
Software Product Family Architectures - Engineering Run-Time Variability
Dependencies in an FPGA-based Signal Processing Board

MICHEL JARING
Department of Mathematics and Computing Science

University of Groningen
P.O. Box 800, 9700 AV Groningen

THE NETHERLANDS

Abstract: -In a software product family context, software architects anticipate product diversification and design architec-
tures that support variants in both space (multiple contexts) and time (changing contexts). Product diversification is based
on the concept of variability: a single architecture and a set of components support a family of products. Software product
families need to support increasing amounts of variability, leading to a situation where variability dependencies become
of primary concern. This paper discusses (1) a formalization of variability dependencies in the context of product family
engineering and (2) a case study in developing a Real-Time Adaptive Signal Processing (RASP) system. RASP is a run-time
reconfigurable signal processing board based on Field Programmable Gate Array (FPGA) technology. The formalization of
variability dependencies has been used to design, implement and document RASP.

Key words: -Software product families; Variability; Generic software architecting; Dynamically reconfigurable systems;
Configurable system on-chip.

1 Introduction
Composing software products from software components is
not a recent concept. Early work on software components
already appeared three and a half decades ago [1], followed
by the idea to develop so-called program families [2]. This
has evolved into practical software engineering approaches
that share the ability to promote software reuse across many
products. An example of software reuse in practice is the
successful adoption of software product families in indus-
try. The goal of the software product family approach is the
systematic reuse of core artifacts for building related soft-
ware products. A software product family typically consists
of a product family architecture, a set of components and a
set of products. Each product derives its architecture from
the product family architecture, instantiates and configures
a subset of the product family components and usually con-
tains some product specific code [3].

When developing a software product family, software
architects try to prepare the family architecture for differ-
ent product contexts, i.e., they prepare the architecture to
support product diversification. Product diversification is
based on the concept of variability and appears in all family
artifacts where the behavior of an artifact can be changed,
adapted or extended. Examples of variability are a configu-
ration wizard to select the language or a license key entered
by the customer to enable (or disable) particular functional-
ity. Variability is implemented by delaying design decisions
to a specific moment in the software development process,
i.e., variant selection is delayed until a specific development
or deployment phase such as implementation or run-time is
reached. A typical example of a delayed design decision is
a software system that adapts its run-time behavior to its en-
vironment by selecting alternatives on-the-fly according to
criteria that have been defined in the development process.

#define EMBEDDED /* SIMULATION */

#ifdef SIMULATION
#include <stdio.h>

#endif

#ifdef EMBEDDED
#include <drivers.h>

#endif

Figure 1. Variation point for selecting embed-
ded or simulation mode at compile-time.

1.1 Variation Points
So-called variation points have been introduced in [4] and
are often used to express variability. A variation point refers
to one or more delayed design decisions, has as an associ-
ated set of variants and indicates a specific moment in the
development process. A typical example of a variation point
is the preprocessor directive shown in Fig. 1. This variation
point provides a choice in software operation mode and has
two variants, namely embedded and simulation mode. The
actual selection of a mode variant is delayed until source
code compilation. In other words, the design decision ‘op-
eration mode’ is not taken prior to compilation, meaning
that the consequences of this decision should not affect the
development phases prior to the compilation phase.

As also discussed in [5], all design decisions are still
open when developing a system from scratch, but they are
not left open intentionally. In other words, they do not refer
to a particular variation point and are therefore implicit. De-
sign decisions become explicit in the development process
when the corresponding variation point (or points) is identi-
fied, i.e., when it is taken into account that specific variants
are required. Once a variation point is identified, it is an
unbound state, meaning that a variant has not been selected



yet from the set of variants associated with this point. The
variation point is bound as soon as a variant is selected and
incorporated into the system. This implies that a variation
point is in one of the following states:

• Implicit: the design decision is not identified, but is
accidentally left open.

• Explicit: the design decision is identified and inten-
tionally left open:

– Unbound: no variant has been selected from the
set of variants associated with the variation point,
i.e., the design decision is open until it binds a
variant.

– Bound: a particular variant is selected from the
set of variants associated with the variation point
and incorporated into the system, i.e., the design
decision is final.

