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Abstract: -  In this paper we present and analyze a simple two-stage hybrid learning method for constructing Radial Basis Function Neural Networks (RBFNs).  It is shown that i) a well-performing set of radial basis functions can emerge from a simple clustering process applied to the regressors (outputs of hidden neurons) instead of applying a computationally costly orthogonalization-based algorithm; ii) the generalization output error function admits an upper bound in terms of the difference between the training and generalization data vectors and quantization error vectors in a deterministic setting.  In computer simulations, the proposed method gave a comparable generalization performance in noise-free conditions and generally a better performance in noisy conditions in comparison with Orthogonal Least Squares Algorithm. 
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1
Introduction

Radial Basis Function neural Network (RBFN) with the simplicity of its single-hidden layer structure is a good alternative to multi-layer perceptron (e.g. [49]) especially in the applications requiring local tunable property.  Linear output layer and radial basis hidden layer structure of RBFN gives the possibility of learning in a sequential procedure so that first the centers of RBFN are determined and then linear weights are learned without local minima problem. 

       The radial basis function method has traditionally been used for strict (zero-error) interpolation in multidimensional space by Powell [33] and Micchelli [28] requiring as many centers as data points (assigning all input data points as centers).  Then Broomhead and Lowe [4] removed the ``strict'' restriction and used less centers than data samples, which allowed  practical applications because the number of data samples is usually very large. RBFN has been an important subject in kernel representation and dictionary representation (see e.g. [12], p.218).  Today RBFN has been the focus of studies of not only numerical analysis but also neural networks. 

     Using the gaussian kernel function, RBFN is capable of forming an arbitrarily close approximation to any continuous function on a compact set [18], [25]. T.Chen and H.Chen [7], more generally, have shown the capability of approximation to nonlinear functionals and operators by RBFN using sampled data either in frequency domain or in time domain.

       RBFN with its radially symmetric activation functions produces a localized response to inputs. Different radial basis functions have been used in literature such as thin-plate splines 
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 by Schagen [34], etc. The gaussian RBFN is most commonly used.

       The architecture of RBFN involves three different layers: Input layer which consists of source nodes; hidden layer in which each neuron computes its output using a radial basis function and output layer which builds a linear weighted sum of hidden neuron outputs and supplies the response of  the network. An RBFN with one output neuron as shown in Fig.1 implements the input-output relation in (1).
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where 
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 is a radial basis function, N is the number of hidden neurons, 
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 are the centers and linear weights of RBFN, respectively.
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Fig.1. A RBFN with one output neuron.

     The center vectors 
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 are fixed in input space. It is well known that the performance of RBFN highly depends on the locations of centers and it is less sensitive to the choice of radial basis function type used in hidden neurons.

       The learning strategies in literature used for the design of RBFN differ from each other mainly in the determination of centers and could be categorized into the following proposed groups e.g. [19], [42]:

1) Fixed Centers Assigned Randomly Among Input Samples- Random Selection (RS)- [27]: In this method, which is the simplest one, the centers are chosen randomly from the set of input training samples.

2) Orthogonal Least Squares (OLS) algorithm [10]:  OLS selects a suitable set of centers (regressors) -but might not be the optimal set as demonstrated in [35]- among input training samples.  The procedure chooses centers one by one so that, at each step, the selected center maximizes the increment to the output energy [10]. Some OLS variants are: Fast orthogonal estimation algorithms in [48] and [11], refined forward regression orthogonalization algorithm [38] genetic evolution of regressors using orthogonal niches [47],  Recursive OLS [16] training.

3) Supervised Selection (SS) of Centers : In this method, the centers together with all other parameters of RBFN (centers, linear weights) are updated using a back-propagation-like gradient-descent algorithm e.g. [22], [5], [23], [40].

4) Input Clustering (IC) [29] : The locations of centers are determined by a clustering algorithm (such as Vector Quantization (VQ) e.g. [26], k-means [14]) applied to input training sample vectors. In the literature, different clustering algorithms have been used for center determination of RBFN:  k-means [29], mean tracking clustering [37], recursive k-means [6], median RBFN [3], iterative clustering of [30]).

5) Input Output Clustering (IOC) [8], [43], [46]):  In order to improve the performance of the IC method, IOC method applies a clustering algorithm to the augmented vectors obtained by concatenating the output vectors to the input vectors in input-output space.  

