

 A control service for QoS-enabled middleware

Cosmina Ivan

Department of Computer Science, Faculty of Automation and Computer Science

Technical University of Cluj

ROMANIA

Abstract. Developers of distributed multimedia applications face a diversity of multimedia formats,
streaming platforms and streaming protocols; furthermore, support for end-to-end Quality-of-Service
(QoS) is a crucial factor for the development of future distributed multimedia systems. Middleware is
gaining wide acceptance as a generic software infrastructure for distributed applications, a growing
number of applications are designed and implemented as a set of collaborating objects using object
middleware, such as CORBA, EJB and (D)COM(+), as a software infrastructure that facilitates
distribution transparent interactions. However, quality aspects of interactions between objects cannot
be specified nor enforced by current object middleware, resulting only in a best-effort QoS support in
middleware. Next generation object middleware should offer abstractions for management and
control of the system level QoS mechanisms, while maintaining the advantages of the distribution
transparencies, these abstractions should take into account that new interfaces to OS resources and
new network protocols are expected to appear as the result of ongoing research efforts, in addition, a
changing run-time environment must be handled.

The paper discusses the design and implementation of a QoS-enabled middleware platform
for content delivery with QoS guarantees. Properties of content are represented using a generic
content representation model described using the OMG Meta Object Facility (MOF) model. The
integration of the QoS support, content representation and content delivery framework results in a
QoS-enabled middleware which is representation, location and QoS transparent. This paper presents
aspects of the framework for controlling QoS at middleware level implemented as a provisioning
QoS service , suport ing new paradigm QoS-enabled middleware .

Key words: QoS control, a service for QoS- enabled middleware , adaptive middleware

1.Introduction

Middleware provides distributed objects with a
software infrastructure that offers a set of well-
known distribution transparencies. These
transparencies enable the rapid introduction of
applications for heterogeneous, distributed
systems. However, to support guaranteed
Quality of Service (QoS) system-specific QoS
mechanisms need to be controlled. Allowing
applications to directly access and control
these mechanisms would negatively impact
the distribution transparencies offered by the
middleware layer and would reduce the
portability and interoperability of distributed

object applications. To avoid this, next
generation object middleware should offer
abstractions for management and control of
the system level QoS mechanisms, while
maintaining the advantages of the distribution
tranparencies.The challenge for next-
generation middleware is to support
application-level QoS requirements, coherent
mapping on low level mechanisms,while
maintaining the advantages of the distribution
transparencies.
This paper is organised as follows. Section 2
describes the QoS concept in open distributed
systems. Section 3 gives an overview of the
requirements for a middleware-based software
infrastructure that offers QoS support to

distributed objects and a survey of existing
frameworks Section 4 presents our solution in
the form of an infrastructure service for QoS
provisioning. With a short evaluat ion of this
framework based on the implementation and
section 5 completes with conclusions and
further developments.

2. A Conceptual Framework for
QoS enabled middleware

Provisioning of QoS usually involves a
common understanding between the two or
more parties about the quality characteristics
of the service, these parties can be end-users or
software components. The generic concepts
are based on the ISO/IEC QoS Framework,
and the provisioning model defines as main
entities in the system the service provider and
the service user. Often the user requirements
are expressed as subjective requirements
whereas the service provider needs objective
requirements in order to handle them, therefore
the user requirements must be translated into
specific QoS parameters expressed in terms of
QoS characteristics of the Service prov ider.
The QoS provisioning model should enable
entities to express their quality requirements.
The relevant concepts for a QoS provisioning
model [2] are defined as follows:
• QoS characteristic: a quantifiable aspect

of QoS, which is defined independently of
the means by which it is represented or
controlled.

• QoS requirement : QoS information that
express part or all of a requirement to
manage one or more QoS characteristics,
when conveyed between service user and
provider a QoS requirement is expressed in
terms of QoS parameters.

The QoS characteristics of the service provider
are determined by the QoS management
functions
Ø QoS management function define a

functions specifically designed with
the objective to meet QoS
requirements.