1.2 Domain and Application Engineering
There are two relatively independent development cycles in
software product family engineering, namely domain and
application engineering. Domain engineering is responsible
for the design, development and evolution of the reusable
artifacts, i.e., the product family architecture and shared
components. Application engineering, on the other hand,
is about adapting the product family architecture to the ar-
chitecture of the required product. In other words, domain
engineeringpreparesfor product diversification and appli-
cation engineering is theactof product diversification itself.

1.3 Variability Dependencies
Product families need to embed increasing amounts of vari-
ability, i.e., system functionality and system properties such
as safety, security, reliability and usability move away from
mechanics and electronics to software and become an in-
tegral part of the variability infrastructure. In addition,
the number of products in a product family tends to grow,
meaning that the variability infrastructure becomes more
fine-grained and therefore more complex. The increasing
amount of variability leads to a situation where variability
engineering becomes of primary concern in software devel-
opment. The number of variation points for industrial prod-
uct families may range in the thousands, which is already a
challenging number to manage, but the number of variabil-
ity dependencies typically has an exponential relationship
to the number of variation points, meaning that it is impos-
sible to manage variability without systematic approaches.
Systematic approaches require a formalization of variability
dependencies, i.e. a variability notation.

We detail a case study in representing variability in a
family of Magnetic Resonance Imaging (MRI) scanners de-
veloped by Philips Medical Systems in [6]. The MRI case
illustrates how variability can be made an integral part of
system development at different levels of abstraction and
identifies several research questions. These questions have
a common focus, namely:How to formalize variability de-
pendencies in product family engineering?

The remainder of this paper is organized as follows. The
next section suggests a formalization of variability depen-
dencies in a product family context. The formalization is

used in a case study in developing a run-time reconfigurable
signal processing board in section 3. Section 4 summarizes
and concludes the paper.

2 Formalizing Variability Dependencies
This section suggests a formalization of variability depen-
dencies in a product family context. The formalization as-
sumes that software variability originates from both soft-
and hardware functionality.

2.1 System Variability
Software product family engineering is characterized by
two main types of development, i.e., development with an
embedded and development with a non-embedded perspec-
tive. Embedded software is used to control electronic prod-
ucts not normally identified as computers, meaning that it
usually executes on an internal microcontroller or a Digi-
tal Signal Processor (DSP) to control other product compo-
nents. Typically, such software must be extremely reliable,
very efficient, compact, and precise in its handling of the
rapid and unpredictable timing of inputs and outputs. Non-
embedded software, on the other hand, is intended to run on
a separate computer, often a personal computer or work sta-
tion, and may be used to enhance the operation of another
device or devices. One of the main differences between em-
bedded and non-embedded software is the hardware, i.e., as
opposed to non-embedded software, embedded software is
typically (very) hardware dependent.

It is sometimes argued that there is no actual distinc-
tion between embedded and non-embedded software. From
a theoretical viewpoint, two alternative programs and the
hardware they run on can easily be equivalent, even if one
appears to be embedded and the other does not. This may
be true in theory, but it generally does not hold in practice.
For example, the display size of mobile phones in pixels
depends on the manufacturer and sometimes even varies
within a particular product family. The different display
sizes are hardware variants and each variants requires a spe-
cific display driver. In other words, the software is either
dedicated to a specific display size or incorporates a varia-
tion point that supports different display sizes in the form of
variants, i.e., these two alternatives are not equivalent.

Product families are often embedded systems that
strongly depend on hardware, but this is hardly addressed
in presentations of ideal applications. The concept of soft-
ware reuse is typically overestimated, i.e., the flexibility of
software is less than expected due to dependencies between
soft- and hardware. Supporting the differences in hardware
is called the hardware challenge in [7].

In academia, system development is often considered
as being independent from the hardware, i.e., the software
does not have to take the hardware into account. However,
organizations that develop complex systems tend to use a
more generalized approach, i.e., system development com-
prises both soft- and hardware aspects. The reuse infras-
tructure in a product family may consist of only software or
a combination of soft- and hardware. This is also the ap-
proach taken by, e.g., the CAFÉ project (from Concept to
Application in system-Family Engineering), i.e., the focus



is on software, but in a soft- and hardware context. See [8]
for more information on CAF́E and similar projects.

As detailed in [6], we have identified (at least) two types
of softwarevariability in relation to thehardwareconfigu-
ration of a system:

• Hardware neutral variability: software variability in-
dependent from the hardware configuration, e.g., mul-
tiple language support in a mobile phone.

