is proposed. Knowledge base is represented by a propositional logic formulas
and we use deductive reasoning. Model of the system is given in Statecharts visual language. Required properties of the
system can be given as formulas of the branching-time temporal logic. Statecharts model checking algorithm is used to
verify safety and liveness property.

Key-Words: -Agent-based systems, Knowledge-base reasoning, Statecharts, model checking, temporal logic

1 Introduction
An early deliverable in traditional systems design is an
architecture of the application, showing which entities
interact with which other entities and specifying the
interfaces among them. For example, installation of a
conventional system for electronic data interchange
among trading partners requires that one know the
providers and consumers of the various goods and
services being traded, so that orders can be sent to the
appropriate parties. Sometimes, determining this
information in advance is extremely difficult or even
impossible. Consider an electronic system to support
open trading, where orders are made available to any
qualified bidder. Requiring the system designer to
specify the sender and recipient of each transaction
would quickly lead to “paralysis by analysis” [5]. From a
traditional point of view, this application is ill-structured.
That is, not all of the necessary structural information is
available when the system is designed.
 Such an application is a natural one for agents. The
fundamental distinction in an agent’s view of the world
is between “self” and “environment.” “Self” is known
and predictable, while “environment” can change on its
own within limits. Other agents are part of this dynamic,
changing environment. Depending on the complexity of
individual agents, they may or may not model one
another explicitly. Instead of specifying the individual
entities to be interconnected and their interfaces with one
another, an agent-based design need identify only the
classes of entities in the system and their impact on the
environment. Because each agent is designed to interact
with the environment rather than with specific other
agents, it can interact appropriately with any other agent
that modifies the environment within the range of
variation with which other agents are prepared to deal.

Naturally occurring multi-agent systems often use some
form of currency to achieve global selforganization.
 An agent is more than an object; it is a pro-active
object, a bounded process. It does not need to be invoked
externally, but autonomously monitors its own
environment and takes action as it deems appropriate.
This characteristic of agents makes them particularly
suited for applications that can be decomposed into
stand-alone processes, each capable of doing useful
things without continuous direction by some other
process.
 An agent is a software program or a particular type of
software module that co-operates on behalf of other
entities and has some control over their actions and
internal state. They perform their actions with some
degree of pro-activity and/or reactivity. To compromise
group intelligence one should strive for agents with
knowledge of other agents so as to co-ordinate
themselves with other agents.
 We can distinguish many types of agents [6]:
- An Agent as a Single Reactive Process: toward

isolated intelligent agents, rather than multi-agent
systems.

- Agents as Capitalists: Dissipative mechanisms such
as currency flows in markets are a powerful way to
achieve coordination in a decentralized system.

- Agents as Travelers: mobile agents
- Agents as Members of a Community: multi-agent

system
- Agents as Intelligent Processes:

The knowledge management layer provides general-
purpose representation and inference mechanisms
that agents can use to model their knowledge and
beliefs about the problem domain, the environment
(including other agents), and themselves. It supports
standard knowledge-representation methods

including nonmonotonic reasoning, deductive
reasoning, inconsistency detection, automated
concept classification, subsumption-based theorem
proving, and truth maintenance.
The ontology layer uses the knowledge management
layer to construct the specific models that an agent
maintains of its domain, its environment, and itself.
Ontology is a description (specification) of a domain
and of the objects that exist in that domain.
The cooperation and conflict layer supports shared
knowledge between agents for managing an agent’ s
beliefs when it receives contradictory information
from other agents.
The coordination and communication layer provides
inter-agent communication.

 A rational agent acts in its own best interest. Several
important categories of possible mental states that may
characterize an agent:
- information attitudes: knowledge and belief
- pro-active attitudes: goals, desires, intentions
- normative attitudes: obligations, permissions,

authorization.
 Agent-based applications provide a new way of
viewing problems and designing solutions. Agent-based
architectures are robust and dynamic; they can quickly
react to unexpected events and adapt to changing
conditions. They are inherently distributed and scalable:
more agents and more computers can be added as
necessary to increase the performance or the capacity of
a system. Compared with centralized systems, agent-
based architectures are easy to maintain, to modify and
to extend as the requirements from the system change
and grow with time.
 It is possible to distinguish between two main classes
of multi-agent systems [9]:
- Distributed problem solving systems in which the

component agents are explicitly designed to
cooperatively achieve a given goal

- Open systems in which agents are not co-designed to
share a common goal; the composition of the system
can dynamically vary as agent enter and leave the
system.

