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Abstract: - In statistical modeling, the investigator is frequently confronted with the problem of selecting an appropriate model from a general class of candidate models. In recent years, various model selection procedures (criteria) that can be used for the selection of the best possible model have been proposed. The AIC criterion (Akaike, 1973) is considered the most popular tool for model selection although many competitors have been introduced over the years. One of the main drawbacks of AIC is its tendency to favor high dimensional models namely to overestimate the true model. A second issue that needs the attention of the investigator is the presence of outlying observations in the data set the inclusion of which in the statistical analysis may lead to erroneous results. In this work we propose AIC variants to handle the above weaknesses. Furthermore the asymptotic properties of the proposed criteria are investigated and a number of applications are discussed.
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1   Introduction

In this section we introduce an AIC variant that involves bootstrap-based corrections. The idea of bootstrap to improve the performance of a model was introduced by Efron (1983) and discussed by others in recent years (e.g. Efron and Tibshirani, 1993; Cavanaugh and Shumway, 1997).

Assume that n pairs of observations (x1,y1),...,(xn,yn) are available from the p0-dimensional regression model
yi=b0+b1xi,1+….+bp0xi,p0+ei

where xi=(xi,1,….,xi,p)’, i=1, 2,…., n and e~F(
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The Akaike Information Criterion (AIC) evaluated for the p-dimensional model, p < K is given by
AIC(p)= 
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where K a pre-assigned upper bound for the true dimension p0 of the model and 
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 the least squares estimator of 
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 . An equally popular criterion is the so called Bayesian Information Criterion (BIC; Schwarz, 1978) is defined similarly by 
BIC (p) =
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The bootstrapping algorithm for the AIC variant is defined as follows. We remove the ith observation and apply the criterion to the remaining n-1 observations. Let 
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 the estimator of the variance of the p-dimensional model which is based on the n-1 remaining observations. Then, the estimate of AIC is given by 
AICi(p)= 
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We now define the AIC average by 

AICave(p)=n-1
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. The AIC variant is finally defined by 
AICboot(p)=AIC(p)-(n-1){AICave(p)-AIC(p)}        (1).
Observe that the proposed technique represents a bias correction for the original value of the AIC criterion so that the resulting variant form is a bias-corrected version of AIC. Note also that as it turns out the proposed method can be described better by the jackknife technique rather than the traditional bootstrapping approach. 
It should be noted that a bootstrap-corrected version of BIC could be defined in a similar fashion. In particular, define the estimate of BIC based on n-1 observations as follows: 
BICi(p)= 
[image: image11.wmf])

1

n

/(

)

1

n

log(

p

log

^

2

i

,

p

-

-

+

s

.

We now define the BIC average by 

BICave(p)=n-1
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Finally, the bootstrap variant of BIC is given by 
BICboot(p)=BIC(p)-(n-1){BICave(p)-BIC(p)}.

If the above adjusted approach is applied to the small sample variants proposed by Hurvich and Tsai (1989), the resulting AIC estimate will be:
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which is equivalent to 
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.      (2)
As a result, the average AIC and the AIC variant criterion will be given respectively by 
AIC*ave(p)=n-1
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and 
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It should be pointed out here that model selection criteria such as the above could be applied to a very general context not only in regression models like the ones used in this section but also in autoregression models as well as in survival models.

2   Asymptotic Properties 

In this section we first establish the equivalence of AIC and all criteria proposed earlier and then investigate the asymptotic properties of the proposed criteria.

The equivalence of the AIC variant given in (1) and the original AIC criterion is established in the following theorem.

Theorem 1: Under the regression setting of the previous section, the following statements hold:
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and 

AIC(p) - AICboot(p) 
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in probability as n tends to infinity. 

Note that the equivalence of all other variants of model selection criteria proposed in the previous Section follow immediately from the above Theorem 1.

