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Abstract: -
A geometric approach of generalized linear systems as pairs of linear maps defined modulo a

subspace is presented. This study permit us, to obtain conditions for controllability of the system.
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1 Introduction

The equivalence relation between pairs of ma-
trices representing linear systems under feed-
back equivalence has been largely studied dur-
ing the last three decades (see [2], [4], for exam-
ple). With respect generalized linear systems,
the study has experimented a great deal of inter-
est in recent years where feedback and derivative
feedback has been considered.

Here we present a geometrical approach con-
sisting in to associate to the system a pair of lin-
ear maps defined modulo a subspace in order to
obtain a collection of structural invariants that
permit to deduce controllability conditions.

Let X be a complex finite dimensional vec-
tor space. In the paper, we tackle the problem
to classify pairs of linear maps defined modulo
a subspace and coinciding over this subspace:

f : X −→ X/W, g : X −→ X/W,
W ⊂ X, f|W = g|W .

(1)

We will write this kind of maps as a couple
(f, g) : X −→ X/W , and we will refer simply,
as a pair of linear maps.

Our aim is to provide a classification in re-
lation to a natural generalization of the usual
similarity of pairs of endomorphisms. The clas-
sification of pair of matrices (A,B) under feed-
back equivalence as linear map defined mod-
ulo a subspace f : X −→ X/W is presented

in [2].We recall that f : X −→ X/W and
f ′ : X ′ −→ X ′/W ′ are equivalent and we will
note f ∼ f ′, if and only if there exist an isomor-
phism ϕ : X −→ X ′ with ϕ(W ) = W ′ such that
f ′ ◦ ϕ = ϕ̃ ◦ f , where ϕ̃ is the induced isomor-
phism ϕ̃X/W −→ X ′/W ′.

These results can be applied to study triples
of matrices (E, A, B) representing generalized
linear systems Eẋ = Ax + Bu, under feedback
and derivative feedback, as well as to obtain con-
ditions for controllability.

2 Pairs of linear maps defined
modulo a subspace

Our aim is to classify pairs of linear maps (f, g) :
X −→ X/W , where X is a finite dimensional
vector space, W is a linear subspace verifying
f|W = g|W . We will refer to such a map sim-
ply as a pair of linear maps defined modulo a
subspace.

The key to solve classification problem will
be to reduce to classifying two associated pairs
of linear maps defined as follows:

Definition 2.1. Let (f, g) : X −→ X/W be a
pair of linear maps defined modulo a subspace.
We consider the following pairs of linear maps
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induced in a natural way by (f, g):

(ḟ , ġ) : W −→ W1

w −→ f(w) = g(w)
(f1, g1) : X/W −→ X1/W1

π(x) −→ π1(f, g)(x)

(2)

where W1 = f(W ) = g(W ), X1 = X/W and
π : X −→ X/W and π1 : X/W −→ X1/W1 the
canonical projections.

Then we have the following commutative di-
agrams:

W
ḟ−→ W1

↓ ↓
X

f−→ X1

↓ ↓
X/W

f1−→ X2

,

W
ġ−→ W1

↓ ↓
X

g−→ X1

↓ ↓
X/W

g1−→ X2

(3)

(where X1 = X/W , and X2 = X1/W1)
Notice that the maps ḟ = ġ are exhaus-

tive and in the case where f1|W1
= g1|W1

then
(f1, g1) is a pair of linear maps with dimX1 ≤
dimX and dimX1 = dimX if and only if
W = {0}.

3 Equivalence relation

In order to define an equivalence between two
pairs of linear maps (f, g) : X −→ X/W ,
(f ′, g′) : X ′ −→ X ′/W ′ of this kind, we consider
the pairs of isomorphisms (ϕ,ψ) : X −→ X ′

where the maps induced in a natural way

(ϕ̇, ψ̇) : W −→ W ′

(ϕ̃, ψ̃) : X/W −→ X ′/W ′ (4)

verify ϕ̇ = ψ̇ and ϕ̃ = ψ̃. We denote by H(W )
the group of such pairs of isomorphisms, obvi-
ously we must suppose dimX = dimX ′ and
dimW = dimW ′. From now on, these dimen-
sions will be denoted by n + m and m respec-
tively.