 An agent system development process consists of the
following phases: definition of requirements, analysis,
design, implementation, test and evaluation. Analysis
means that the requirements have to be examined before
working toward a conceptual model. The analysis model
is made up of entities and collaborations of entities. It
represents the structure of a proposed system at a certain
level of abstraction. The entities of the analysis will be
used during the design phase and within the software
architecture. The implementation of the entities means
writing and compiling the code together that brings us to
the last phase, the evaluation and the deployment of the
software development tools. Effectuating of the test and

evaluation phases are the last steps for the realisation of
the system.
 One of the most important aspects for the realisation
of a multi-agent system is to specify the capabilities of
the interoperable agents and to define the structure of the
agent system. The agents are acting in a problem
domain, where they try to accomplish the overall goal(s)
of the system. In order to share their knowledge and to
obtain cooperation the agents communicate with each
other. For this purpose, the agents use protocols and one
can model a dialogue structure between agents.
 The purpose of the interactions is to obtain a joint
decision between two or more agents. For these joint
decisions also negotiation mechanisms, market
mechanisms and voting schemes are often necessarily.
Some of these decisions are hard to achieve, because it
requires omniscience, a lot of knowledge and for several
voting or market mechanisms there doesn’ t exist an
optimal solution. Another complexity is that agents can
change their roles.
 Two important levels in design phase[5] are:
- The Agent Community(Social Level):

- Protocols (dynamics of communication and
co-ordination

- Organization (roles of services of each agent
with respect to the others)

- The individual agent (Knowledge level):
- Local planning (capabilities and plans)
- Local behaviour (reactivity, routine tasks)
- Local knowledge (the agent’s beliefs).

 Interactions between simple, reactive agents can lead
to a global intelligent behaviour of the multi-agent
system. The behaviour of the multi-agent system as a
whole is said to emerge because it exhibits an
intelligence that is not in an obvious way related to the
behaviour of the individual agents.
 In some systems an agent’s code can change during
the agent’s lifetime. “Code” means a data structure that
is executed through time. A simple linear sequence of
instructions does not count; there must be some
branching or decision-making. The modification may
either be imposed on the agent from outside or initiated
internally.
 Identifying agents, a system developer needs to take
into account following problems:
- Thing vs. function: in naturally occurring systems,

agents are divided on the basis of distinct entities
rather than functional abstractions (functional
decomposition)

- Small in size: small specialized agents and using of
appropriate aggregation technique

- Decentralized: centralization often appears in
artificial systems (central agent - bottleneck), natural
systems achieve distribution

- Diversity and generalization (balance)

- Local communication is used instead of broadcast
- Information is shared in space and time – learning
- Decomposition of individual agents into behaviors.
 Formal verification using mathematical methods
examines the state space of the given design and verifies
whether it satisfies the required properties. Computer-
aided verification is a general approach with applications
to hardware verification, software engineering, multi-
agent control systems. It is appropriate for control-
intensive applications with interesting interaction among
components. Formal analysis has to answer to following
questions about system’s behavior:
- Are the descriptions logically consistent and

complete?
- What kind of behavior emerges from realistic

numbers of agents and interchanges?
 Formal agent theories are agent specifications, not
only in the sense of providing descriptions and
constraints on agent behavior, but also in the sense that
one understands the term ‘specification’ from
mainstream software engineering, namely that they
provide a base from which to design, implement and
verify agent systems. Agents are a natural next step for
software engineering; they represent a fundamentally
new way of considering complex distributed systems,
containing societies of cooperating autonomous
components. Formalisms and notations can be used to
specify the desirable behavior of agents and multi-agent
systems. [7] use combinations of modal temporal logics
to model checking agent systems. [1] describes symbolic
model checking of multi-agent systems.

