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Abstract: -

A geometric approach of generalized linear systems as pairs of linear maps defined modulo a
subspace is presented. This study permit us, to obtain conditions for controllability of the system.
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1 Introduction

The equivalence relation between pairs of ma-
trices representing linear systems under feed-
back equivalence has been largely studied dur-
ing the last three decades (see [2], [4], for exam-
ple). With respect generalized linear systems,
the study has experimented a great deal of inter-
est in recent years where feedback and derivative
feedback has been considered.

Here we present a geometrical approach con-
sisting in to associate to the system a pair of lin-
ear maps defined modulo a subspace in order to
obtain a collection of structural invariants that
permit to deduce controllability conditions.

Let X be a complex finite dimensional vec-
tor space. In the paper, we tackle the problem
to classify pairs of linear maps defined modulo
a subspace and coinciding over this subspace:

[ X —X/W, ¢g:X— X/W,

WcX, fiw=gw- e

We will write this kind of maps as a couple
(f,9) : X — X/W, and we will refer simply,
as a pair of linear maps.

Our aim is to provide a classification in re-
lation to a natural generalization of the usual
similarity of pairs of endomorphisms. The clas-
sification of pair of matrices (A, B) under feed-
back equivalence as linear map defined mod-
ulo a subspace f : X — X/W is presented

in [2].We recall that f : X — X/W and
f X' — X'/W' are equivalent and we will
note f ~ f’, if and only if there exist an isomor-
phism ¢ : X — X’ with (W) = W’ such that
f'op = @o f, where ¢ is the induced isomor-
phism oX/W — X' /W',

These results can be applied to study triples
of matrices (F, A, B) representing generalized
linear systems Fi = Ax + Bu, under feedback
and derivative feedback, as well as to obtain con-
ditions for controllability.

2 Pairs of linear maps defined
modulo a subspace

Our aim is to classify pairs of linear maps (f, g) :
X — X/W, where X is a finite dimensional
vector space, W is a linear subspace verifying
Sfiw = gw. We will refer to such a map sim-
ply as a pair of linear maps defined modulo a
subspace.

The key to solve classification problem will

be to reduce to classifying two associated pairs
of linear maps defined as follows:

Definition 2.1. Let (f,g) : X — X/W be a
pair of linear maps defined modulo a subspace.
We consider the following pairs of linear maps



induced in a natural way by (f,g):

(f.9):W —wm
w — f(w) =g(w)
(f1,91) . X/W — Xl/Wl
m(z) — m(f,9)(x)
where Wy = f(W) = g(W), X1 = X/W and
7: X — X/W and 71 : X)W — X1 /W) the
canonical projections.

(2)

Then we have the following commutative di-
agrams:

w o Low w4 ow

l 1 l 1
x L x,. x L xi (3)

l l ! l

xw dLox,  xw X

(where X; = X/W, and Xy = X; /W)

Notice that the maps f = ¢ are exhaus-
tive and in the case where f1y, = g1jw, then
(f1,91) is a pair of linear maps with dim X; <
dim X and dimX; = dim X if and only if
W ={0}.

3 Equivalence relation

In order to define an equivalence between two
pairs of linear maps (f,g) : X — X/W,
(f',g): X’ — X'/W’ of this kind, we consider
the pairs of isomorphisms (p,¢) : X — X’
where the maps induced in a natural way

(@) : W — W

(¢, 0) : X)W — X' /W' (4)

verify ¢ = 1) and @ = . We denote by H (W)
the group of such pairs of isomorphisms, obvi-
ously we must suppose dimX = dim X’ and
dim W = dim W’. From now on, these dimen-
sions will be denoted by n + m and m respec-
tively.

Definition 3.1. Let (f,g) : X — X/W,
(f',g") : X' — X'/W' be two pairs of linear
maps. We say that they are equivalent, (written
(f,9) ~ (f'.9), if there is (p,v) € H(W) such
that

flop=pof

gov=1oyg (5)

and we will write simply as

(f'.9") o (o) = @0 (f.9) (6)
In particular, if W = {0} then W’ = {0} and
(f,9) ~ (f',g") is the simultaneous equivalence
of pairs of maps.
Notice that, if (f,g) ~ (f’,¢') then ¢ = 1
induces

((/717"?1) : Xl — X{

(1,¢91) W1 — W]
(G1,9¢1)  Xu/Wh — X1/W

(7)

verifying ¢1 = ¢ and @) = 1);.

