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Abstract: - The paper addresses the stability analysis of linear continuous systems under interval uncertainties. 
A new implementation of the interval Frazer-Duncan criterion is suggested to estimate the stability of the 
system considered. It is based on obtaining the interval extensions of the coefficients 0a  and na  in the 
characteristic polynomial as well as the determinant 1−∆ n  from the Hurwitz matrix.  In general, each of them is 
nonlinear function of independent system parameters. The interval extensions studied are determined by using 
modified affine arithmetic. Two sufficient conditions on stability and instability of the linear system considered 
are obtained. Numerical example illustrating the applicability of the method suggested is solved in the end of 
the paper.  
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1 Introduction 
It is well known that the linear system described by 
the characteristic polynomial 
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is stable if and only if the roots of the respective 
characteristic equation 

0)( =sq  (2) 
have negative real part [1]. The necessary condition 
for system stability is to have positive coefficients 
in characteristic polynomial (1), i.e. 

niai ,...,1,0,0 => . (3) 
It is well known [1] that Hurwitz formulates 

necessary and sufficient conditions for the stability 
of linear systems described by characteristic 
polynomial (1). He defines the matrix 





























=

−

−

nn

n

aa
a

aaa
aaa
aaaa
aaaa

sH

2

1

420

531

6420

7531

.........00
0.........00
.....................
00...0
00...0
00...
00...

)( . (4) 

Based on (4), he introduces )(sh∆  which is the 
determinant of the hth minor on the main diagonal 
of the Hurwitz matrix )(sH . 

Remark 1: If nh = , then )(sn∆  is the 
determinant of  the Hurwitz matrix )(sH  and 

)(1 sn−∆  denote the determinant derived from )(sH  
by deleting the last row and column of )(sH (the 
so-called Hurwitz determinants of order n and n-1). 

The Hurwitz criterion of stability is based on the 
following theorem. 

Theorem 1: A necessary and sufficient 
condition for stability of the system described by 
the characteristic polynomial (1) is: 

nhsh ,...,2,1,0)( =>∆∀ . (5) 
In general, all the coefficients niai ,...,1,0, =  

in the characteristic polynomial (1) are nonlinear 
functions of independent parameters 

mjp j ,...,2,1, = . Thus, if we evaluate the 
uncertainty in real systems, each of it takes their 
values in prescribed independent 
intervals mjj ,...,2,1, =p . Then the interval form 
of the Hurwitz criterion for stability requires the 
verification of all n conditions (5) in interval form. 
A better possibility is formulated by Frazer and 
Duncan in the following theorem [2]: 



Theorem 2: Necessary and sufficient conditions 
for stability of the system described by the 
characteristic polynomial (1) are: 

1) there exists a p∈= 1pp  such that the 
characteristic polynomial 
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is stable and 

2) the coefficients 0a , na  and the Hurwitz 
determinant of order n-1 are different from zero 
over the parameter box, that is 
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Based on the above theorem and some well-
known facts related to the stability of the 
polynomials – positiveness of the polynomial 
coefficients (necessary condition, e.g. [1]), 
positiveness of all Hurwitz determinants (necessary 
and sufficient condition, e.g. [1]) – the following 
result is straightforward [2]: 

Theorem 3: Necessary and sufficient conditions 
for stability of the system described by the 
characteristic polynomial (1) are: 

1) the nominal system (1) (with 0p  being the 
centre of  p) is stable and 

2) the coefficients 0a , na  and the Hurwitz 
determinant of order n-1 are all positive in p, i.e. 
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Since the verification of Condition 1 of 
Theorem 2 presents no difficulties we shall 
henceforth assume that it is fulfilled and we shall 
concentrate on checking Condition 2. 

 
 
2 Problem formulation 
Let )( pf  denote any of the functions )(0 pa , 

)( pan  and )(1 pn−∆ . Thus, we have to solve for 
each of these functions the following problem: 

Problem P1: Check that 
p∈> ppf ,0)( . (8) 

There are various ways to verify (8). The 
simplest approach is to use some interval extension 

[ ]FF=)( pF  of the function )( pf  in p . 
Theorem 1.1 [2] states that the interval extension 

)( pF  always contains the range ],[)(
** fff =p  

of the function )( pf  

)()( ppF f⊇ . (9) 
Hence (8) is satisfied if  0>F . 
Based on Theorem 2 and inclusion property 

(9), the following results are obvious: 
Corollary 1: (Sufficient condition for stability) 