2 Design of a decision-support system
As an example, we shall use an agent-based support
system for physicians to conflict-free prescription of
medicines, if the patient suffers from more than one
disease.
 Stages in designing the multi-agent system consist of
conceptual analysis (components) and design of the
system architecture:
- What system-level behavior do we want

(specification - what a system as a whole will do)?
a) An apropriate medicine or medicines will be

prescribed for the patient to cure his disease or
diseases.

b) Any physician will prescribe no medicine
contraindicated in any disease of the patient to
him.

- What kind of agents might we need to get it?
a) An agent supporting the physician’s reasoning.
b) Such an agent will support all of the physicians

curing the patient.
- How should they behave? The agents will consult

and support physicians decision:

a) Request information from the patient and receive
answers.

b) Having collected all needed facts, the agent
supports the physician by knowledge-base
reasoning to prescript a medicine. If the patient
already has prescribed any medicine for cure
another disease, it is important to check whether
the new medicine is not contraindicated to the
other disease.

c) In case, the medicine previously prescribed by
another physician-specialist is contraindicated to
the new diagnosed disease, the agents supporting
these two physicians start to consult. The agent
of the first physician informs the agent of the
second physician about new facts and requests
him to change the prescribed medicine. The
agent of the second physician starts a new
reasoning process leading to proposal of a new
medicine. The agent of the first physician
accepts (or rejects) the proposal.

- How do our proposed agents interact with one
another in an organization?
a) Send a message to another physician containing

new facts and request to change the prescription.
b) Receiving a message: search a database for

another medicine not contraindicated with the
new disease (new fact).

- What low-level behaviors are needed?
a) Collecting facts
b) Knowledge-base reasoning.

3 Statecharts model
Internal behavior of an agent and changes of its mental
states can be specified using Statecharts. A population of
instances of an agent can be modeled as parameterized
state in Statecharts.
 Statecharts is a graphical formalism [3] to describe
hierarchically structured state machines. The formalism
extends finite state machines with concepts of hierarchy,
concurrency and communication. Statecharts formalism
is used for description of the system's behavior.
 Semantically, a Statechart may respond to an event
entering the system by engaging in an enabled transition.
This may generate new events which, by causality, may
in turn trigger additional transitions while disabling
others. The synchrony hypothesis ensures that one
execution step, a so called macro step, is complete as
soon as this chain reaction comes to a halt. The
Statecharts principle of global consistency prohibits an
event to be present and absent in the same macrostep.
 Drawing of a statechart begins with a root state
(rounded rectangle). If the root state has to be exclusive-
OR decomposed, drawing continues with its substates
and transitions. If it has to be an AND decomposition,

Fig. 1 Statecharts model of the agent-based support system

the state is cut with dashed lines into several parallel
parts (orthogonal components).
 The behavioral description of complex reactive
systems consists of some sequential and parallel
processes. The process starts if a proper starting event
occurs. If there exists any guarding condition, the
process can start provided the condition is not false. If
any transition of any process is firable, it is fired. In the
substates of an AND state, transitions can be taken
simultaneously. Within a XOR state, only one transition
can be followed. The complete set of transitions is
considered one step.
 For all of the transitions, a source state from which
the transition is going out, a target state into which the
transition is going, and a label of the form
event [condition] / action are given.
 An action takes zero time (it is an event). In
behavioral specification of reactive systems, the
possibility of describing a non-zero time taking activity
is needed, too. An action can be specified along a
transition (as a part of a transition's label) and on a state's
entrance and exit. An activity will be carried out
continuously throughout the system is in the state. To
specify the activities, a programming language or
another formalism can be used.
 Statecharts model of the agent-based support system
is given in Fig. 1. The self-explanatory events and states
names are mostly used. The transitions labels in the form
event[condition]/action are:
L1: true / request_medicine
L2: write
L3: query / answer
L4: request_medicine / query ∧ R := 0
L5: answer [¬ need_more_info] / start(reasoning)

L6: end(reasoning) [¬ contraindication ∧ R == 0] / write
L7: timeout
L8: end(reasoning) [contraindication] /
 req_consultation(send_to_j)
L9: end(reasoning) [¬ contraindication ∧ R==1] /
 proposal(send_to_k)
L10: to_reasoning / start(reasoning)
L11: answer [need_more_info] / query
L12: req_consultation(from_k) / to_reasoning ∧ R := 1
L13: proposal(from_j) / accept_proposal(send_to_j)
L14: accept_proposal / write
 Reasoning activity will be carried out continuously
throughout the system is in the state Reasoning.

