
An Aspect-to-Class Advising Architecture Based on XML in Aspect
Oriented Programming

T. Hussain, M. M. Awais, S. Shamail, M. A. Adnan

 Department of Computer Science
Lahore University of Management Sciences, DHA, Lahore, Pakistan

Abstract

In aspect oriented programming, cross-cutting
concerns are represented as aspects. These aspects can
advise classes as well as other aspects. This paper defines
an XML schema to express aspect information for the
aspects advising classes. Defining such schema provides
a platform that is implementation independent and can be
used for further research like aspect weaver development.
In aspect weaving, conflicts amongst aspects may arise
while advising classes. This paper proposes a solution
that resolves aspect conflicts related to pre-compilation
weaving. Two weaving algorithms based upon the
proposed solution are also developed and explained.

1. Introduction

Any problem domain consists of different concerns.
These concerns may be physical, logical and functional
entities. Physical and logical entities are known as
concepts in object-oriented paradigm and lead to the
specification of classes. Functionality-related concerns are
distributed amongst different classes, with particular
functions assigned to a distinct class. However, there are
some functionality-related concerns that cannot be
associated with a distinct class; and thus have a system-
wide range. Such concerns are known as cross-cutting
concerns and are discussed in [1, 2, 3]. Aspect-oriented
programming techniques involve separation of these
cross-cutting concerns from classes into groupings called
aspects. There are defined certain points in program’s
execution where aspects can specify the desired actions to
be taken. This is achieved through an advice that is the
code that runs at a predetermined point when certain
conditions are met. The program related to cross-cutting
concerns (aspect code) is woven into the class code (core
code) before execution of the main program. This process
is known as weaving and is defined by a set of weaving
rules. Weaving aspects are discussed in [4]. Aspect
oriented extensions to object oriented compilers have
been suggested in the literature as in [5, 6]. Figure 1 gives

an overview of aspect-oriented software development
process differentiating pre-compile weaving and post-
compile weaving techniques. Aspects are typically
identified when functionality is being assigned to the
classes related to a problem domain under consideration.
Aspects can be defined to advise classes or other aspects.
Generally speaking there are two categories of advices:
Aspect-To-Aspect (ATA) advising and Aspect-To-Class
(ATC) advising. This paper primarily discusses ATC.

Schonger et al observes “Although AOP seems to

become useful in solving real-world problems, the
situation is not perfect from a research point of view as
well as for some practical applications: there is no strong
theoretical basis yet, the existing prototypes are always
bound to a particular base language and the user usually
has no support to extend the language” [7]. Therefore, in
this paper, we first present an XML schema that can
appropriately represent necessary information related to
aspects. It provides a very compact and an
implementation independent framework that can be
effectively utilized for further research. Once an XML
schema is developed, all aspects can be expressed in the
form of XML documents and a validating XML parser
can be used to check whether the XML description of an
aspect follows the rules specified in the schema.

This paper also studies the resolution of aspect

conflicts that may arise when two or more aspects advise
a class. The order in which these aspects advise a class
can affect the final results. A solution suggesting
priorities is presented and the original XML schema is
modified accordingly. Two different algorithms for this
implementation are also proposed.

2. Basic XML Schema for Aspects

XML is used for description of aspects because of the
ease with which it allows any information to be expressed
according to any given structuring rules. Conformance to
these structuring rules can be easily checked with a
validating XML parser. XML also simplifies the task of

implementing a weaver because all aspect information
can be picked from the XML document by an XML
parser.

The XML schema given in Figure 2 defines

information about aspects. Important issues regarding this
definition are discussed as follows.

2.1 Identifying Aspects

The XML document may contain more than one aspect.
So each aspect should be uniquely identified. This can be
achieved using a unique numbering scheme or a unique
name allocation scheme.

2.2 Class Advice and Other Class Information

Code to be woven into the core code is contained in
the "advice" part of an aspect. The advice part is divided
into segments on the basis of the locations at which the
advice code is to be placed inside the core code. The
XML schema defines the location of the core code along
with class names to be advised.

2.3 Join Points

Join points are well defined locations in the core code
where aspect code can be weaved. Only two join points
are used for methods - before the start of the core code
and after the end of the core code. Advice code added
before the start of the core code is referred to as ’before
code’, while advice code added after the core code is
known as ’after code’. The XML schema defines
segments for ‘before code’ and ‘after code’.

