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Abstract:-In this paper we present some of the network models and topologies that have been defined in the 
past few years as a result of the community efforts to model real world networks. For each presented model we 
provide computer calculated network measures of interest and restate some conclusions that separate one 
network model from another. 
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1 Introduction 
Graphs and their properties have been studied for a 
long time in the classic graph theory. In the past few 
years there was a lot of work done in order to 
provide models for real world networks. At the 
current technology level an experimental data is also 
available making the model verification easy and 
accurate. In the network research community there 
are already accepted and well established network 
models. 
The rest of the paper is outlined as follows. Section 
2 presents network measures of interest. Sections 3, 
4 and 5 present the Random, Small- World and 
Scale-Free network models. For each model we 
provide computer simulation results. Section 6 
concludes. 
 
 
2 Network Representation and 
Measures 
Network is usually represented as a graph 

),( ENG =  where N is a set of nodes and E is a 
set of edges. Let n represents the number of nodes in 
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 edges.   

A node degree is the number of edges connected to 
that node. In the case of directed edges someone can 
differentiate between out degree and in degree. The 
Laplacian matrix L(G) of a graph G, where G is an 
undirected, unweighted graph without graph loops 
or multiple edges from one node to another, is  nxn 
symmetric matrix with one row and column for each 
node. The matrix elements are defined as follows: 
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For example, a ring lattice of 4 elements can be 
represented by the following Laplacian matrix: 
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The eigenvalues of L(G) are nonnegative and 
ordered: nλλλ ≤≤≤≤ ...210 . Connected 
component is a subset of mutually reachable nodes. 
The number of connected components of G is equal 
to the number of iλ  equal to 0. In particular, 

02 =!λ  if and only if G is connected, i.e. there is 
only one connected component containing all 
network nodes.  
Network measures of interest in our observations 
are: 
 

1. Average distance between two nodes; 
2. Clustering coefficient; 
3. Degree distribution. 

 
The distance between two nodes is defined as the 
number of edges along the shortest path connecting 
them. In our computer simulations we use the 
iterative Bellman-Ford algorithm for the shortest 



distance computation. If the value of 2λ  is 0, the 
graph is disconnected and we take -1 as the average 
distance between nodes. 
We use the following definition of the clustering 
coefficient. Let the node i has ik edges that connect 
it to the ik  neighbors. The maximum number of 
edges that can exist among these  ik  nodes is 
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. If iE  represents the number 

of edges that actually exist among these ik  nodes, 
clustering coefficient for the node i is defined as the 
following quotient: 
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The clustering coefficient C for the whole graph is 
the average of all iC 's. 
The degree distribution P(k) is defined as the 
probability that a randomly chosen node has exactly  
k  edges. 
The following text presents 3 network models that 
have been differentiated in the contemporary 
network topology research: Random, Small-World 
and Scale-Free network model. For each model we 
provide network measures of interest collected 
through the computer calculations and simulations. 
 
 
3 Random Model 
The Random model is the oldest network model 
among the models presented in this paper. It is based 
on the random graph theory introduced by Paul 
Erdős and Alfréd Rényi ([1],[2]). Their work was 
followed by Bélla Bollobás [3], today's one of the 
leading scientists on this field. Many complex 
networks with unknown organizing principles 
appear random and are investigated using random 
graph theory. 
Erdős and Rényi have defined two models. The first 
one is defined as a graph with N nodes and n edges, 
where the edges are randomly chosen from the 
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 possible ones. In the second model two 

nodes are connected with probability p. These two 
models become equivalent in the limit ∞→N . 
Random graph theory is most concerned by the 
question at what probability p a specific graph 
property appears. For example at what connection 