4 Knowledge-base reasoning
Knowledge-base (KB) systems provide an approach to
knowledge representation and manipulation. Epistemic
logic is a logic of knowledge. It is sufficient to enrich the
language of classical propositional logic by unary
operators Ki where Ki ϕ stands for „agent i knows ϕ“ .
KB system consists of knowledge base (rules and facts)
and inference engine. KB systems may be of different
types, e.g., rule-based systems (if-then production
systems), model based reasoning, case-based reasoning,
cost-based reasoning, neural nets, fuzzy logic, decision
trees, etc.
 For our example, we shall use knowledge base
represented by a propositional logic formulas and we
shall use deductive reasoning. Knowledge can be
divided to common knowledge what all agents
(everybody in a community) know, and local knowledge
of an agent. Table 1 contains rules of common

Fig. 2 Communication and co-operation between the agents

knowledge specifying which physician is specialist for
a disease, and contraindications for medicines.

Table 1 Rules of common knowledge

Disease1 → Phisician1 Medicine1 → ¬ Med3
Disease2 → Phisician2 Medicine2 → ¬ Disease3
Disease3 → Phisician2 Medicine1 == drops
 Medicine2 == pills

 Special knowledge about which medicine can be used
to cure a given disease is local to a physician-specialist
(and only the specialist is enabled to prescribe it).
Constraints on usage of the medicines are given here,
too. The local knowledge is given in table 2.

Table 2 Local knowledge of two specialists

Physician1: Physician2:
Disease1 → Medicine1 Disease2 → Medicine3
Disease1 → Medicine2 Patient.age<5 → ¬ Med3

 For reasoning, we also need to know some facts.
Some of them are stored in knowledge base and others
will be collected by the physician from the patient during
an examination. For the example, we shall work with
facts given in table 3.

Table 3 The facts used in the example

Patient.age == 12
Patient.prefers == drops
Patient.Diseases == Disease1 ∧ Disease2

 The inference sequence of the example is given in
table 4.

Table 4 The inference sequence

Physician.expertise == Physician1
Patient.Diseases == Disease1
Patient.age == 12
Patient.prefers == drops
Patient.Medicines == (Med1, Disease1, Physician1)
Physician.expertise == Physician2
Patient.Diseases == Disease1 ∧ Disease2
Patient.Medicines == (Med3, Disease2, Physician2)
Patient.Medicines == (Med2, Disease1, Physician1)

 Co-operation between agents, information flow and
communication are given in Fig. 2.
 Reasoning can be described as an inferential process
moving from a problem to an appropriate response. Full
statement of the problem, whether theoretical or
practical, will involve all the relevant information and
this provides the premises from which a conclusion can
be inferred representing an answer to the problem. On
this view, an agent’s drawing that conclusion is an
appropriate response to its asking a question.

5 Verification
The formal approach uses the modeling language to
system description, the specification language to
description of the required correct system behavior, and
it provides an analysis technique. The model has to
describe not only the designed system but also the
environment in which it will work. The system can be
modeled at different abstraction levels. For the purposes
of modeling, specification, verification, and synthesis of
discrete event systems, Petri nets, temporal logics,
different algebras of concurrent processes, etc., have
been developed.

 Formal logic provides a basis for showing that a
program will behave as the user intends. A formalism for
a multi-agent system must also deal with _ the multiplicity
of agents; _ group properties of agent systems, such as
common knowledge and joint intention; _ interaction
among agents, such as communication and cooperation.
 Having specified a solution for a problem, and
implemented a system that should do the job, one needs
to show that the implemented specification is correct, or
if the implemented system satisfies certain properties.
Verification often involves temporal properties [4].
Examples of general properties of programs are safety
and liveness. We can divide approaches to the
verification of systems into two classes:
- Axiomatic verification reduces to a proof problem.
- Semantic verification: given a formula ϕ of language

L, and a model M for L, model checking [2] problem
is to determine whether or not ϕ is valid in M, i.e.,
whether or not M ╞L ϕ.