Ø QoS mechanism define a specific
mechanism that may use QoS
parameters or QoS context possibly in
conjunction with other QoS
mechanisms in order to support
establishment, monitoring,
maintenance, control or enquiry of
QoS.

QoS management architectures provide a
coherent set of abstractions and components in
order to enable applications for QoS
handling.A QoS framework combines
interfaces and mechanisms that support the
development, implementation and operation of
QoS enabled applications, and also
infrastructure services such as for the
negotiation of QoS agreements and monitoring
them.
Thinking of QoS provision as a client-server
relationship means the interaction between
them must be augmented with QoS specific
behaviour. The integration of QoS provision in
middleware must address the following
points:

• QoS specification : QoS parameters
have to be specificed along with
operations for a dinstinct mechanism
in order to be customized, configures
and monitored.

• QoS mechanism integration : the
specification of QoS parameters and
the operation of the related QoS
mechanism is not enaugh , the
provision mechanism need to be
integrated with specific mechanisms
which can ensure end-to end QoS
requirements.

• QoS binding in order to attribute the
interactions between a client and the
service with a distinct QoS an
assignmenmt of a QoS characteristic to
the client-server relationship has to be
established

• QoS adaptation : the possible level of
QoS characteristics depends on the
resource availability in the system ,
each QoS agreement has to be
negotiated independently, and varying
resource availability should be
addressed through adaptation

Functions that realise QoS support in a
distributed processing environment and their
positioning in an open distributed system are
designed mainly based on the following
principles: the separation principle which
states that transfer , control and management
of data are distinct activities and the
integration principle states that QoS must be
configuable, predictable and maintainable over
all architectural layers to meet end to end QoS,
both principles derived from multimedia and
broadband networks.

There are various requirements on QoS design
concepts but the most important ones are :
extensibility, composability, and a verifable
and suitable run time representation. Following
those requierements , we propose a layered
architecture to structure the problem space and
position the functions that provide QoS
support in an open distributed system. In this
architecture, three functional layers are
distinguished, each with distinct
responsibilities, offering services to adjacent
layers on top and using services of adjacent
layers below. Orthogonal to the layers, three
planes are identified: data transfer, control and
management, as for ATM architecture.
At the middleware layer, the responsibilities of
the planes are as follows:
• the data transfer plane consists of the

functions that provide the ‘traditional’, i.e.
non-QoS related, distribution
transparencies (in case of CORBA
(Portable Object Adapter , the GIOP
protocol engine or a CDR encoder.)

• the control plane is responsible for
controlling the QoS mechanisms and
monitoring the achieved QoS level to
ensure adequate end-to-end quality of
service levels, with the scope limited to a
single association between objects.

• the management plane contains func tions
for long term monitoring

The architectural framework presented in this
paper has been developed to be flexible and re-
usable and the main benefit that it allows us to
combine and balance solutions for the control
of multiple QoS characteristics.

QoS specification based on meta-modelling
• The OMG Meta-Object Facility

(MOF) [5] is a generic framework to
define and represent meta-data. Meta-
data denotes any data that describes
properties of other data. In the MOF, a
meta-model refers to a collection of
meta-data. A MOF (meta-) model is an
abstract language that can express this
collection of (meta-) data. The MOF
allows the definition of meta-models
that are potentially domain
independent and architecture neutral
Modelling data recursively as meta-
data leads to a potentially infinite
number of meta-levels.