probability p  a graph with N nodes becomes fully 
connected? Are there triangles of connected nodes? 
The greatest discovery in the Random model 
research is that many properties of these graphs 
appear very suddenly, i.e. bellow some probability 
threshold the property doesn't exist, but above that 
threshold almost every random graph with the same 
number of nodes has that property. 
A single node has from 0 up to N-1 edges. In a 
Random network model having connection 
probability p, the node i has degree k with 
probability following binomial distribution: 
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We can assume that the equation (4) holds for the 
whole graph. In the limit ∞→N  equation (4) 
becomes Poisson distribution with the mean value 
pN: 
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Another important result from the random graph 
theory is that if ( ) ( )NpNkE ln≥=  almost 
every graph is connected. In that case the average 
distance between nodes has the following 
approximation: 
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We can think of the equation (6) this way. Every 
node has in average pN outgoing edges. After l 
steps, the spanning tree containing ( )lpN  nodes has 

reached every node in the graph, i.e. ( ) NpN l = .  
The average clustering coefficient in the Random 
network model is given as: 
 

pCrandom =  (7)
 
The equation (7) has also intuitive background 
because the quotient between the number of existing 
edges and number of all possible edges is always p 
for every possible node's neighborhood. 
Fig.1 shows the simulation results for the Random 
network model with N=1024 nodes. The network 
contains undirected edges and does not contain 
loops or multiple edges between nodes. We vary the 
connection probability in the interval [0,1]. In 



Fig.1-a we plot the average distance between nodes. 
It can be seen that bellow p=0.01 the average 
distance is -1, i.e. graph is disconnected. In Fig.1-b 
we plot the average clustering coefficient that is a 
straight line with the slope value equal to 1.  In 
Fig.1-c we plot the node's degree distribution. It can 
be seen that the curve resembles the Poisson 
distribution. 
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Fig.1. Random network model with N=1024 nodes 
a) Average distance b) Average clustering c) Degree 

distribution 
 
We also created network visualization tool. 
Fig.2 is a visualization of the Random network 
model with the connection probability equal to 0.01.  
The nodes with a higher degree are positioned closer 
to the center. 

 
Fig.2. Visualization of the Random network model 

with N=1024 nodes and p=0.01 
 
 
4 Small-World Model 
The idea behind the Small-World network model 
comes from the social systems and the relationships 
therein. Most of the people in the social networks 
are friends with their immediate neighbors imposing 
that way very large short distance clustering. 
However, some people have friends who are a long 
way away (old relationship or acquaintance). This 
relationship "shortcuts" make the average distance 
between people relatively small.  In a folk wisdom 
this is known as "six degrees of separation". 
The Small-World network model was first 
introduced by Watts and Strogats [4]. The model 
was extended and mathematically analyzed by Watts 
and Newman [5],[6]. They model the network as an 
ordered lattice with clustering coefficient which is 
network size (N) independent. Clustering coefficient 
in a lattice depends only on the coordination number 
K (the number of neighbors the node is connected 
to). A ring lattice with N nodes and coordination 

number K has 
2

NK
 edges. In such lattice Watts and 

Strogats randomly rewire each edge with a small 

probability p leading to a small number of 
2

NKp  

rewired edges. Instead of edge rewiring, Watts and 

Newman in [5] add 
2

NKp new edges without 

removing the old ones. This small change makes the 
model more realistic (there is no loops or isolated 



components) and it is easier to analyze. Fig.3 shows 
a ring lattice with N=20 nodes, coordination number 
K=4 and 3 shortcuts added. 

 
Fig.3. Ring lattice with 3 shortcuts 

 
A ring lattice without shortcuts has clastering 
coefficient given as [7]: 
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and average distance between nodes given as: 
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The Small-World network model interpolates 
between an ordered lattice (p=0) and Random 
network model (p=1). Watts and Strogats has first 
noticed that there is a region of small p with large 
and almost unchanged clustering coefficient 
(property of an ordered lattice) and small average 
distance that scales as logarithm of N (property of  
the Random network model). Watts and Newman in 
[5], using recombination group principles, have 
derived the following equation for the average 
distance between nodes in one dimensional lattice: 
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Fig.4 shows the simulation results for the Small-
World model with N=1024 nodes. The network 
contains undirected edges and does not contain 
loops or multiple edges between nodes. We vary the 
number of shortcuts in the interval [0,100]. In 
Fig.4-a we plot the average distance between nodes. 
It can be seen that the average distance in the case of 
100 shortcuts is greatly reduced compared with an 

ordered lattice. In Fig.4-b we plot the average 
clustering which is almost unchanged. 
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Fig.4. Small-World network model with N=1024 
nodes a) Average distance b) Average clustering 

 

 
 

Fig.5. Visualization of the Small-World network 
model with N=1024 nodes, K=4 and 100 shortcuts 

 
 

5 Scale-Free Model 
The Scale-Free network model is an attempt to 
describe the results obtained by investigating data 
available from some real networks. Many systems 



(networks) have the property that the degree 
distribution P(k) follows a power low, i.e. 