    Notice that the proposed comparison above is based on first-stage learning (center determination) within a two-stage learning framework for RBFN networks.  The algorithms above could be also put into two groups depending if the learning strategy in the first stage is supervised or unsupervised, i.e., if the output vectors are also used in the first-stage learning or not. This would lead to a taxonomy between 1) unsupervised learning involving the RS, and IC; versus 2) supervised learning involving the OLS, SS and IOC.  The proposed algorithm falls into the former group.  It is well known that gradient-descent type SS usually performs better than other algorithms (at the expense of longer training time).  However, this method is slow and also suffers from local minima problem as applied to a non-convex error function in learning of neural

networks, thus providing suboptimal solutions as reported by many independent authors like [1], [20].  The advantage of the OLS, IC and the proposed algorithm is that after fixing the centers, the linear output weights are efficiently learned by a linear optimization method without having local minima problem. The proposed method is briefly compared with the others in Section II.

        Among the algorithms summarized above, OLS has widely been used in literature for determining the centers of RBFN.  By using an orthogonalization procedure (e.g. Gram Schmidt [36]), energy contributions of candidate regressors are decoupled and the significance of the regressors are measured based on the corresponding error reduction ratios. At each step, the regressor having the biggest error reduction ratio is selected by OLS. However it is shown in [35] that OLS does not give the best combination of regressors in spite of these

intensive (orthogonalization) computations.  This is because the size of the error reduction ratios depends on the order in which candidate regressors are orthogonalized into the regression model. In order words, previously selected regressors influence the selection of later regressors. To overcome this ordering problem, some genetic algorithms (e.g. [47], [38] among many others) have been used for searching the optimal candidates.  In those studies the objective is to select the regressors regardless of any ordering among them.  Another drawback of OLS is the fact that it requires intensive (orthogonalization) computations.  To address this problem, a fast orthogonal estimation is derived on the basis of computing the estimates using the correlation computations instead of the orthogonal terms themselves in [48].  Another fast OLS is proposed in [11] to reduce the computational complexity. Besides these,  OLS also causes ``over-fitting'' problem (for example, in the presence of severe noise as shown in [9]). 

      For selecting the regressors, testing all possible regressors directly is impractical because the number of all possible orthogonalization paths for L regressors is equal to L!, which becomes astronomical when L is large. For example, an RBFN model with 25 candidates requires 
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 possible orthogonalization paths.  

     As an alternative to the OLS, an algorithm called Clustering of Regressors (CR) in [44] is proposed stating that a well-performing set of radial basis functions can emerge from a simple clustering process applied to the regressors (outputs of the hidden units).  In this paper, we analyze the algorithm and show that the generalization output error function admits an upper bound in terms of the difference between the training and generalization data vectors and quantization error vectors.
      The rest of the paper is organized as follows: The proposed algorithm is presented in Section 2 with brief comparisons with other algorithms. Section 3  investigates the relationship between a clustering process and the generalization output error function in a deterministic setting.  The simulation results are presented in Section 4 followed by Conclusions in Section 5. 

2
Clustering of Regressors (CR)

Assigning all the inputs as centers and writing the (gaussian) RBFN (full) model in a matrix form gives
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where
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 are “regressors vectors”, matrix R is called “regressor matrix”, 
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 is the linear weight vector and 
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 is the desired output vector.   Equation (3) is an exact interpolator. Provided that 
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.  In e.g. [2], p.165, it is written that for a large class of basis function, the matrix R is indeed non-singular provided that the data points are distinct.
      The proposed method is a two-stage hybrid learning method: First an unsupervised clustering is performed in L-dimensional space of regressors (to determine the centers); and then a linear LS-type supervised algorithm to find the optimal output layer weights, which may be summarized as follows [44]:

      Step 1: For a given N (N<L), implement an N clustering algorithm (k-means [26], VQ e.g. [12] (chapter 6.1) to the regressors 
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 in (3) and find the N cluster codebook vectors 
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 which minimizes the following average squared quantization errors (e.g. [24], p.48).
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where
[image: image24.wmf]{

}

{

}

N

L

j

i

,

,

2

,

1

,

,

2

,

1

:

)

(

L

L

®

 is an index identifying the cluster to which the regressor 
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 belongs and the norm is Euclidean. Clustering in the space of regressor vectors occurs in an L-dimensional hypercupe. The number of clusters (neurons) N is defined by the designer.