A QoS meta model [6] consists of two parts: a
part that defines QoS contract types and a part

that defines QoS contracts. The latter part also
relates the contract to its contract type.
A QoS contract consists of a set of constraints
on QoS dimensions. A contract must be
associated with a contract type. A contract is
only valid when it defines constraints for
dimensions that have been defined for its
associated contract type.The container -
contained pattern,a variation on the composite
design pattern [9] is used to model the
relationship between a contract and a single
constraint and in a similar way the relation
between a multi-constraint and a statistical
constraint. The meta-model constraints are
formulated in such a way that a contract may
contain single constraints and multi-
constraints, while a multi-constraint may
contain statistical constraints.The meta-model
classes and their relations are represented as a
UML class diagram. (see Fig.1)

3. QoS enabled middleware

The original motivation for introducing
middleware platforms has been to facilitate the
development of distributed applications, by
providing a collection of general-purpose
facilities to the application designers.
Currently, commercially available middleware
platforms, such as those based on CORBA, are
still limited to the support of best-effort
Quality of Service (QoS) to applications.
Ideally, a middleware platform should be
capable of supporting a multitude of different
types of applications with different QoS
requirements, making use of different types of
communication and computing resources, and
adapting to changes, e.g., in the application
environment and in the available resources[1].
Middleware provides distributed objects with a
software infrastructure that offers a set of well-
known distribution transpar encies. These
transparencies enable the rapid introduction of
applications for heterogeneous, distributed
systems. However, to support guaranteed
Quality of Service (QoS) system-specific QoS
mechanisms need to be controlled. Accessing
the low -level mechanisms directly by
applications crosscuts the transparency offered
by the middleware and limits portability and
interoperability.
The middleware layer is a natural place for
brokering between QoS requirements of
applications and the QoS capabilities of

operating systems and networks. The aim of a
QoS-enabled middleware therefore is to
provision QoS of applications in a
heterogeneous distributed environment. Such a
system has to deal with the diversity of low-
level resource management mechanisms and
the dynamic behaviour of the environment.
The following requirements have been
identified and are used as constraints on the
design of our QoS provisioning service:
• ?applications should be able to specify their

QoS requirements using high-level QoS
concepts.

• the software infrastructure should be
modular and easily extensible with new
interfaces to system level QoS
mechanisms, specifically, it should be
possible to configure into the middleware
components handling the control of
different resource management
mechanisms dynamically. Consequently,
QoS control mechanisms are expected to
offer standardized interfaces to the
middleware, including reflective interfaces
for run-time discovery.

• the software infrastructure should allow
adaptive QoS support. In distributed
environments the system behaviour is
dynamic and only partially predictable,
this requires adaptation that can be
initiated both at the application and at the
system level. Adaptation at system level
on the other hand occurs when the
availability of system resources drops, due
to failure, system reconfiguration,
increased user load or other non-
predictable factors. Again, the middleware
should re-allocate resources, and if
possible, this should be completely
transparent for applications.

• the software architecture should support
policies for the QoS negotiation between
client and server sides, and balancing and
trading functions when resources are
interchangeable.

 QoS-enabled middleware is being developed
in several projects, with different focuses. We
describe here only those systems that enable
applications to specify their QoS requirements
using high-level language concepts and
realise resource adaptation. Three main QoS -
aware middleware groups can be identified:
general purpose middleware, real-time
middleware and multimedia middleware.QuO

is a CORBA based framework for configuring
distributed applications with QoS
requirements[8]. It comes with a suite of
description languages that allow applications
to specify the interdependencies between QoS
properties and system objects, thereby
configuring the adaptive behaviour of the
underlying system, but allows QoS
mechanisms to be added at design time.
MULTE-ORB is another QoS-aware
middleware that supports configurable
multiple bindings [7]. A QoS requirement is
specified per binding, together with policies
for negotiating QoS and for performing
connection management. But the QoS
configuration and management system is
however ChorusOS and SunOS specific.
OMG’s Real-Time CORBA (RT -CORBA)
specification is targeted at real-time distributed
systems. Applications specify policies that
guide selection and configuration of protocols
and RT-CORBA supports explicit binding in
order to validate the QoS properties of
bindings. After binding time, however,
1protocols may not be reconfigured. TAO is a
real-time CORBA ORB implementation
targeted at hard real-time systems.