2.4 Weaving Granularity and Interface Width

Weaving granularity with the above specification of

join points is quite coarse. A finer weaving granularity is
required, for example, specifying join points in terms of
statements. This means that advice code can be woven
before or after a statement of the core code. A finer
weaving granularity may not be recommended because it
can impose more restrictions on data variables and on
statements in the core and aspect code. Increasing these
restrictions means that the core-aspect interface width is
increased and freedom in designing classes and aspects
independent of each other is decreased. In other words
orthogonality and modularity are decreased [8].

Figure 1: An Overview of Aspect-Oriented Software Development and Programming

Code for Classes Code for Aspects

-

program

-

P - -

Problem Domain

Concerns

Classes Aspects

Pre-compile Weaver Aspect Compiler Class Compiler

Compile Weaver Post

Final executable/interpretable

Class Compiler

program
Final executable/interpretable

compile Weaving Pre compile Weaving ost

<!-- XML Schema for Aspects -->
<Schema xmlns = "urn:schemas-microsoft-com:xml-data">

<ElementType name = "AspectList" model = "closed"
 content = "eltOnly" order = "many">
<description>only Aspect elements contained</description>
<element type = "Aspect"/>
</ElementType>

<ElementType name = "Aspect" model = "closed"
 content = "eltOnly" order = "seq">
<description>Details of an Aspect</description>
<element type = "Extends" minOccurs = "0" maxOccurs = "1"/>
<element type = "Implements" minOccurs = "0" maxOccurs = "*"/>
<element type = "AdvisedClass" minOccurs = "0" maxOccurs = "*"/>
<element type = "Introduced" minOccurs = "0" maxOccurs = "1"/>
<element type = "Before" minOccurs = "0" maxOccurs = "1"/>
<element type = "After" minOccurs = "0" maxOccurs = "1"/>
</ElementType>

<ElementType name = "Extends" model = "closed"
 content = "textOnly" >
<description>name of class extended</description>
</ElementType>

<ElementType name = "Implements" model = "closed"
 content = "textOnly" >
<description>name of interface implemented</description>
</ElementType>

<ElementType name = "AdvisedClass" model = "closed"
 content = "eltOnly" order = "seq">
<element type = "ClassId" minOccurs = "1" maxOccurs = "1"/>
<element type = "MethodId" minOccurs = "0" maxOccurs = "*"/>
<element type = "Location" minOccurs = "1" maxOccurs = "1"/>
</ElementType>

<ElementType name = "ClassId" model = "closed"
 content = "textOnly" >
<description>name of class advised</description>
</ElementType>

<ElementType name = "MethodId" model = "closed"
 content = "eltOnly" order = "seq">
<element type = "MethodName" minOccurs = "1" maxOccurs = "1"/>
<element type = "MethodSignature" minOccurs = "1" maxOccurs = "1"/>
</ElementType>

<ElementType name = "MethodName" model = "closed"
 content = "textOnly" >
<description>name of method advised</description>
</ElementType>

<ElementType name = "MethodSignature" model = "closed"
 content = "textOnly" >
<description>signature of method advised </description>
</ElementType>

<ElementType name = "Location" model = "closed"
 content = "textOnly" >
<description>location of core code source</description>
</ElementType>

<ElementType name = "Implements" model = "closed"
 content = "textOnly" >
<description>name of interface implemented</description>
</ElementType>

<ElementType name = "Introduced" model = "closed"
 content = "textOnly" >
<description>code introduced into class</description>
</ElementType>

<ElementType name = "Before" model = "closed"
 content = "textOnly" >
<description>before part of advice to method</description>
</ElementType>

<ElementType name = "After" model = "closed"
 content = "textOnly" >
<description>after part of advice to method</description>
</ElementType>

</Schema>

Figure 2: XML Schema to Represent Aspects in ATC Advising

2.5 Method Identification

In the XML schema, aspect code for methods of a
class is specified by the method name and arguments list
for the method. The arguments list allows method
overloading to work.

3. Aspect Conflicts

A conflict between two or more aspects advising a

class method can result only if the aspects codes share a
variable or object and at least one of the aspects codes
writes to the shared variable or object. A method of
ensuring correct weaving using assertions is described in
[9]. Another method based on priorities is presented
below.

3.1 Aspect Priorities

In the case of conflicting aspects, the weaver needs to
be informed about the correct order of weaving respective
aspects in the code for a class method. This can be done
by assigning priorities to conflicting aspects.

3.2 XML Schema with Priorities

XML schema given in Figure 2 is modified as

follows. Priorities for ‘before code’ and ‘after code’ are
added to the MethodId element of Figure 2 as
BeforePriority and AfterPriority elements respectively.
The modified code segment, printed in bold, is given in
Figure 3.