If for all end-points 0>qF  of the functions )( pfq  
...,3,2,1,0 => qF q , (10) 

then the system considered is stable. 
Corollary 2: (Sufficient condition for 

instability) If at least one of the endpoints 
...,3,2,1,0 =≤ qF q , (11) 

then the system considered is not stable. 
Various interval extensions can be used in 

implementing Corollaries 1 and 2: natural 
extension, mean-value form extension, extension 
using the global optimization methods [2]. The 
natural extensions are determined using the 
standard interval arithmetic [3]. Unfortunately this 
extension is the widest compared to the other types 
of extensions. The improved interval linearization 
[5] leads to shorter bounds of the considered 
extensions. Better results could be obtained if an 
affine arithmetic is applied to calculate the interval 
extensions )( pF  [4]. The shortest interval 
extensions are obtained using the modified interval 
arithmetic which will be described briefly in the 
next section. This technique has been recently 
proposed [11] for the stability analysis of linear 
interval systems with generalization of the known 
Raus criterion. 

The paper is organized as follows. The 
modified affine arithmetic is described in the next 
section. The method for obtaining the interval 
extensions of the functions  )(0 pa , )( pan  and 

)(1 pn−∆  using G-intervals is presented in Section 
4. Numerical example illustrating the applicability 
of the new technique for stability analysis of linear 
interval systems by Frazer-Duncan criterion is 
solved in Section 5. The paper ends up with 
concluding remarks in the last Section 6. 

 
 
3 Modified affine arithmetic 
Most often, the functions )( pf  are rational 

functions. Thus, we will define the main 
mathematical operations for these functions. To 
maintain completeness we start with the definition 
of the basic conception, the so-called generalized 
interval. 

Definition 1: A generalized (G) interval X~  of 
length k  is defined as follows: 



∑
=

+=
k

i
iixxX

1
0

~ e  (12) 

where  kixi ,...,1,0, = , are real numbers while ie  
are unit symmetrical intervals, i.e. 

[ ]1,1−=ie . (12a) 
Let 
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be a G-interval of length 'k . To simplify 
presentation, we assume that kk ='  where k is the 
length of X~  (otherwise, we add zero components 
either in X~  or Y~  depending on whether k is 
smaller or larger than 'k ). 

In general, each of the rational functions can be 
composed of the simple mathematical operations as 
follows. 

Linear combination. Let X~  and Y~  be two G-
intervals of length k given by (12) and (13). Also, 
let R∈βα , . Then the linear combination of X~  
and Y~ , denoted YX ~~ βα + , is another G-interval 
Z~  of the same length k  if  its elements iz  are 
computed as follows: 

kiyxz iii ,...,1,0, =+= βα . (14) 
As a corollary we have the definitions of 

addition of two G-intervals ( 1== βα ) and 
subtraction of two G-intervals ( 1,1 −== βα ). 

Now we shall define the operations of 
multiplication and division of G-intervals. Unlike 
the linear combination, the operations of 
multiplication and division of G-intervals result in a 
G-interval of increased length. 

Multiplication. The product YX ~~  of two G-
intervals X~  and Y~  of length k  is a G-interval Z~  
of length k + 1 if the components iz  of Z~  are 
computed as follows: 
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kixyyxzcyxz iii ,...,1,, 00000 =+=+= , (15b) 
cvuzm −=+1 . (15c) 

It has to be noted that the multiplication (15) 
leads to smaller overestimation as compared with 
the multiplication used the standard affine 
arithmetic in [6] because of the “correction” 
introduced by the additional term c. 

To define the operation of division, we have to 
consider the operation reciprocal Y~/1  of a G- 
interval. To do this we need some definitions. The 

G-interval X~  is reduced to the corresponding 
(ordinary) interval [ ]xx,=x  if the summation 
operations in (12) are carried out. By abuse of 
language, we shall also say that X~  does not 
contain zero (is positive or negative) if the 
corresponding reduced interval x does not contain 
zero (is positive or negative). 

Reciprocal. Let Y~  be a G-interval of length k 
that does not contain zero. Then the reciprocal 

YZ ~/1~
=  is another G-interval of length k+1 if its 

components iz are computed as follows: 
( ) 121 ,/1,/1 yysyyys −=−−=−= , (16a) 
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ysyfysyf ss −=−= /1,/1 , (16c) 

( ) 00 ,5.0 ffrfff f −=+= , (16d) 

kiyszfsyz ii ,...,1,,000 ==+= , (16e) 

fm rz =+1   (16f) 

when y  and y  are the endpoints of the reduced 
interval  y. 

The above formulae follow directly from the 
general approach for enclosing univariate functions 
[7]-[10] by a linear interval form. 