4. Design and implementation

4.1. Design elements

The adaptable QoS service is a control plane
service, because its actions are limited to a
single association between a client and a server
object, acting as a broker between the
application level QoS requirements and the
available QoS mechanisms of the distributed
resource platform . The service is a broker and
controller for QoS agreements and the
framework can be implemented as a CORBA
service designed to use standard CORBA
extension hooks, based on the Portable Object
Adapter , the Portable Interceptor and the
Open Communications Interface [6],[7].
A control system consists of a controlled
system in combination with a controller. The
interactions between the controlled system and
the controller consist of monitoring and
manipulation performed by the controller on
the controlled system. In QoS -enabled
middleware, the 'controlled system' is the
middleware functionality responsible for the
support of interactions between application
objects, while the 'controller' provides QoS

 Middleware platform

Sensor

probes

difference

Decider

Translator

probes

observation

Comparator

Interpreter

Applications
Computing and communication resources

control strategy

control action

measurement
(QoS state)

input

output

Actuator

referenceagreed
QoS

QoS reference
base

control. Here, the envir onment represents the
operational context of the middleware, which
consists of application objects with QoS
requirements and QoS offers.
The middleware platform encapsulates the
computing and communication resources at
each individual processing node, which may be
manipulated in order to maintain the agreed
QoS. Figure 2 shows the specialisation of a
generic control model for controlling the QoS
provided by a middleware

Fig.2. Conceptual QoS architecture

Since the service uses standardized ORB
extension hooks, it can work with any standard
ORB implementation that implements these
extension hooks. On the server side, the POA
is extended with a dedicated ServantLocator
and a Negotiator object for managing servants
with an offered QoS, and on the client side
QAPS provides a QoSRepository (QR)
interface for managing QoS requirements of
clients.

The lifecycle of bindings controlled by
the service revolves around the QoS level
offered (Qoffered) by a server object, the QoS
level required (Qrequired) by a client object
and the agreed QoS level (Qagreed). The
purpose of the service is to control the
resources in such a way that some Qagreed is
negotiated and maintained for the lifetime of
the binding. This agreed QoS is the result of a
matchmaking process between the offered QoS
of the server object and the required QoS of
the client. The lifecycle phases are inform,
negotiate, establish, operate and release .
During the negotiate phase, the service
initiates a negotiation procedure between the
client, the server and the resource platform to

see if an agreement can be reached. A
successful negotiation results in a Qagreed that
is then associated with the binding, and
resources are reserved for the binding. During
the establish phase, the service assigns the
resources that have been reserved during the
previous phase, so other bindings cannot claim
these resources. Once sufficient resources have
been assigned to the binding, Qagreed must be
maintained, this means correcting drifting
quality levels, for example, by re-allocating
system resources or, in case it is not possible,
by informing applications to take appropriate
actions. Applications can subsequently decide
to lower their Qrequired and request a re-
negotiation, or end their binding, this is the
operate phase and finally, when the client does
not further need the binding (this is indicated
explicitly by the client) system resources are
released.

4.2.The service implementation

We identify three main concerns addressed by
the service: QoS negotiation, QoS mapping,
and concrete resource manipulation. These
concerns are addressed by generic
components and plug-in components. The
generic components provide generic
functionality to manage the plug-in
components.
Generic Components.Three generic
components are exposed to the application
layer:

• QoSRepository – offers an interface
available to clients for registering
required QoS with CORBA object
references;

• QOA (QoS-aware Object Adaptor) –
offers an interface available to servers
for registering offered QoS on a
CORBA object and its servant;

• GenericNegotiator – encapsulates the
general protocol for performing client-
initiated explicit negotiation. The
negotiation is performed by the client
using an object reference that has been
registered with the QoSRepository
before.