γ−kkP ~)(  and it is independent of the network 
size N (scale-free).  For example, the analyzes of the 
movie actors collaboration graph [8] have shown 
that P(k) follows a power low with 

13.2 ±=actorγ . World Wide Web is also 
considered as a huge network where every HTML 
page represents a node and hyperlinks between 
pages represent edges. It has been shown [8] that 
WWW's degree distribution also follows a power 
low, having 12.=in

wwwγ  for incoming links and 

.452=out
wwwγ  for outgoing links. 

The first and most exploited Scale-Free network 
model is suggested by Barabási and Albert [8],[9]. 
They obtain the scale-free network properties using 
the following two aspects: growth and preferential 
attachment. The growth aspect states that the 
number of vertices increases during the time i.e. it is 
not fixed (the growth of the WWW). The 
preferential attachment aspect states that a new node 
is more probably attached to the nodes having 
higher degrees (rich-becomes-richer principle). For 
example, a newly introduced WWW page points 
more likely to some well known and established 
WWW sites. 
The above two aspects are incorporated into the 
Barabási -Albert model (BA) as follows: 
 
Growth: Starting with a small number of nodes 
( 0m ), at every time step a new node is added with 

0mm ≤  edges connecting it to the nodes already 
present in the system. 
Preferential attachment: A new introduced node 
connects to the node i with probability proportional 
to the node's i degree ik , i.e.: 
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Using the mean-field approach, Barabási and Albert 
have derived the following approximative degree 
distribution formula: 
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In the above equation t is the number of executed 
time steps that correspond to network with tm +0  
nodes and mt  edges (plus the edges among the 
initial nodes). The equation (10) shows that the 
degree distribution follows a power low with 

3=γ  ( 3−k ). 
We take 20 == mm  in the computer 
simulation. In order to avoid the possibility of 
having disconnected nodes we start with a network 
of 20 =m  connected nodes. At every time step 
we add a new node with 2=m  new edges. The 
initial state of two connected nodes doesn't matter in 
the limit of large N. It is worth mentioning that the 
BA model allows multiple edges between nodes, but 
doesn't allow loops. When we calculate the average 
clustering or average distance we count only one 
edge. The LCD model, introduced in [10], allows 
both multiple edges and loops. 
Fig.6 plots the degree distribution of the BA 
network ( 20 == mm ) at two growing levels: 
N=1024 nodes and N=2048 nodes. The red colored 
dotted lines plot a degree distribution according 
equation (10). It can be seen that in both cases the 
degree distribution in a large range follows a power 
low with 3~γ . 
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Fig.6. Degree distribution in the BA network model 
with  20 == mm  a) N=1024 nodes b) N=2048 

nodes 
 



The calculated average distance in the BA network 
model with N=1024 nodes is 4.0. So, the BA 
network is highly connected graph. The calculated 
average clustering in the same network varies in the 
interval [0.02,0.05] and it is greater than the 
clustering in a random network with the same 
number of nodes and edges. 
 

 
 

Fig.7. Visualization of the BA  network model with 
N=1024 nodes and 20 == mm  

 
 

6. Conclusions 
We presented three network models that make the 
basic network classification in the contemporary 
network topology research. However, variants of the 
models exist. Each of them is trying to incorporate 
additional network topology concepts. For example, 
an overview of the current scale-free network 
models is given in [11]. 
Network models and analysis therein are very 
important for predicting future network behaviour. 
Analyzing average distance and clustering may help 
in designing more effective and robust network 
services. 
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