Definition 3.1. Let (f, g) : X −→ X/W ,
(f ′, g′) : X ′ −→ X ′/W ′ be two pairs of linear
maps. We say that they are equivalent, (written
(f, g) ∼ (f ′, g′)), if there is (ϕ,ψ) ∈ H(W ) such
that

f ′ ◦ ϕ = ϕ̃ ◦ f

g′ ◦ ψ = ψ̃ ◦ g
(5)

and we will write simply as

(f ′, g′) ◦ (ϕ,ψ) = ϕ̃ ◦ (f, g) (6)

In particular, if W = {0} then W ′ = {0} and
(f, g) ∼ (f ′, g′) is the simultaneous equivalence
of pairs of maps.

Notice that, if (f, g) ∼ (f ′, g′) then ϕ̃ = ψ̃
induces

(ϕ1, ψ1) : X1 −→ X ′
1

(ϕ̇1, ψ̇1) : W1 −→ W ′
1

(ϕ̃1, ψ̃1) : X1/W1 −→ X ′
1/W ′

1

(7)

verifying ϕ̇1 = ψ̇1 and ϕ̃1 = ψ̃1.

Remark 3.1. Let (f, g) : X −→ X/W and
(f ′, g′) : X ′ −→ X ′/W ′ be two equivalent pairs
of maps, then f ∼ f ′ and g ∼ g′. (The equiv-
alence is as a maps defined modulo a subspace
defined at the introduction).

Proposition 3.1. ([2], Theorem I.3.2). Let
(f, g) : X −→ X/W and (f ′, g′) : X ′ −→ X ′/W ′

be two equivalent pairs of linear maps. Then

i) f1 ∼ f ′1 and rank ḟ = rank ḟ ′,

ii) g1 ∼ g′ and rank ġ = rank ġ′.

Theorem 3.1. Let (f, g) : X −→ X/W and
(f ′, g′) : X ′ −→ X ′/W ′ be two pairs of linear
maps. Suppose (f1, g1) is a pair then, (f, g) ∼
(f ′, g′) if and only if (f1, g1) ∼ (f ′1, g

′
1) and

rank ḟ = rank ḟ ′.

Proof. Suppose (f, g) ∼ (f ′, g′). Proposition
3.1 ensures the commutativity of the two three-
dimensional diagrams.

W −→ X
f−→ X1

ϕ̇ ↓ ϕ ↓ ϕ̃ ↓
W ′ −→ X

f ′−→ X′
1

ḟ ↘ f ↘ f1 ↘
ḟ ′ ↘ f ↘ ḟ ′1 ↘

W1 −→ X1
f−→ X2

ϕ̇1 ↓ ϕ1 ↓ ϕ̃1 ↓
W ′

1 −→ X1
f ′1−→ X′

2
(8)
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W −→ X
g−→ X1

ψ̇ ↓ ψ ↓ ψ̃ ↓
W ′ −→ X

g′−→ X′
1

ġ ↘ g ↘ g1 ↘
ġ′ ↘ ġ ↘ ġ′1 ↘

W1 −→ X1
g−→ X2

ψ̇1 ↓ ψ1 ↓ ψ̃1 ↓
W ′

1 −→ X1
g′1−→ X′

2
(9)

where ϕ̇ ϕ̃, ψ̇, and ψ̃ are the isomorphisms in-
duced according (3).

Now, it suffices to observe that ϕ̇1 = ψ̇1 and
ϕ̃1 = ψ̃1.

For the converse, we consider sections σ :
X1 −→ X and σ′ : X ′

1 −→ X ′, (π ◦ σ = IX1 ,
π′ ◦ σ′ = IX′

1
).

We have the following decompositions

X = W ⊕ σX1,
X ′ = W ′ ⊕ σ′X ′

1.
(10)

We define (ϕ,ψ) : X −→ X ′ as

(ϕ,ψ)(σx1) = σ′(ϕ1, ψ1)(x1), ∀x1 ∈ X1,
(ϕ, ψ)(w) = α(w), ∀w ∈ W.