Remark 3.1. Let (f,g) : X — X/W and
(f',g) : X’ — X'/W' be two equivalent pairs
of maps, then f ~ f' and g ~ ¢’. (The equiv-
alence is as a maps defined modulo a subspace
defined at the introduction).

Proposition 3.1. ([2], Theorem 1.3.2). Let
(f,9): X — X/Wand(f',¢): X' — X'/W'

be two equivalent pairs of linear maps. Then
i) fi ~ fl and rank f = rank f',
ii) g1 ~ ¢ and rankg = rankg’ .

Theorem 3.1. Let (f,g) : X — X/W and
(f',g) : X' — X'/W' be two pairs of linear
maps. Suppose (f1,g1) is a pair then, (f,g) ~
('sg/) if and only if (fi,91) ~ (fl,0}) and
rank f = rank f'.

Proof. Suppose (f,g9) ~ (f’,g’). Proposition
3.1 ensures the commutativity of the two three-
dimensional diagrams.

%% — X — X1
@l el el
w’ — X RN X
FN\ £\ 1\
N\ £\ N
7%} — X1 L Xo
é1l w1l . @1l
W{ — X1 L Xé



%% — X g, X1
¥l vl Pl
w' — X £ X/
a\ g\ 91\
AN N 91\
4%} N X1 g, Xo
1 | ¥1 1l
’
Wll — X1 S, Xé

(9)
where ¢ @, IL, and 77; are the isomorphisms in-
duced according (3).

Noyv, it suffices to observe that ¢ = ¢1 and
P11 =1Y1.

For the converse, we consider sections o :
Xy — Xand o' : X{ — X', (moo = Ix,,
oo’ =1Ix:).

We have the following decompositions

X =WadoXy,

10
X =WadX] (10

We define (¢,7) : X — X' as

(o, ¥)(ox1) = o' (@1,¢1)(21), Va1 € X,
(V) (w) = a(w), Ywe W.
(11)

where « is the isomorphism that join with the
isomorphism 3 make commutative the following
diagram.

w =ow
al 8l (12)
w4y

Note that, the existence of maps «, § is ensured
because rank f = rank f’ and (f,g) and (f’, ¢')
are pairs of linear maps. O

Let now, (f,g) : X — X /W a pair of linear
maps. Suppose that fiy, = g1, , then we can
consider the pair of linear maps (f1,¢91) : X1 —
X1/W7 Then we have the following commuta-
tive diagram:

(f1,61)
—

W1 W2
l 1
X, W xow = x, (13)
l 1
xywn BB x, W, = X,

Inductively, we can consider the collection
of pairs of linear maps defined modulo a sub-
space (f,9),(f1,91),--,(fi,gi) for all i such

that fiw = gw,---. fiqw, = gijw,- We have
three possibilities

i) there exists s € N such that fs_1|W571 =
9571|W571 — XS' Then XS+1 = {O} and
(fs+e,9s+e) = (0,0), for all £ > 1

ii) there exists s € N such that fsy,

gsjw, = {0} = W1, Then (fst1,95+1)
is a pair of endomorphisms.

iii) there exists s € N such that fs+1|Ws+1 #
gS+1|WS+1'

With the same notations, it is not difficult
to prove the following Theorem.

Theorem 3.2. Let (f,g) : X — X/W and
(f',g) : X' — X'/W' equivalent pairs of lin-
ear maps. Then (f,g) ~ (f',¢") if and only if
the following conditions

)s=+,
i) dim W; = dim W/ for all i,
iii) (fi,9:) ~ (fl,q}) for alli=1,-- s,

hold.

4 Matrix representation of
pairs of linear maps defined
modulo a subspace

Let (f,9)

ear maps.