• Hardware enforced variability:

– Software variability that depends on the hard-
ware configuration, e.g., text output formatting
depending on the display size.

– Software variability that is required to enable the
hardware configuration, e.g., display drivers.

Literature on variability most often refers to hardware
neutral variability, i.e., it generally assumes that variability
originates from software and not from the combination of
soft- and hardware. We refer to software variability as the
combination of hardware neutral and hardware enforced
variability, i.e., system variability.

2.2 Describing Variability
Binding a variation point involves establishing arelation-
ship between the variation point and the selected variant.
This relationship may imply certaindependencies(con-
straints), e.g., a system generally requires that specific vari-
ation points are bound to have a working, minimal system.
There can be many different types of dependencies and pin-
pointing them requires a more formal way to describe vari-
ability. We use a notation that has many characteristics of
a constraint specification language. Constraint specification
languages have been developed outside the immediate soft-
ware engineering research community such as the configu-
ration management community and have been used in prac-
tice for several decades now. See, e.g., [9]. Please note that
we are trying to pinpoint the different types of variability
dependencies and that we use a constraint specification lan-
guage as a tool to prevent ambiguities. In other words, it is
a means and not a goal in itself. The following nomencla-
ture aims for describing variability in system-independent
terms, i.e., independent from a particular system, method or
organization:

• The set of all variation points:
V P = {vpa, vpb, vpc, . . .}

• The set of variants forvpx:
vpx = {vx1, vx2, vx3, . . .}

• The power set (the set of subsets) of all variants:
V = {{va1, va2, va3, . . .}, {vb1, vb2, vb3, . . .},
{vc1, vc2, vc3, . . .}, . . .}

• A relationship betweenvpx andvxn (vpx bindsvxn):
(vpx, vxn)

Dependencies between variation points and variants can
be expressed in the form of conditional expressions:

• if vpx is bound thenvpy should be bound:
if vpx then vpy

• if vpx is bound thenvpy should bindvyn:
if vpx then (vpy, vyn)

• if vpx bindsvxn thenvpy should be bound:
if (vpx, vxn) then vpy

• if vpx bindsvxn thenvpy should bindvym:
if (vpx, vxn) then (vpy, vym)

Dependencies may involve negation, meaning that the
condition and expression of theif -then statement can ex-
clude variation points or variants from binding. For exam-
ple, if vpx bindsvxn thenvpy should notbind vym is ex-
pressed asif (vpx, vxn) then ¬(vpy, vym). A relationship
between a variation point and a variant may impose depen-
dencies on other variation points and variants. For example,
if vpx is bound then bothvpy andvpz should also be bound
is expressed asif vpx then (vpy ∧ vpz). Similarly, if vpx

is bound thenvpy or vpz or both should be bound is ex-
pressed asif vpx then (vpy ∨ vpz), i.e., it is an inclusive
OR operation. To complete the nomenclature, the exclusive
OR operation, meaning that eithervpy or vpz is bound, is
written asif vpx then (vpy Y vpz).

3 Case Study: RASP
This section discusses a case study in developing a Real-
Time Adaptive Signal Processing (RASP) system. RASP is
a run-time reconfigurable signal processing board based on
Field Programmable Gate Array (FPGA) technology. The
formalization of variability dependencies has been used to
design, implement and document RASP.

3.1 Dynamically Reconfigurable Systems
The term ‘reconfigurable system’ applies to a broad range of
systems. It originally referred to systems in which hardware
is reorganized to adapt to a changing context, but is now
also used for systems that can be reconfigured during any
of the development or deployment phases such as design or
execution. Configurability is introduced in the development
process by delaying design decisions, i.e., configurability is
based on the concept of variability.