      Step 2: Determine the regressors (centers): For each cluster, select the nearest regressor to the cluster codebook vector and obtain the set 
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     Step 3: Find the optimum output layer weights for the centers obtained in Step 2 using a linear LS or pseudo-inverse method.  

       The IC, IOC, OLS and the proposed method CR are two-stage learning methods, by which we mean the linear weights are learned by a linear LS (or pseudo-inverse) algorithm after determining the centers of RBFN by a clustering or by an OLS algorithm.  The IC algorithm applies a clustering algorithm in input space (input layer); IOC algorithm in input-output space (input-output layer), and the CR in regressor space (outputs of hidden layer).  The CR works in a feature space equivalent to an L-dimensional hypercupe, where L is the cardinality of the training set.

      As the IC and IOC assign the centers from continuous input space, the OLS and CR assign the centers from discrete space of input sample vectors, i.e. in the OLS and the CR, N centers are selected among L input sample vectors (L>N).  In the OLS, the regressors are selected one by one according to the error reduction ratios (which are dependent of ordering the regressors into regression model) whereas in the CR method the outcome of clustering process dictates the regressors to be selected.   So, determining the regressors (centers) by the OLS is influenced not only by candidate regressors (which are nonlinear functions of the input samples) but by the output samples also.  The more noisy the output samples are, the more “noisy energy” is compacted into the RBFN model by the OLS, which clearly effects the orders (error reduction ratios) of the regressors by the OLS.  In the CR method, on the other hand, the output samples have no effect on determining the regressors; the clustering dictates the regressors to be selected by ``eliminating'' the ``similar'' regressors in the sense of Euclidean norm.

       In this paper, VQ [12] is applied to find the codebook vectors which constitute the best representation for clusters in the regressor space in the sense that they minimize the average quantization errors for the regressor vectors (in case all of which are used, zero error is obtained).  

3
The Effect of Clustering on the Generalization Output Error

Following conventional approach, we assume that the parameters (centers, weights) of RBFN are specified in order to minimize the error function defined as the sum of squared errors over a finite set of L training samples, and then its performance is evaluated by the sum of squared errors over a set of
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Training data set:  
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Generalization data set:  
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where L and 
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 are the numbers of samples in the training and generalization sets respectively. For the sake of simplicity in notation, without loss of generality, we assume in this section 
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. The differences between the training and generalization data vectors are shown in (7)
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So, the training and generalization error functions are given by
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where 
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 is a matrix whose columns are the center vectors of the RBFN.  

      RBFN regression models for training and generalization data sets in (6), respectively, give
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where (
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 are error vectors of the RBFN regression models for the training and generalization data sets respectively.  
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       Notice that squares of the 2-norms of the error vectors 
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 in (10) and (11) are equal to the training and generalization output error functions in (8) and (9) respectively (multiplying by L). 

      From (10) and (11), we obtain the following upper bound on the norm of 
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     In what follows, we investigate the second and third terms of the upper bound in (13).

i) Second Term: Once applying VQ e.g. [12] algorithm to the regressors in (3), as seen from Fig.2, writing the regressors in terms of the codebook vectors and the quantization-error vectors gives
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where 
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Fig.2. Regressors and codebook vector for the cluster 
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       Using (14) and (15) in (2),
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Since 
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is the linear weight vector and e is the error vector of the RBFN model. Eq.(17) shows that the error vector of RBFN regression model (for the training data set) is obtained as a linear combination of the quantization error vectors obtained by the VQ, i.e.,
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where 
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ii) Third Term:
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Since 
[image: image87.wmf](

)

×

f

 is Lipschitz continuous with Lipschitz constant K (see e.g. Appendix of [46]), then we get the following inequality 
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where 
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Using the triangular rule in (21), we obtain
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From (13), (18) and (22), we finally obtain


[image: image93.wmf]å

å

å

=

=

=

÷

ø

ö

ç

è

æ

D

+

+

-

£

N

j

L

i

i

j

L

i

i

i

K

1

1

2

1

2

2

2

~

~

x

q

d

d

e

l

a

 (23)

4
Computer Simulation Results

Three numerical examples are presented in the following: Example 1 considers a function approximation problem under severely noisy conditions.  In Example 2, the performance of CR is compared with OLS and IC methods in system identification problem.  Example 3 is concerned with power level prediction in cellular radio systems. 

