A Generalized Fuzzy Temporal Database System with SQL Compatibility

SHADAB A. SIDDIQUI
JAVED A. ALVI
A. Q. ANSARI

Department of Computer Science

Jamia Hamdard (Hamdard University)

Hamdard Nagar, New Delhi - 110064

INDIA

Abstract: - In order to be able to store information that changes dynamically, temporal database systems are employed. In the context of fuzzy sets where both variables as well as their degree of membership to sets may vary over periods of time, the use of temporal database systems has substantial significance. In this paper the authors have taken the initiative to present a model for the persistent storage of fuzzy sets and their dynamic behavior with respect to time. We have endeavored to create a general model that is compatible with the relational model of database management and interacts freely with standard SQL.

Key-Words: - Temporal Databases, Fuzzy Temporal Databases, Information retrieval, SQL.

1 Introduction
A fuzzy set A in U may be represented as a set of ordered pairs of a generic element x and its membership value [4], that is,

A = {(x, (A (x))(x (U}

where U is the universe of discourse and the membership function (A (x) generally takes values in the interval [0,1] although other ranges may also be allowed.

Temporal data is an encoded representation of time-stamped information. According to one construal, all the data in a temporal database must be time-stamped. However there are various interpretations of what exactly a time stamp is. Temporal databases, in the broadest sense, encompass all database applications that require some aspect of time when organizing their information [7]. Storing time relevant information enables us to keep track of history and the validity of the information within a required period of time.

SQL (Structured Query Language) is the de facto standard for communicating with relational databases and has played an instrumental role in popularizing relational database management systems. SQL provides us with statements that let us define, query, modify, and control data in an RDBMS. Using SQL syntax, we can construct a statement that extracts records according to criteria we specify. Statements begin with a keyword “verb” such as CREATE or SELECT.

The need for storing imprecise information necessitates the development and design of fuzzy database systems. Most of the work in this field has focused on storing “snapshots” of fuzzy sets, as they exist at a certain point of time, by default, that point of time is “now”. Being able to trace changes in fuzzy sets over periods of time and the ability to access the state of a fuzzy set at a certain point of time requires us to extend the concept of temporal database systems. This extension of temporal databases to fuzzy temporal databases requires a database that can store variables belonging to fuzzy sets and their membership values along with a record of all changes in set variables or changes in membership values.

There are several mechanisms for interacting with temporal databases. One of the most popular ones is the TSQL2 language [2], which extends SQL for querying valid time, transaction time, and bi-temporal relational databases. An additional keyword has to be used for executing sequenced queries. Lorantzos and Nitsopoulos proposed IXSQL [2], which focuses on intervals and attempts to coalesce points into intervals. In contrast Toman’s [6] approach is based on points, as the preferred method of representing time. However we feel that all these approaches are unduly restrictive, as the support for various SQL extensions is nowhere as universal as that of SQL, hence the fuzzy temporal database system proposed here relies completely on canonical SQL. Nevertheless we feel that in spite of “restricting” ourselves to standard SQL, our model is adequate for most real life applications.

2 Issues to be Considered

A good design is one that elegantly satisfies all the constraints that are imposed on it, or at least a considerable number of them. The design of a temporal fuzzy database raises several issues that have to be given due consideration; and some of the issues that we have identified are –

a) Whether the perspective of time, considered in our model, is that of a continuum or that it occurs in a discrete manner.

b) A related concern is that whether we deal with event information – Point events or facts are typically associated with a single time point in some granularity. [7] – or do we deal with duration (or state) information.

c) The issue of how to represent the moving point of time that signifies “now” [1].

d) A choice has to be made between valid time relations, transaction time relations and bi-temporal relations.

e) Mechanism for representing the degree of a variable in a database [3]. The current trend is towards their depiction as linguistic variables [5].

f) How much of the flexibility, provided by SQL extensions for temporal databases can we sacrifice for the sake of sticking with standard SQL.

g) Interpretation of “Null” values.