X — X/W a pair of lin-
In order to obtain a matrix
representation we consider pairs of bases
of X adapted to W, that is to say bases

(by = e, en ntis--slnimf by =
{€1,..  €n,entiy - yenim}) such that
{€n+1s---,n+m} is a base for W, and e; —
e; € W for all i = 1,---,n. Consequently

{e1+W,....en + W} ={e1 +W,...,e, + W}
is a base for X/W.



The matrices Ay and A, of the linear maps
f and g in this pair of bases are in the form

A;=(4, B), A,=(42 B), (14

with Ay, Ay € M, (C), B € Myxm(C).
We will write simply as a triple of matrices
(A1, Az, B).

Proposition 4.1. Let (Aj,A2,B) and
(A%, AL, B") be two triples of matrices corre-
sponding to the matrixz representation of two
equivalent pairs of maps (f,g) and (f',q’) re-
spectively. Then there exist invertible matrices
P € Gi(n;C) Q € Gl(m;C) and rectangular
matrices F1, Fy € My,xn(C) such that the fol-
lowing equality holds.

P 0 0

(Ay Ay B)=P'(A} A, B)Y[l0o P 0]}.
o FoQ

(15)

Remark 4.1. Let (A1, A2, B) and (A}, A}, B)
equivalent triples. Then the pairs of matrices
(A1, B) and (Asg, B) are feedback equivalent to
(A}, B') and (A}, B’) respectively. The converse
is not true.

Proposition 4.2. Let (f,g) be a pair of lin-
ear maps where dAimW =1, s = n ((fs,9s) =

(0,0)). Then there exists a pair of adapted bases
(bf,bg) such that

0 1 ... 0 O
0 0 ... 0 O
Al = 5
0 0 ... 0 1
0 0 ... 0 O
a1 1 0 0
az1 az2 0 0
Ay = ,  (16)
an—-1,1 Gn-1,2 --- Gp-1n-1 1
0 0 0 0
0
0
B =1:
0

Proof. We have that W, = X,;. We consider the
sections

ol :Ws — Xs_1, such that Xs_1 = Ws_1 @ o, Ws,

0’2_1 : Xs—1 —> Xs—2, such that Xs_o = Ws_o @U;_lefl,

o} : X1 — X, such that X = W & o] X1,

calling o; = ofo...o0] we have X = Wdo W@

...® oWy and f : Uz<Wz) — 7T0'Z'+1(Wi+1).

We consider by = {wi,...,wpt1}, where

w1 € JSWS,
_ 1
w2 = f Twy € o5 1Ws_1,
_ -1
W, —f Twy_1 € oW1,
Wnp1 = flmw, € W.

So, taking into account that fijw, = gijw,,

g(wi)=a1,1w1 + a2 w2+ -+ ap—1,1Wn—1 + an,1Wn,
g(w2) = w1 +ag 2wz -+ apn—1,2Wn—1 + Gn,2Wn,

g(wn) = Wn—1,n—1+t Gnn—1Wn,
g(Wn41) = wn.

Finally, taking b, = {w1,- -+, Wn, wp41} with
W; = W; — apjwn41 for all i =1,--- ,n we have
that (A1, Ag, B) has the desired form. O

Remark 4.2. Numbers a;; in matrix Ay charac-
terize the equivalence class of triples of matrices
verifying proposition (4.2).

Corollary 4.1. Let (Aj,A9,B), A, Ay €
M, (C), B € Mpx1(C) be a triple of matrices
representing a pair of linear maps (f,g) : X —
X/W Then, (Al,AQ,B) ~ (Al,AQ,B) if and
only if

rank(B) =1,

rank (B A1B) =2,

rank (B A2B) =2,

rank (B (A1 — A2)B) =1,

rank (B  A1B A%B =3,

rank (B AxB AgB =3,

rank (B A1B (A} — A2)B) =2,

rank (B A1 B ATIB) =n,

rank (B A2B AZT'B) =n,

rank (B A1 B APT2 (AT - ATTHB) =n -1

(17)



~

Proof. We observe that if (Aj, As, B)
(A}, Ay, B'), then (Ay, As, B) verifies (17) if and
only if (A}, A}, B') verifies.