Two of the main issues in model selection are consistency and asymptotic efficiency. A natural requirement for a selection procedure is to choose a model as good as possible from a given family of models. Needless to say, the goodness depends on the objective of the analysis. Consistency is our main concern whenever we know the true model as correctly as possible. In other words, the consistency is of great importance if the true model belongs to the family of models from which the selection is to be made.

The asymptotic efficiency is associated with the case where the selected model should yield a good inference. For this objective it is natural to assume that the true model does not necessarily coincide with one of the models under consideration. 

It is important to point out that the two issues are not compatible. It has been shown that only the AIC – like criteria are found to be asymptotically optimal in the sense that they produce predictions with the smallest possible prediction error. At the same time these criteria have been found to be inconsistent. In particular, Shibata (1976) showed that AIC tends asymptotically to overfit the true dimension (overestimation). On the other hand the BIC although not asymptotically efficient (Karagrigoriou, 1995) it is consistent (Wei, 1992).

It is easy to show that the asymptotic equivalence between the AIC(.) and the proposed AICboot(.) implies that the latter is an inconsistent selection criterion. On the other hand the asymptotic efficiency is solely associated with prediction and if this is the purpose of the study, then a selection strategy carrying such a property should be used.

The issue of asymptotic efficiency was introduced by Shibata (1980) and discussed by several others (Hurvich and Tsai, 1989; Karagrigoriou, 1995, 1997). The main idea is based on the selection of that order (dimension) which leads to the smallest average mean squared error of prediction. The concept of asymptotic efficiency is closely associated not with an estimate of the order of the model but rather with a finite approximation to the truly infinite order of the model. Shibata was the first to make the innovative assumption that the data belong to a linear model with infinitely many parameters and established the asymptotic efficiency for zero mean autoregressive processes with Gaussian errors (Shibata, 1980).

Recently, Lee and Karagrigoriou (2001) derived a powerful result where in a time series setting the AIC-type criteria possess the asymptotic efficiency property irrespectively of the distribution of the error sequence. The main requirement for the asymptotic efficiency is the existence of the 4th moment of the error distribution. Such a result which can be easily adopted in a regression setting shows the great significance of the property. If a procedure under such minimum requirements fails to possess the asymptotic efficiency property then the criterion should not be considered appropriate for predictive purposes.

The following theorem shows the asymptotic optimality of the proposed AICboot(.) criterion.

Theorem 2: Under certain regularity assumptions, the order 
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 selected for a p-dimensional regression model or an AR(p) process by the adjusted AICboot criterion, is asymptotically efficient, i.e., as n tends to infinity. 
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in probability, where 
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the mean squared error of prediction of the pth order model, 
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3 Applications and Discussion 
In this section, some small scale simulation studies are invoked. The simulations were performed with the Windows version of the Statistical Software SAS. 

Small number of observations (10-50) is simulated for a two - independent variable standard normal regression model of the form 
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with j=1,2,…,13 where 
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with i=1,2,3, j=1,2,…,13 and Xi,0=0 for i=1,2,3. Notice that an extra variable is available which does not enter into the true model given by equation (3). A total of seven (7) models are available, namely the full model, 3 single-variable models and 3 two-variable models. Note finally that in what follows, the true model is the one involving the independent variables X1 and X2.
We observe that the standard criteria, AIC, BIC and AICC select the correct model in all situations. The adjusted AIC criterion, AICboot, proposed in the present work separates clearly the correct model as well as the “larger” model involving all 3 independent variables but selects the bigger one by a relatively small margin.  
In this study we have also used a new adjusted criterion, denoted by AICboot,C which combines the AICboot with the small sample correction term of Hurvich and Tsay (1989, see equation (2)). The form of the criterion is given by 


[image: image28.wmf]2

p

n

)

2

p

)(

1

p

(

2

AIC

AIC

boot

C

,

boot

-

-

+

+

+

=


Note that in our simulation study, the resulting criterion selects the correct model. The actual values of the all the above selection criteria for all models involved are presented in Table 1. 
Furthermore, the simulation study allows for the inclusion of outliers. In particular, approximately 20% of the observations in each case are dropped and replaced by observations from various Normal distributions with zero mean and variance larger than 1. In fact, the previous simulation study is repeated with the exception that the last 3 observations are replaced with 3 observations coming from a different normal distribution, namely N (0, 2). Although the standard AIC criterion selects the correct model the same is not true for BIC. Furthermore, the corrected AICC selects the correct model but the value of the criterion for the model with the single independent variable X1 stays very close. 