Two generic components are responsible for
managing plug-ins, the MapperManager and
the ResourceManager. The GenericController
is responsible for managing the control

mechanisms for sustaining negotiated QoS
sessions. None of these components are
exposed to the application layer.
The MapperManager interface offers
installation, removal and reference retrieving
of QoS Mappers.
Each QoSMapper registered with the
MapperManager is identified by a unique
identifier.
The Resource Manager is responsible for
managing various resources within the
middleware as well as from the software layers
below the middleware (typically, operating
systems and transport protocols). Thus, a
resource may represent a number of dispatcher
threads, but also a complex relation between
network delay and network throughput.
The GenericController is responsible for
managing the specific controllers in each plug-
in, so that once a contract has been negotiated,
QoS can be successfully sustained. The generic
controller is deployed only at the client side of
the service. The application layer can only
access the control mechanism through a
callback registered by the client during the
establishment of required QoS parameters.
This callback is used by the service to notify
the application about the changes in the status
of a negotiated contract.
Plug-ins.The service allows developers to
provide custom QoS support by providing
software plug-ins. A plug-in encapsulates
mechanisms for mapping one or more QoS
dimensions of the user-
level QoS specification onto underlying
technological programming APIs.

A plug-in comprises four parts:
• A SpecificNegotiator that provides

custom negotiation algorithms;
• A QoSMapper that encapsulates the

mapping of QoS dimensions onto
programming APIs;

• One or more ResourceWrappers that
encapsulate concrete resource
implementations;

• A SpecificController that provides
mechanisms to sustain the negotiated
QoS for a particular plug-in.

The SpecificNegotiator allow developers to
supply various alternative strategies for QoS
negotiation. The elements of a custom
negotiation algorithm are:

• Validation of required and offered
QoS specifications.;

• Matching of the required and offered
QoS specifications, resulting in an
agreed QoS.

A QoSMapper provides algorithms for
interpreting application level QoS specification
in terms of a set of concrete resource
allocations. The developer is free to choose
which concrete resource allocations to
implement and how to associate them with a
QoS specification.

A ResourceWrapper encapsulates
programming code necessary for managing
one or more resources (e.g., network delay,
CPU time, memory). A ResourceWrapper
corresponds to one or more QoS dimensions
from the QoS specification. The relation
between these dimensions is such that one of
them cannot be considered separately from the
other dimensions. For example, in the RSVP
protocol, network delay and data throughput
cannot be provided separately because
according to the RSVP data structures for
establishing of a network reservation these
dimensions depend on each other [3].
A SpecificController encapsulates the
algorithms necessary for sustaining QoS of a
negotiated QoS contract over the time a client
wants to use the service. The
SpecificController contains sensors that
measure values related to the QoS parameters,
has a detection mechanism to determine when
a contract is violated, and has at its disposal
means for adapting the current resource
allocations so that QoS can be sustained.
Each plug-in provides concrete resource
implementations (ResourceWrappers) to the
resource management, and specific negotiation
algorithms (SpecificNegotiator) to the
GenericNegotiator. The GenericNegotiator
aggregates specific negotiators from all plug-
ins to complete the negotiation algorithm.

 4.3. Using the service

To its users, the service provides two
interfaces: the QoSRepository and the QOA.
QoSRepository is the interface at the client
side allowing the user to set required QoS on
an object reference that has been offered from
a server object. The QOA is the interface at the
server side that allows activation of a CORBA
object with an offered QoS specification on its
operations. Subsequent object references to
this QoS-enabled object allow the use of these
references to establish a client/server binding

supporting QoS. To developers, the service
offers the “QoS services” set of interfaces that
enable the management of pluggable QoS
dimensions support.
After setting a required QoS on a QoS-enabled
object reference, users have to explic itly
invoke the negotiation on the QoSRepository.
If the service can find a match between the
required QoS parameters, the QoS capabilities
of the server object, and the available
resources of the middleware, the negotiation is
considered successful. During a negotiated
QoS session that sustains an agreed QoS, the
client may receive notifications from the
detection and control mechanisms via a
callback, indicating a possible violation of the
agreed QoS. The control mechanism tries some
strategies for adapting the underlying resources
before it decides to terminate the session (the
latter happens if resources reach a condition, in
which the agreed QoS cannot be supported
anymore).