3 Fuzzy Temporal Database Design
We have chosen a simple and general structure for storing temporal fuzzy sets. Our design of the temporal database consists of two tables, which can be shown diagrammatically as:

	Member_Variable

	 PK
	Member_ID

	
	Set_Name

Variable

Table: Member_Variable

This table basically identifies the constituent variables of each set, with the provision that each set has multiple elements and each element may belong to multiple sets. Incase the variables are of complex type, they should preferably be stored in a separate table and referenced here through a foreign key. The combination of Set_Name and Variable should be unique. Each such tuple should have a distinct Member_ID - making it a primary key - so that it can be used as a foreign key in another relation. This Member_ID identifies the pair (A, x) where A is a set and x, a member variable of A.

	Member_History

	PK, FK1

PK
	Member_ID

Beginning_Time

	
	Member_Degree

End_Time

Table: Member_History
This table specifies the dynamic behavior of member variables of a set with respect to time. It must be noted that the history specified here is not specific to either a particular variable or set but to a combination of these. The combination of Member_ID and Beginning_Time can be considered as the primary key; an alternative approach is to use the combination of Member_ID and End_Time as the primary key. The column Member_ID references the table Member_Value. Below depicted is the ER model of the two aforesaid tables:

	Member_Variable

	 PK
	Member_ID

	
	Set_Name

Variable

	Member_History

	PK, FK1

PK
	Member_ID

Beginning_Time

	
	Member_Degree

End_Time

Table: ER model between Member_Variable and Member_History

Membership degree is stored as a real number restricted according to the specified range. Storing it as a number enables us to have a much larger range of values and the use of considerably less space vis-à-vis linguistic variables. Also the generation of linguistic variables is context dependent and can be conveniently performed as demanded by the situation. Also the conversion from a number to a linguistic variable is generally lossy, elucidating, conversion of 0.48 to a linguistic variable “medium” is irreversible as the precise value 0.48 cannot be generated from “medium”.

We have chosen to represent the current state of a variable by storing NULL in the column End_Time. In SQL NULL values have three interpretations [7] –

a) The field does not apply to this tuple. However, in our case we do not have any field in the table Member_History in which a field may not be applicable.

b) The field value for this tuple is unknown. If the End_Time of a tuple is not known, then we consider it to be still applicable, that is, signifying the time “now”.

c) The value is known but absent; that is, it has not been recorded yet. Until the value of End_Time has not been recorded, it is considered to be in the ongoing phase of time.

Hence, our interpretation of NULL for the attribute End_Time is unambiguous and does not lend itself to any confusion or misinterpretation.

Here we have preferred to use the interval or duration perspective of time, instead of time being considered in terms of events or discrete points. The rationale behind this being that the interval approach lends itself more naturally to the behavior of fuzzy sets. A particular member variable of a set retains its degree of membership unless a new degree is assigned to it. The instant at which a variable is assigned a new degree of membership to a set, the corresponding tuple with value null in the End_Time field would be assigned a value representing that instant of time. A new tuple would be created with the same Member_ID, the new degree of time, the time of transition and null for End_Time. For fuzzy sets based on continuously varying functions, there would be a minimum interval of time during which all changes would have to be ignored; the duration of this interval would determine the level of granularity in the implementation. Also the interpretation of time here is that of valid time in contrast to transaction time. Thereby there is no need for having to differentiate between valid time state tables, valid time event tables, bi-temporal state tables and bi-temporal event tables [8]. Also, the time intervals described by our design are closed on the left and open on the right, that is, the degree of membership is valid at Beginning_Time but not at End_Time.

4 SQL Conformity
SQL, like any other database interaction language, is an assemblage of two subordinate languages, viz. a Data Definition Language (DDL) and a Data Manipulation Language (DML). We here study how each of these language sub-systems of SQL can be used in the context of a Fuzzy Temporal Database.

4.1
Definition Language

DDL enables the database designer to specify data definitions that includes schemas and the corresponding mappings. In other words, using DDL we can create and delete databases, create and delete tables, define table fields and indexes, and take other actions that affect the structure of a database.

SQL provides the following statements for Data Definition:

a) CREATE TABLE - Creates a table having the specified fields.

b) ALTER TABLE - Programmatically modifies the structure of a table.

c) DROP TABLE - Removes a table from the current database and deletes it from disk.

These commands in the proposed Fuzzy Temporal Database design are to be used exactly as they are used in standard SQL, and thus an explanation for them is not required. However, as far as possible, constraints specified elsewhere in the paper should preferably be specified during the Data Definition stage.