Table 1

	Variables

in the

model
	AIC
	BIC
	AICboot
	AICboot,C

	
	
	
	
	

	X1 X2
	0,33
	0,46
	0,1775
	0,3827

	X1 X2 X3
	0,43
	0,61
	0,1399
	0,5245

	X1
	0,59
	0,68
	0,5238
	0,6161

	X1 X3
	0,74
	0,87
	0,5381
	0,7432

	X3
	1,29
	1,37
	1,272
	1,3644

	X2 X3
	1,44
	1,57
	1,4945
	1,6996

	X2
	1,48
	1,57
	1,3999
	1,4922


The proposed criteria perform quite well in this case. In particular, the AICboot separates very well the correct model as well as the “larger” ones and selects with a very small margin the bigger one while the AICboot,C with a large margin selects the correct model. The results in this case are summarized in Table 2. 
Table 2

	Variables
in the 

model
	AIC
	BIC
	AICboot
	AICboot,C

	
	
	
	
	

	X1 X2
	0,494
	0,79
	0,3273
	0,5324

	X1 X2 X3
	0,59
	0,98
	0,3001
	0,6847

	X1
	0,613
	0,78
	0,5654
	0,6577

	X1 X3
	0,756
	0,93
	0,5713
	0,7765

	X3
	1,05
	1,08
	1,0018
	1,0941

	X2 X3
	1,20
	1,18
	1,1776
	1,3827

	X2
	1,24
	1,23
	1,1734
	1,2657


Similar results have been found by simulation studies performed with two (2) additional variables that do not enter into the true model which is given by equation (3). 

 All studies arrive at similar conclusions. It should be noted that the effect of the adjustment on AIC depends on the particular application. In particular, if outlying observations are present, then their contribution is downgraded since the bootstrap (jackknife) technique reduces their impact. On the other hand, if outlying observations are not present, then the correct model as well as models "larger than" the correct one are easily recognized and the values of the adjusted AIC criteria are well separated from all other candidate models. In particular, it is shown that 
AICboot(m) – AICboot(k) >>AIC(m) – AIC(k)


for any k > p0  and any 
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Applications of the proposed criteria are found in several settings among which one could mention medical data sets were outlying observations often appear. The outlier detection issue is closely related to the issue of reference (normal) range. The reference range plays the key role in determining the type and the extent of the therapeutic or pharmaceutical action to be taken. In reality the determination of a reference range is equivalent to the construction of a confidence interval in which the true value of a population characteristic lies with high probability.
Recall that the modeling, the statistical inference as well as the prediction inference may be heavily affected by the presence of outliers. The identification of the correct model for a set of data that includes outliers reduces the undesirable features of the above effect and in turn increases the reliability of the resulted confidence interval (reference range).
The so called censored linear regression models provide yet another class of models to which the proposed model selection technique could be applied.  These models appear in the standard regression model setting, namely
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with the exception that we do not observe the event time Xi but instead the triplet (Ti, Zi, Di) which refer to three i.i.d. random variables such that 

Ti=min(Xi, Ci),  

Ci=censored time,
Zi=covariate vector and
Di=0 if Xi > Ci and 1 otherwise.
We also assume that the errors ei are independent of Zi and Ci and 
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 is the unknown vector of parameters. Consistent estimators can be found and the MSE of prediction as well as the Average MSE of prediction can be evaluated. The asymptotic efficiency of the standard selection criteria and the adjusted criteria proposed in this work are easily established. 
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