     Example 1:  This example is the one proposed in [9] and the aim is to approximate a scalar function -(24)- by using an RBFN.
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As done in [9], one hundred input-output samples are generated from 
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 is taken from the uniform distribution with zero-mean and standard deviation 0.4.  In our simulation, the RBFN 
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Fig.3. (a) Noisy training data and underlying function,  (b) RBFN network mapping constructed by OLS,  (c) RBFN network mapping constructed by CR.  The locations of centers are shown by `o'.

 with 8 gaussian functions whose widths are fixed to 0.1 is used.  A separate data set for testing (generalization) was generated for 
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. The training data set is relatively highly noisy as seen from Fig.3.a.  In general, training with noise is closely related to regularization (e.g.[2], p.347). 

     The mappings constructed by RBFNs using OLS and CR are shown in Fig.3.b and Fig.3.c, respectively.  Figure 3 suggests that the CR gives a better generalization capability under severely noisy conditions as compared to the OLS algorithm.

Example 2:  The nonlinear dynamical system in (25), which is borrowed from [31], [41] and [42] is considered in this example to compare the performance of the RBFN designed by the CR with that of RBFN by OLS and IC methods in system identification task.
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where 
[image: image102.wmf]k

u

 and 
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 are the input and output at time k, respectively.  A uniformly distributed random sequence with zero mean and with amplitude between [-1,1] is applied to the system and one hundred input-output pairs are obtained for the training set.

     Cross validation test over the set of one hundred samples is carried out in the same way as in [41]:  15 (15%) randomly selected samples are excluded from the set -to be used in the variance calculation- and the design of the unit-variance-gaussian RBFN models is based on the rest 85 samples -training set-. This is repeated 30 times. Thus, the average variance is calculated over the excluded samples as 
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 are the outputs of the system and the RBFN model respectively.  The results are shown in Table I.  The CR gave better performance as compared to the IC and comparable performance to the OLS for the system in (25).

	Method
	Number of hidden neurons

      3                  5                10

	IC
	0.0297
	0.0276
	0.0096

	CR
	0.0224
	0.0148
	0.0069

	OLS
	0.0201
	0.0128
	0.0077


Table 1: Average of squared errors in system identification problem in Example 2.
      Example 3: This example is concerned with power level signal prediction in cellular radio systems [39], [15], [41] and our aim is to compare the performance of RBFN desinged by the CR with that of the OLS method.  The problem is to predict future values of link gains [15] for urban speeds (e.g. less than 50 kmph).  The data set used for prediction is borrowed from the measurement campaign in [21].  The measurement campaign (measurement equipment and setup) is in detail presented in [21], Chapter 3, p. 27 to 47.  Mobile speed is 40 kmph ([21], p.39).  The input to the unit-variance-gaussian RBFN models is the received power level history and the output is the predicted power level in the next step (one-step-ahead predictor).  Input dimension has been chosen as four, i.e., four previous history values are used as input to the predictor.  Each segment of measurement has 272 recorded samples in time domain.   The first 164 samples (60% of the samples) are used to design the RBFN predictors with the CR and the OLS methods, and the rest (i.e. the last 104) are used for generalization once the parameters of the predictors are  fixed. This is repeated for over 100 different data segments and the average of squared prediction errors for the generalization phase are given in Fig.4.    Figure 4 shows that the proposed method gave better generalization performance as compared to the OLS case for N>3.  The impact of reduced variance of the power level prediction error by the the proposed method on cellular radio systems is that it keeps the Carrier-to-Interference+Noise Ratio (CIR) for each mobile close to a given target CIR value and thus maintains Quality of Service, e.g. [15], [39], [45].
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Fig.4 Average of squared errors during the generalization phase using  the RBFN models designed by the OLS and the proposed method for different number of neurons (N) in Example 3.

4
Conclusions

In this paper, we present and analyze a simple two-stage hybrid learning method for constructing Radial Basis Function Neural Networks (RBFNs).  It is shown that i) a well-performing set of radial basis functions can emerge from a simple clustering process applied to the regressors (the outputs of the hidden layer) instead of applying a computationally costly orthogonalization-based algorithm; ii)  the generalization output error function admits an upper bound in terms of the difference between the training and generalization data vectors and the quantization error vectors in a deterministic setting.  
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