 One of the problems with using model checking to
verify properties involving knowledge is that existing
model checkers are designed to verify temporal, rather
than epistemic properties. Combined modal and
temporal logics form the basis for agent-based formal
methods. The logics have:
- an informational component to represent an agent’ s

beliefs or knowledge
- a dynamic component allowing the representation of

dynamic activity (temporal logics)
- a motivational component representing the agent’ s

desires, intentions or goals.
 For the Statecharts model-checking algorithm
described in [8], the required properties of the system
can be specified as propositional, branching-time
temporal logic formulas consisting of: propositions, that
can be of type in(state) condition, event, assertion about
variable’s value, e.g., statement of a program: y == 1;
Boolean connectives: ¬(p), (p ∨ q), (p ∧ q), (p → q),
where p and q are subformulas; temporal operators (use
Clarke-Emerson [2] notation): G globally, F finitely, X
next time, U until, A for all paths, E for some path.
 The first property that will be verified, for example, is
safety: AG ¬ (medicine1 ∧ medicine3). If the inference
rules system is sound and complete, this requirement is
fulfilled.
 The second verified property will be a liveness, i.e., a
system’s response to a stimulus:
A (req_consultation) → F (proposal).
For this type of required property (implication), the first
step of the algorithm is to find states where the source
part of the implication holds. These states will be
considered initial states. The second step of the
algorithm is to find all traces from the initial state to the
state in which the second part of the implication holds.

6 Conclusion
An agent-based system for support decision making for
physicians is designed. Model of the system is given in
Statecharts visual language. Knowledge base is
represented by a propositional logic formulas and
deductive reasoning is used. Problems of verification of
agent-based systems are discussed. Safety and liveness
properties of the system given as formulas of the
branching-time temporal logic are verified using
Statecharts model checking algorithm.

The author is grateful to the Slovak Grant Agency for
Science (grant No. 2/4148/04) for partial support of this
work.

References:
[1] Benerecetti M., Cimatti A., Symbolic Model

Checking for Multi-Agent Systems, Istituto Trentino
di Cultura, 2001.

[2] Clarke E. M., E. A. Emerson, A. P. Sistla, Automatic
verification of finite-state concurrent systems using
temporal logic specifications, In: ACM Trans
Program Lang Syst, Vol 8, No 2, 1986, pp. 244-263.

[3] Harel D., Statecharts: a visual formalism for
complex systems, In: Science of Computer
Programming, Vol 8, No 3, 1987, pp. 231-274.

[4] Pnueli A., The temporal logic of programs, In:
Proceedings of 19th IEEE Symposium on
Foundations of Computer Science, 1977, pp. 46-57.

[5] Parunak H. V. D., A. D. Baker, and S. J. Clark, The
AARIA Agent Architecture: An Example of
Requirements-Driven Agent-Based System Design.
In: Proceedings of First International Conference on
Autonomous Agents (ICAA-97), 1997.

[6] Parunak H. V. D., Practical and Industrial Applications
of Agent-Based Systems, Environmental Research
Institute of Michigan (ERIM), 1998

[7] Rao A. S., Georgeff M. P., A model-theoretic
approach to the verification of situated reasoning
systems, In: Proceedings of the Thirteenth
International Joint Conference on Artificial
Intelligence (IJCAI- 93), Chambery, France, 1993,
pp. 318–324.

[8] Sebestyénová J., Hierarchical verification of reactive
systems with timing constraints, In: WSEAS
Transactions on Computers, Issue 4, Vol 2, Oct
2003, pp. 1174-117.

[9] Zambonelli F., Jennings N. R., Wooldridge M.,
Developing Multiagent Systems: The Gaia
Methodology. In: ACM Transactions on Software
Engineering and Methodology, Vol. 12, No 3, July
2003, pp. 317-370.