(11)
where α is the isomorphism that join with the
isomorphism β make commutative the following
diagram.

W
ḟ=ġ−→ W1

α ↓ β ↓
W ′ ḟ ′=ġ′−→ W ′

1

(12)

Note that, the existence of maps α, β is ensured
because rank ḟ = rank ḟ ′ and (f, g) and (f ′, g′)
are pairs of linear maps.

Let now, (f, g) : X −→ X/W a pair of linear
maps. Suppose that f1|W1

= g1|W1
, then we can

consider the pair of linear maps (f1, g1) : X1 −→
X1/W1 Then we have the following commuta-
tive diagram:

W1
(ḟ1,ġ1)−→ W2

↓ ↓
X1

(f1,g1)−→ X1/W1 = X2

↓ ↓
X1/W1

(f2,g2)−→ X2/W2 = X3

(13)

Inductively, we can consider the collection
of pairs of linear maps defined modulo a sub-
space (f, g), (f1, g1), . . . , (fi, gi) for all i such
that f|W = g|W , . . . , fi|Wi

= gi|Wi
. We have

three possibilities

i) there exists s ∈ N such that fs−1|Ws−1
=

gs−1|Ws−1
= Xs. Then Xs+1 = {0} and

(fs+`, gs+`) = (0, 0), for all ` ≥ 1

ii) there exists s ∈ N such that fs|Ws
=

gs|Ws
= {0} = Ws+1. Then (fs+1, gs+1)

is a pair of endomorphisms.

iii) there exists s ∈ N such that fs+1|Ws+1
6=

gs+1|Ws+1
.

With the same notations, it is not difficult
to prove the following Theorem.

Theorem 3.2. Let (f, g) : X −→ X/W and
(f ′, g′) : X ′ −→ X ′/W ′ equivalent pairs of lin-
ear maps. Then (f, g) ∼ (f ′, g′) if and only if
the following conditions

i) s = s′,

ii) dimWi = dim W ′
i for all i,

iii) (fi, gi) ∼ (f ′i , g
′
i) for all i = 1, · · · , s,

hold.

4 Matrix representation of
pairs of linear maps defined
modulo a subspace

Let (f, g) : X −→ X/W a pair of lin-
ear maps. In order to obtain a matrix
representation we consider pairs of bases
of X adapted to W , that is to say bases
(bf = {e1, . . . , en, en+1, . . . , en+m}, bg =
{ē1, . . . , ēn, en+1, . . . , en+m}) such that
{en+1, . . . , en+m} is a base for W , and ei −
ēi ∈ W for all i = 1, · · · , n. Consequently
{e1 + W, . . . , en + W} = {ē1 + W, . . . , ēn + W}
is a base for X/W .
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The matrices Af and Ag of the linear maps
f and g in this pair of bases are in the form

Af =
(
A1 B

)
, Ag =

(
A2 B

)
, (14)

with A1, A2 ∈ Mn(C), B ∈ Mn×m(C).
We will write simply as a triple of matrices

(A1, A2, B).

Proposition 4.1. Let (A1, A2, B) and
(A′1, A

′
2, B

′) be two triples of matrices corre-
sponding to the matrix representation of two
equivalent pairs of maps (f, g) and (f ′, g′) re-
spectively. Then there exist invertible matrices
P ∈ Gl(n;C) Q ∈ Gl(m;C) and rectangular
matrices F1, F2 ∈ Mm×n(C) such that the fol-
lowing equality holds.

�
A1 A2 B

�
= P−1

�
A′1 A′2 B′

�0@P 0 0
0 P 0
F1 F2 Q

1A .

(15)

Remark 4.1. Let (A1, A2, B) and (A′1, A
′
2, B

′)
equivalent triples. Then the pairs of matrices
(A1, B) and (A2, B) are feedback equivalent to
(A′1, B

′) and (A′2, B
′) respectively. The converse

is not true.
Proposition 4.2. Let (f, g) be a pair of lin-
ear maps where dimW = 1, s = n ((fs, gs) =
(0, 0)). Then there exists a pair of adapted bases
(bf , bg) such that

A1 =

0BBBBB@
0 1 . . . 0 0
0 0 . . . 0 0

. . .
. . .