The division rule given below is based on the 
expression 
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if ( Y~0∉ ).   
Division. Let X~  and Y~  be G-intervals of 

length k and Y~0∉ . Then the division YX ~/~  is a G-
interval Z~  of length k+2 whose components iz  are 
computed as follows: 

YQ ~/1~
= , (18a) 
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2,...,1,,00 +==+= kivzvcz ii  (18e) 
It is seen that the division increases the length 



of the resulting interval Z~  by two because of the 
reciprocal (18a) and multiplication (18d), each 
operation adding one more element to the initial k 
elements of X~  or Y~ .  

 
 
4 Interval Frazer-Duncan 

criterion with G-intervals 
In this section, we are interested in solving the 

Problem P1 for all the functions )(0 pa , )( pan  and 
)(1 pn−∆ . A method capable of finding the interval 

extensions )( pF  of functions  p∈ppf ),(  that 
uses affine arithmetic will be suggested here. This 
method consists of the following: 

1) The nonlinear functions )(0 pa  and )( pan  
are given in explicit form of the vector of system 
parameters p. 

2) The nonlinear function )(1 pn−∆  is 
dependent on the vector of system parameters p in 
implicit form. For this reason, we work out the 
determinant  1−∆ n  and get the expression of the 
respective nonlinear function )(1 pn−∆  in explicit 
form of the independent parameters 

mjp j ,...,2,1, = . 
To find the interval extensions considered we 

do the following: first, we present the components 
of parameter vector p by generalized intervals 
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Then we apply the necessary simple mathematical 
operations of modified affine arithmetic (described 
in previous Section 3) to make a linearization of the 
resulting functions )( pf . Thus, we get the interval 
extensions in the following form: 
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where the lengths fn  of the respective G-intervals 
depend on the type of nonlinearity of the functions  

)(0 pa , )( pan  and )(1 pn−∆  with respect to  the 
independent parameters mjp j ,...,2,1, = . 

The G-intervals (20) reduce to the 
corresponding (ordinary) intervals 

[ ] [ ]FFrrf ff =−+= ,)( 0pF  (21) 
where 
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)(5.0 0 frfF −= , (21b) 

)(5.0 0 frfF +=  (21c) 
if the operations in (20) are carried out. 

At the end, we make the following conclusions 
based on the Theorem 2 Corollaries: 

1) If all 3,2,1,0 => qF q , then the system 
considered is stable. 

2) If at least one of the endpoints 
3,2,1,0 =≤ qF q , then the system considered is 

not stable. 
 
 
5 Numerical example 
The applicability of the above technique will be 

illustrated by an example assessing the stability of 
the linear interval parameter system described by 
characteristic polynomial (1). In this example the 
order n of the associate characteristic polynomial is 

5=n , i.e. 
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It is seen from (22a) that the vector of 
parameters p is 3-dimensional, i.e. 

[ ]T321 pppp = . (23) 
The respective vectors of centers and radii are 

[ ]T0 4801000014000=p  (23a) 
and 

[ ]T10030003000)( =pR . (23b) 
We formulate the Hurwitz determinant 

41 ∆=∆ −n of order 4 and substitute (22a) in it. As a 
result we get  4∆  as explicit function of the system 
parameters 3,2,1, =jp j . First, we determinate the 

values of the functions )(0 pa , )( pan  and )(1 pn−∆  
for 0pp = . The results of the calculations are: 
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Then, we apply the simple mathematical 
operations “multiplication” and “linear 



combination” (in two cases – “addition” and 
“substraction”) and get the following left bounds of 
interval extensions of the functions )(0 pa , )( pan  
and )(1 pn−∆  when  p∈p : 
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As it is seen from (24) the nominal ( 0pp = - 
the centre of p) system described by the 
characteristic polynomial (22) is stable. It follows 
from (25) that the left bounds of all determined 
interval extensions are positive. Thus, based on 
Corollary 1 of Theorem 3 the system described by 
the characteristic polynomial (22) is stable. 

 
 
6 Conclusion 
A new interval technique for stability analysis 

of linear interval systems described by the 
characteristic polynomial (1) has been suggested. It 
is based on computing the interval extensions of the 
functions )(0 pa , )( pan  and )(1 pn−∆  when the 
coefficients niai ,...,1,0, =  in the characteristic 
polynomial (1) are nonlinear functions of 
independent system parameters mjp j ,...,1, =  
which take their values in prescribed intervals 

mjj ,...,2,1, =p . The interval extensions 
considered are determined using modified affine 
arithmetic which provides the shortest outer bounds 
of the ranges studied. Two sufficient conditions for 
stability of the system considered are defined. A 
numerical example is solved at the end of the 
paper. In the example, the nominal system ( 0pp = - 
the centre of p) is stable and all the interval 
extensions of the elements of the functions )(0 pa , 

)( pan  and )(1 pn−∆  are positive. Hence the system 
under consideration is stable. 
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