5.Conclusions and further
developments

Next generation middleware must
meet the challenge of evolutionary changes
and run-time changes in a heterogeneous
distributed computing environment, in order to
provide distributed objects with support for
QoS. This paper presents an architecture for
QoS-enabled middleware that separates the
QoS support functions from ‘traditional’ data
transfer functions. The QoS Adaptive Service
is our framework that enables control plane
functions to be added to off-the-shelf object
middleware, for controlling the QoS of
individual client-server associations. The
service follows a lifecycle model to establish
and control a QoS agreement between a client
and a server.The framework implementation
presented here uses standard CORBA
extension hooks (Orbacus 4.1. free
implementation) , which makes the service a
portable CORBA service. Future work
includes the study of the applicability of the
provisioning service to manage the QoS of
multimedia streams and implementing a more
advanced interface between the service and
system level QoS control mechanisms,
including other QoS networking mechanisms (
as Diffserv protocol).

Next generation middleware must meet the
challenge of evolutionary changes and run-
time changes in a heterogeneous distributed
computing environment, in order to provide
distributed objects with support for QoS. This
paper presents an architecture for QoS-enabled
middleware that separates the QoS support
functions from ‘traditional’ data transfer
functions. The QoS Adaptive Service is our
framework that enables control plane functions
to be added to off-the-shelf object middleware,
for controlling the QoS of individual client-
server associations.
The service follows a lifecycle model to
establish and control a QoS agreement
between a client and a server.The framework
implementation presented here uses standard
CORBA extension hooks, which makes the
service a portable CORBA service. Future
work includes the study of the applicability of
the provisioning service to manage the QoS of
multimedia streams and implementing a more
advanced interface between the service and
system level QoS control mechanisms,
including other QoS networking mechanisms.

References

[1] F. Fitzpatrick, G.S. Blair, G. Coulson, N.
Davies and P. Robin (1998) Supporting
Adaptive Multimedia Applications through
Open Bindings, 4 th International Conference
on Configurable Distributed Systems
(ICCDS’98), Annapolis, Maryland, USA.

[2] S. Frolund and J. Koistinen (1999) Quality
of Service Specification in Distributed Object
Systems Design, Proceedings of the 4 th
USENIX Conference on Object-Oriented
Technologies and Systems (COOTS), Santa
Fe, New Mexico, April 27-30, 1998.
Applications (DOA’99)

[3] M. Karsten, J. Schmitt and R. Steinmetz
(2001) Implementation and Evaluation of the
KOM RSVP Engine, IEEE InfoCom 2001

[4] T. Kristensen and T. Plagemann (2000)
Enabling Flexible QoS Support in the Object
Request Broker COOL, 20th International
Conference on Distributed Computing Systems
(ICDCS’00), Taipei, Taiwan

[5] Object Management Group (2000) The
Common Object Request Broker: Architecture
and Specification OMG document formal/00-
10-33.

[6] Object Management Group (1999)
Portable Interceptors, OMG Document
orbos/99-12-02

[7] T. Plagemann, F. Eliassen, B. Hafskjold, T.
Kristensen (2000) Flexible and Extensible QoS
Management for Adaptive Middlewar e.
International Workshop on Protocols for
Multimedia Systems(PROMS 2000), Cracow,
Poland

[8] D.C. Schmidt (1997) Acceptor and
Connector: Design Patterns for Initializing
Communication Services”, in Pattern
Languages of Program Design (R. Martin, F.
Buschmann, and D. Riehle, eds.), Reading,
MA, Addison-Wesley.

wsea[9] Siqueira and V. Cahill (2000) A QoS
Architecture for Open Systems, 20 th
International Conference on Distributed
Computing Systems (ICDCS’00), Taipei,
Taiwan.

[10] J. Zinky, R. Schantz, J. Loyall, K.
Anderson and J. Megquier (2001) The Quality
Objects (QuO) Middleware Framework.
Workshop on Reflective Middleware (RM
2001), New York, USA.