4.2 Manipulation Language

DML enables the user to specify commands for retrieving, updating or deleting existing data in the database or to add new data to the database.

SQL provides the following statements for Data Manipulation:

a) SELECT - Retrieves data from one or more tables. For our design, we may use this command as:

SELECT Variable, Membership_Degree, Beginning_Time, End_Time

FROM Member_Variable, Member_History

WHERE Member_Variable.Member_ID = Member_History.Member_ID

AND Membership_Degree > 0.7 AND Set_Name = ‘SomeSet’

The above query may be used to determine the variables belonging to a set ‘SomeSet’ and having a membership degree greater than a threshold value of 0.7 at any point of time. The statement reports the variable, its degree of membership ((A (x)), starting time of the interval and ending time of the interval.

SELECT Set_Name, Variable, Membership_Degree

FROM Member_Variable, Member_History

WHERE (Member_Variable.Member_ID = Member_History.Member_ID) AND ((Beginning_Time <= XTime AND End_Time > XTime) OR (Beginning_Time <= XTime AND End_Time = NULL))

This query may be used for determining all variables that belonged to any set at some instance of time along with their degree of membership ((A (x)) and the set name to which the variables belong. Here XTime can be a variable of the SQL type TIMESTAMP (used for storing date and time).

Using these examples as a guideline, any query can be formulated which takes into cognizance the temporal and fuzzy nature of the database.

b) INSERT - Appends a record to the end of a table that contains the specified field values. In our case care should be taken to ensure that all the fields have correct and consistent values. Except for Member_History.End_Time, Member_Variable.Set_Name and Member_Variable.Variable, no fields are permitted to have NULL values. Interpretation of NULL in all these three fields should be well understood. For the fields Member_Variable.Set_Name and Member_Variable.Variable NULL is to be understood in the conventional SQL sense. Also Beginning_Time should always be less than End_Time for non-null End_Time values. Foreign Key constraint specifies that Member_History.Member_ID should refer to a valid Member_Variable.Member_ID value. Values of Member_History.Membership_Degree should be within the specified range, typically 0 to 1.

c) DELETE - Used for deleting records from a table, that meet a certain specified criteria. Foreign Key constraints for Member_History.Member_ID should be respected.

d) UPDATE - Updates records in a table with new values. Constraints for this statement are similar to those for the INSERT statement.

5 Conclusion

In this paper, a general mechanism for representing fuzzy temporal databases has been proposed which is in conformance with the standard existing SQL. All the issues mentioned under section 2 have been given due consideration in the synthesis and design of the proposed fuzzy temporal database system. Such database systems find usage in Geographic Information Systems (GIS), online control and specially all those applications where time factor plays an important factor in the validity and the importance of the available data.
References:

[1] C. J. Date, An Introduction to Database Systems, 7th edition, Pearson Education Asia Pte. Ltd, 2000.

[2] David Toman, Point based Temporal Extensions of SQL and their Efficient Implementation, Temporal Databases, Dagstuhl 1997: 211-237.

[3] G. J. Klir and Bo Yuan, Fuzzy sets and Fuzzy Logic: Theory and Application, Prentice Hall Inc. 1995.

[4] L.A. Zadeh, Fuzzy Sets, Journal of Information and Control, 8, pp. 338-353, 1965.

[5] L.A. Zadeh, The concept of a linguistic variable and its application to approximate reasoning I, II, III, Information Sciences, 8, pp. 199-251, pp. 301-357, pp. 43-80.

[6] Nikos A. Lorentzos and Yannis G. Nitsopoulos, SQL Extension for Internal Data, IEEE Transaction on Knowledge and Data Engineering, Vol. 9, no. 3, May/June 1997.

[7] Ramez Elmasri and Shamkant B. Navathe, Fundamentals of Database Systems, 3rd edition, Pearson Education Asia Pvt. Ltd., 2000.

[8] Richard T. Snodgrass (ed.), The Temporal Query Language TSQL2, Dordeechti Netherlands, Kluwer Academic Publication, 1995.

[9] Shadab A. Siddiqui, “Fuzzy Temporal Database Learning for Modular Neural Networks”, Undergraduate Research Thesis, BIT 2003.