0 0 . . . 0 1
0 0 . . . 0 0

1CCCCCA ,

A2 =

0BBBBB@
a1,1 1 . . . 0 0
a2,1 a2,2 . . . 0 0

. . .
. . .

an−1,1 an−1,2 . . . an−1,n−1 1
0 0 . . . 0 0

1CCCCCA ,

B =

0BBBBB@
0
0
..
.
0
1

1CCCCCA .

(16)

Proof. We have that Ws = Xs. We consider the
sections
σ′s : Ws −→ Xs−1, such that Xs−1 = Ws−1 ⊕ σ′sWs,
σ′s−1 : Xs−1 −→ Xs−2, such that Xs−2 = Ws−2 ⊕ σ′s−1Xs−1,

.

..
σ′1 : X1 −→ X, such that X = W ⊕ σ′1X1,

calling σi = σ′1◦. . .◦σ′i we have X = W⊕σ1W1⊕
. . .⊕ σsWs and f : σi(Wi) −→ πσi+1(Wi+1).

We consider bf = {w1, . . . , wn+1}, where
w1 ∈ σsWs,

w2 = f−1πw1 ∈ σs−1Ws−1,
. . .
wn = f−1πwn−1 ∈ σ1W1,

wn+1 = f−1πwn ∈ W.

So, taking into account that fi|Wi
= gi|Wi

,

g(w1) = a1,1w1 + a2,1w2 + · · ·+ an−1,1wn−1 + an,1wn,
g(w2) = w1 + a2,2w2 · · ·+ an−1,2wn−1 + an,2wn,

..

.
g(wn) = wn−1,n−1 + an,n−1wn,

g(wn+1) = wn.

Finally, taking bg = {w̄1, · · · , w̄n, wn+1} with
w̄i = wi − an,iwn+1 for all i = 1, · · · , n we have
that (A1, A2, B) has the desired form.

Remark 4.2. Numbers aij in matrix A2 charac-
terize the equivalence class of triples of matrices
verifying proposition (4.2).

Corollary 4.1. Let (A1, A2, B), A1, A2 ∈
Mn(C), B ∈ Mn×1(C) be a triple of matrices
representing a pair of linear maps (f, g) : X −→
X/W . Then, (A1, A2, B) ∼ (A1,A2,B) if and
only if

rank (B) = 1,
rank

�
B A1B

�
= 2,

rank
�
B A2B

�
= 2,

rank
�
B (A1 −A2)B

�
= 1,

rank
�
B A1B A2

1B
�

= 3,
rank

�
B A2B A2

2B
�

= 3,
rank

�
B A1B (A2

1 −A2
2)B

�
= 2,

..

.
rank

�
B A1B . . . An−1

1 B
�

= n,

rank
�
B A2B . . . An−1

2 B
�

= n,

rank
�
B A1B . . . An−2

1 (An−1
1 −An−1

2 )B
�

= n− 1.

(17)
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Proof. We observe that if (A1, A2, B) ∼
(A′1, A

′
2, B

′), then (A1, A2, B) verifies (17) if and
only if (A′1, A

′
2, B

′) verifies.
So, suppose (A1, A2, B) ∼ (A1,A2,B), it suf-

fices to compute
rankB = 1,
rank

�B A1B� = 2,
.
..

rank
�B A1B · · · An−2

1 B (An−1
1 − An−1

2 )B� = n− 1.

For the converse, if (A1, A2, B) is a triple verify-
ing (17), it is not difficult to prove that dimW =
1, s = n and fi|Wi

= gi|Wi
.

Example 4.1. Let (A1, A2, B) with

A1 =

0@1 −1 0
1 0 0
0 1 0

1A , A2 =

0@1 0 −1
1 1 2
0 1 1

1A , B =

0@2
0
0

1A .