3.3 Weaving Algorithms

Two algorithms defined as class-by-class weaving and
aspect-by-aspect weaving are presented here.

3.3.1. Class-by-Class Weaving Algorithm

In this algorithm the process of weaving takes place in
a class-wise sequence. All aspects advising a class are
examined before moving on to another class. An array is
maintained to record the introduce advice relevant to the
class being considered from every aspect examined.
Before code and after code of an aspect can be applied to
multiple methods of the class. Also multiple aspects can
advise each method. Two arrays (for the before and after
advice) are maintained for each method of the class.
Introduce advice does not have priorities and can be
woven in the order it was collected (or any other order, as
long as code from different aspects is not mixed).
However before and after advice has to be sorted in order
of priority before it is woven. For describing this
algorithm, called ClasswiseWeaver, some additional
notation is shown in Table 1.

Algorithm ClasswiseWeaver

for (every Class in ClassesCollection)
{
 create and initialize IntroducedArray to empty;
 for (every Method in Class)
 {
 create and initialize Method.BeforeArray to empty;
 create and initialize Method.AfterArray to empty;
 }
 while (unexamined aspects exist in AspectsCollection)
 {
 find next aspect Relevant that advises Class;
 create object Introduced from information in
 Relevant;
 add Introduced to IntroducedArray;

 for (every Method of Class advised by Relevant)
 {
 create object Before from information in
 Relevant;
 add Before to Method.BeforeArray;
 create object After from information in Relevant;
 add After to Method.AfterArray;
 }
 }
 apply code from IntroducedArray to class;
 for (every Method of Class)
 {
 sort Method.BeforeArray according to priorities;
 apply code from Method.BeforeArray to Method;
 sort Method.AfterArray according to priorities;
 apply code from Method.AfterArray to Method;
 }
}

<ElementType name = "MethodId" model = "closed"
 content = "eltOnly" order = "seq">
<element type = "MethodName" minOccurs = "1" maxOccurs
= "1"/>
<element type = "MethodSignature" minOccurs = "1"
maxOccurs = "1"/>
<element type = "BeforePriority" minOccurs = "0"
maxOccurs = "1"/>
<element type = "AfterPriority" minOccurs = "0"
maxOccurs = "1"/>
</ElementType>

<ElementType name = "BeforePriority" model = "closed"
 content = "textOnly" dt:type = "int">
</ElementType>
<ElementType name = "AfterPriority" model = "closed"
 content = "textOnly" dt:type = "int">
</ElementType>

Figure 3: XML Schema with Priorities

3.3.2. Aspect-by-Aspect Weaving Algorithm

In this algorithm, called AspectwiseWeaver, each
aspect is examined and all its advice applied to the
relevant classes after searching for them. An
intermediate data structure is created for collecting
before and after advice relevant to all methods of all
classes. This data structure can be in the form of a
multidimensional array where first dimension is the
classes, the second dimension is the methods of a
particular class, and the third dimension contains the
Method.BeforeArray and Method.AfterArray objects
(described in the previous section) for a particular
method. Other notations used for describing this
algorithm also have the same definitions as given in the
previous section. Searching for classes is done in this
data structure. Search operations can be speeded up if a
tree like data structure is used. To keep the weaving
algorithm independent of the data structure
implementation, the data structure will be wrapped up in
an abstraction called ClassStore. ClassStore has the
operations defined as shown in Table 2.

Algorithm AspectwiseWeaver

for (every Aspect in AspectsCollection)
{
 for (every Class advised by Aspect)
 {
 // not all methods are advised
 for (every advised Method of Class)
 {
 create Before object;
 // carry out operation on ClassStore
 InsertBeforeObject(Class, Method, Before);
 create After object;
 // carry out operation on ClassStore
 InsertAfterObject(Class, Method, After);
 }
 }
}
 // carry out operation on ClassStore
SortArrays();
 // Apply advice to core code
for (every Class in ClassesCollection)
{
 for (every Method of Class)
 {
 // carry out operation on ClassStore
 AdviceCollection = GiveBeforeAdvice(Class, Method);
 Apply advice in AdviceCollection to Method;
 // carry out operation on ClassStore
 AdviceCollection = GiveAfterAdvice(Class, Method);
 Apply advice in AdviceCollection to Method;
 }
}

Table 1: Terms Used in ClasswiseWeaver Algorithm
AspectsCollection An XML document containing all the aspects.
ClassesCollection A collection of code for all the classes
Class A class in ClassesCollection.
Relevant An aspect in AspectsCollection that advises a particular class in Classes. Method is a uniquely

identified method of Class. Uniquely identified means that its identity consists of method name
and arguments signature.