So, suppose (A1, Aa, B) ~ (A1, Ag, B), it suf-
fices to compute

rankB =1,
rank (B AﬂB) =2,

rank (B A1B ATTIB (AT - AZTHB) =n— 1.

For the converse, if (A, Ag, B) is a triple verify-
ing (17), it is not difficult to prove that dim W =
1, s=n and fi\Wi = Gi|w,- O

Ezample 4.1. Let (A1, Ag,

1 -1 0 1
Ai=[1 0 0}, 4=1
0 1 0 0

with

et

B)
0
1
1

So,
rank (B) =1,
rank (B AlB) =2,
rank (B AQB) =2,
rank (B (A; — A2)B) =1,
rank (B A;B AIB) =3,
rank (B A;B A3B) =3,
rank (B A;B (A} — A%)B) =2.

Then, there exists a pair of basis (bf,by) such

that the triple is equivalent to (A, As,B). In
fact

0 1 0 1 1 0 0
Ap=10 0 1}),A2=[2 1 1|,B=1]0].
0 0 O 0 0 O 1

Corollary 4.2. Let (A1, A2, B) be a triple ver-
ifying (17). If rank (B Ay — Ag) = 1, then
(AI,AQ, B) ~ Al,AQ,B) with Ag = Al.
Ezample 4.2. Let (A1, Aa, B) with

1 9 T
(g : g ) 7A2 )
3 0 -3

rank (B A — Ag) =1,

rank (B) =1,

rank (B AlB) =2,

rank (B AsB) =2,

rank (B (A; — A2)B) =1,

rank (B A1B AiB) =

rank (B AsB A%B) =3,

rank (B A1B (A} — A3)B) = 2.

Then (Al,AQ,B) ~ (Al,Al,B).

5 Application to generalized
linear systems

A generalized linear system is described by the
following state space equation
Ei = Az + Bu, (18)
where F and A are n-square complex matrices
and B a rectangular complex matrix in adequate
size. We can represent it by a triple of matrices
(E, A, B). Using theorem (3.1), we obtain suf-
ficient conditions for controllability of this kind
of systems.
Let EFi = Ax 4+ Bu be a generalized linear

system, the standard transformations that can
be applied are

1. basis change in the state space:
(E,A,B) — (P7'EP,P7'AP,P~'B),

2. basis change in the
(E,A,B) — (E, A, BQ),

input space:

3. feedback: (F,A,B) — (E,A+ BF;,,B),

4. and derivative feedback:
(E+ BFy,A,B).

(E,A,B) —

We get the following definition of equiva-
lence for generalized linear systems

Definition 5.1. Two generalized linear sys-
tems (E,A,B), (E',A",B’), are equivalent if
and only if there exist matrices P € Gl(n;C),
Q € Gl(m;C) and Fy1, F5 € My, xn(C) such that
these equalities

E' =P lEP+ P 'BF
A" =P AP+ P7'BF, (19)
B' =P 'BQ

hold.



It is straightforward that this relation is an
equivalence relation.

Then a generalized linear system can be in-
terpreted as a matrix representation of a pair
of linear maps defined modulo a subspace, and
given two equivalent systems we can consider as

two equivalent pairs of linear maps.
Notice that (19) have the following matrix
expression

P 0 0
(B 4 B)=P'(E A B)[o P o0
i F Q

We are interested in to study the controlla-
bility of generalized linear systems. For that we
remember the following Proposition (see [3]).

Proposition 5.1. The generalized linear sys-
tem (E, A, B), is controllable if and only if

rank(E B):n
rank(sE—A B):n Vs e C

Remark that, the controllability of general-
ized linear systems is invariant under equiva-
lence relation considered. In fact we have the
following proposition (see [3]).

Proposition 5.2. The rank of the matrix
(SE—A B) as well the rank of the matrix
(E B) are invariant under equivalence defined
above.

Proposition 5.3. Let (E, A, B) be a general-
ized linear system. Let (f,g) a pair of lin-
ear maps such that the matriz representation
with respect the canonical basis of C™ x C™ is
(E, A, B). Suppose that the triple has the form
of proposition 4.2.Then the generalized linear
system is controllable if and only if a;; # 0 for
alli=1,--- ,n—1.
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