So,

rank (B) = 1,
rank

(
B A1B

)
= 2,

rank
(
B A2B

)
= 2,

rank
(
B (A1 −A2)B

)
= 1,

rank
(
B A1B A2

1B
)

= 3,
rank

(
B A2B A2

2B
)

= 3,
rank

(
B A1B (A2

1 −A2
2)B

)
= 2.

Then, there exists a pair of basis (bf , bg) such
that the triple is equivalent to (A1,A2,B). In
fact

A1 =

0@0 1 0
0 0 1
0 0 0

1A , A2 =

0@1 1 0
2 1 1
0 0 0

1A , B =

0@0
0
1

1A .

Corollary 4.2. Let (A1, A2, B) be a triple ver-
ifying (17). If rank

(
B A1 −A2

)
= 1, then

(A1, A2, B) ∼ A1,A2,B) with A2 = A1.
Example 4.2. Let (A1, A2, B) with

A1 =

0@ 1
2

0 7
2

1
2

1 1
2

1
2

0 − 3
2

1A , A2 =

0@ 2 − 1
2

2

2 1
2

5

−1 1
2

−3

1A , B =

0@ 2
2
−2

1A
So,

rank
(
B A1 −A2

)
= 1,

rank (B) = 1,
rank

(
B A1B

)
= 2,

rank
(
B A2B

)
= 2,

rank
(
B (A1 −A2)B

)
= 1,

rank
(
B A1B A2

1B
)

= 3,
rank

(
B A2B A2

2B
)

= 3,
rank

(
B A1B (A2

1 −A2
2)B

)
= 2.

Then (A1, A2, B) ∼ (A1,A1,B).

5 Application to generalized
linear systems

A generalized linear system is described by the
following state space equation

Eẋ = Ax + Bu, (18)

where E and A are n-square complex matrices
and B a rectangular complex matrix in adequate
size. We can represent it by a triple of matrices
(E, A, B). Using theorem (3.1), we obtain suf-
ficient conditions for controllability of this kind
of systems.

Let Eẋ = Ax + Bu be a generalized linear
system, the standard transformations that can
be applied are

1. basis change in the state space:
(E, A,B) → (P−1EP, P−1AP,P−1B),

2. basis change in the input space:
(E, A,B) → (E, A,BQ),

3. feedback: (E, A, B) → (E, A + BF2, B),

4. and derivative feedback: (E,A, B) →
(E + BF1, A, B).

We get the following definition of equiva-
lence for generalized linear systems

Definition 5.1. Two generalized linear sys-
tems (E, A, B), (E′, A′, B′), are equivalent if
and only if there exist matrices P ∈ Gl(n;C),
Q ∈ Gl(m;C) and F1, F2 ∈ Mm×n(C) such that
these equalities

E′ = P−1EP + P−1BF1

A′ = P−1AP + P−1BF2

B′ = P−1BQ
(19)

hold.
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It is straightforward that this relation is an
equivalence relation.

Then a generalized linear system can be in-
terpreted as a matrix representation of a pair
of linear maps defined modulo a subspace, and
given two equivalent systems we can consider as
two equivalent pairs of linear maps.

Notice that (19) have the following matrix
expression

�
E′ A′ B′

�
= P−1

�
E A B

�0@P 0 0
0 P 0
F1 F2 Q

1A
We are interested in to study the controlla-

bility of generalized linear systems. For that we
remember the following Proposition (see [3]).

Proposition 5.1. The generalized linear sys-
tem (E, A, B), is controllable if and only if

rank
(
E B

)
= n

rank
(
sE −A B

)
= n ∀s ∈ C

Remark that, the controllability of general-
ized linear systems is invariant under equiva-
lence relation considered. In fact we have the
following proposition (see [3]).

Proposition 5.2. The rank of the matrix(
sE −A B

)
as well the rank of the matrix(

E B
)

are invariant under equivalence defined
above.

Proposition 5.3. Let (E,A, B) be a general-
ized linear system. Let (f, g) a pair of lin-
ear maps such that the matrix representation
with respect the canonical basis of Cn × Cm is
(E, A, B). Suppose that the triple has the form
of proposition 4.2.Then the generalized linear
system is controllable if and only if ai,i 6= 0 for
all i = 1, · · · , n− 1.
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