Introduced An object containing advice introduced by an aspect into a class.
IntroducedArray An array of Introduced objects.
Before An object containing before advice from a particular aspect and priority for a particular

Method.
After An object containing after advice from a particular aspect and priority for a particular Method.
Method.BeforeArray
and Method.AfterArray

Arrays of Before and After objects containing advice for a particular Class.Method.

Table 2: Operations Defined by ClassStore

InsertBeforeObject(Cl
ass, Method, Before)

Inserts the specified Before object into the Method.BeforeArray of the specified Method of the
specified Class.

InsertAfterObject(Cla
ss, Method, After)

Inserts the specified After object into the Method.AfterArray of the specified Method of the
specified Class.

SortArrays() Sorts, according to priorities, every Method.BeforeArray and Method.BeforeArray in
ClassStore.

GiveBeforeAdvice(Clas
s, Method)

Returns sorted before advice for the specified Method of the specified Class.

GiveAfterAdvice(Class
, Method)

Returns sorted after advice for the specified Method of the specified Class.

AdviceCollection the final ordered collection of all before or after advice from all aspects that is to be woven into
the core code.

4. Conclusions and Future Work

The descriptive power of XML has been
illustrated in the domain of aspect description.
The flexibility and extensibility of basic XML
schema has been demonstrated to easily
incorporate new concepts like the solution
presented for resolving aspect conflicts.

The XML-based architecture developed
focuses on multi-aspect advising. A schema can
be developed on similar lines for aspect-to-
aspect advising and combined multi-aspect and
aspect-to-aspect advising. These capabilities
will allow for the capture of more issues from a
problem domain for more flexible aspect-
oriented design.

The most obvious direction of any future
work on the topics covered in this paper is the
development and implementation of a complete
weaver. However if aspect-oriented
programming is considered in general there are
many promising areas (especially since aspect-
oriented programming is still in its infancy):

Aspect-oriented programming can be studied
in the context of the structured programming
paradigm. This area has been largely neglected
because most of the people currently working on
aspect-oriented programming have backgrounds
in object-oriented software development and
they have looked at aspects from the point of
view of classes. The idea of aspects may have
originated from classes but this does not imply
that aspect-oriented programming cannot be used
to enhance the structured programming
paradigm.

Work can be carried out on application of

formal methods to aspect-oriented programming.
For example, the correct advising issues
discussed in this thesis can be studied using a
formal methods approach.

5. References

[1] G. Kiczales, J. Lamping, A. Medhakar, C.

Maeda, C. Lopes,J. Loingtier, J. Irwin,
"Aspect-Oriented Programming",
Proceedings of the European Conference on
Object Oriented Programming, number 1241

in Lecture Notes in Computer Science,
Springer Verlag, June 1997.

[2] T. Highley, M. Lack, P. Myers, "Aspect-

Oriented Programming: A Critical Analysis
of a New Programming Paradigm",
University of Virginia, Department of
Computer Science Technical Report CS-99-
29, May 1999.

[3] L. Carver, W. Griswold, " Sorting out

Concerns", First Workshop on Multi-
Dimensional Separation of Concerns in
Object-Oriented Systems, Denver, Colorado,
November 1999.

[4] K. Bollert, "On Weaving Aspects" , ECOOP

’99 International Workshop on Aspect-
Oriented Programming, 1999.

[5] G. Kiczales, E. Hilsdale, J. Hugunin, M.

Kersten, J. Palm, W. Griswold, "An
Overview of AspectJ", Proceedings of the
European Conference on Object-Oriented
Programming, 2001.

[6] O. Spinczyk, A. Gal, W. Schroder-

Preikschat, "AspectC++: An Aspect-
Oriented Extension to C++", International
Conference on Technology of Object-
Oriented Languages and Systems, Sydney,
Australia, 2002

[7] S.Schonger, E.Pulvermuller and S.Sarstedt,

"Aspect-Oriented Programming and
Component Weaving:Using XML
Representations of Abstract Syntax Trees",
Second German AOSD Workshop, Bonn,
Germany, 2002.

[8] R.J. Walker, E.L.A. Baniassad, G.C.

Murphy, "An Initial Assessment of Aspect-
Oriented Programming, Proceedings of the
21st International Conference on Software
Engineering, ACM Press, 1999, pp 120-130.

[9] H. Klaeren, E. Pulvermuller, A. Rashid, A.

Speck, "Aspect Composition applying the
Design by Contract Principle", Second
International Symposium on Generative and
Component-Based Software Engineering,
GCSE 2000, Erfurt, Germany, October
2000.