A system is dynamically reconfigurable if its configura-
tion can be changed during deployment. A typical exam-
ple of dynamic reconfiguration is an embedded system that
adapts its run-time behavior to its environment by selecting
alternatives on-the-fly according to criteria that have been
defined in the development process. The software architec-
ture of such a system is dynamic, meaning that it is not static
during development nor at deployment. Dynamic software
architectures [10] are an extreme form of variability, i.e., it
is not possible to delay design decisions beyond run-time.
Even a conditional expression is sometimes considered as
a form of variability, meaning that virtually all software ar-
chitectures incorporate a certain amount of dynamic behav-
ior. The counterpart of dynamicsoftwarearchitectures is
dynamichardwarearchitectures, i.e., deployment-time re-
configurable hardware. Whether the soft- or hardware ar-
chitecture is static or dynamic, reconfigurability is based
on system variability, i.e., reconfigurability relates to both
hardware neutral and hardware enforced variability:

• Static architectures:



RT

C1

C2

Tseq1

Configuration

Time

D
ynam

ic
Sequential

Tseq2

Tpar2

C1

C2

Tpar1

Configuration

Time

D
ynam

ic
P

arallel

C1 Task T

Configuration

Time

Static

Figure 2. Static versus dynamic processing.
RT: Reconfiguration Time.

– Not adaptable: The configuration is the same
throughout development and deployment.

– Development adaptable: The configuration can
be changed during development, but not during
deployment.

• Dynamic architectures: The configuration is deploy-
ment adaptable, most notably at run-time.

An application area of dynamically reconfigurable sys-
tems is speeding up computation. As shown in Figure 2,
if a taskT can be partitioned into twosequentialsubtasks
Tseq1 andTseq2, each subtask can be processed with a run-
time configuration that is optimized for a part of the total
computation. In addition, if taskT can be partitioned into
two parallel subtasksTpar1 andTpar2, both subtasks can
be processed simultaneously due to the intrinsic parallelism
available in reconfigurable hardware such as FPGAs.

3.1.1 Field Programmable Gate Arrays
The field of reconfigurable hardware has become an active
area of research after the introduction of FPGAs by Xilinx
in the mid-1980s [11]. An FPGA provides a matrix-like
structure of logic blocks and interconnects that can be al-
tered in the field to create any combinatorial and sequential
operations that fit into the chip. Figure 3 shows the Con-
figurable Logic Blocks (CLBs) and interconnection lines
in an FPGA. CLBs are based on Field Effect Transistors
(FETs), which use an electric field to switch to and main-
tain the logic on state or, depending on the type of FET, the
off state. The function configuration for a CLB and its con-
nection to other blocks are typically loaded from distributed
Static Random Access Memory (SRAM) into the FPGA in
the form of precompiled reconfiguration bit streams. The
configurable logic in a CLB is often a so-called Lookup Ta-
ble (LUT). A LUT with n input lines and one output line
implements any function ofn variables by storing the value
of the function for each input combination of the LUT.

3.2 Real-Time Adaptive Signal Processing
The formalization of variability dependencies has been used
to design, implement and document a Real-Time Adaptive

CLB

CLB

CLB

CLB

CLB

CLB

CLB

CLB

CLB

CLB

CLB

CLB

CLB

CLB

CLB

CLB

CLB

CLB

CLB

CLB

CLB

CLB

CLB

CLB

CLB

I/O

I/O

I/O I/O I/O I/O I/O I/O

I/O
I/O

I/O
I/O

I/O
I/O

I/O

I/O I/O I/O I/O I/O I/O

I/O
I/O

I/O
I/O

I/O
I/O

I/O

Figure 3. Field Programmable Gate Array.
CLB: Configurable Logic Block. I/O: In-
put/Output.

Signal Processing (RASP) system. RASP is under devel-
opment by Sophalgo Data Systems and targets hard real-
time applications such as monitoring a dedicated software
component that synchronizes the processes that run on a
multitude of PowerPCs and on-the-fly data monitoring of
data streams to trace anomalies such as a control unit that
suddenly operates outside its bounds. System stability and
change management are key issues in the development of
RASP and depend strongly on run-time variability depen-
dencies, meaning that variability has been made an integral
part of the soft- and hardware architecture. All in all, the
idea behind RASP is to have a generic soft- and hardware
platform with the characteristics of a hard-wired solution
that can be reconfigured at run-time into the most optimal
signal processing variant depending on the changes in the
input signal.

3.2.1 Hardware Architecture
The RASP hardware architecture consists of an FPGA that
is tightly coupled to a microcontroller and is designed for
applications requiring high throughput, hard real-time sig-
nal processing in industrial settings. Microcontrollers are
integrated computer systems on chip consisting of a proces-
sor and support functions such as memory, analog/digital
converters, counters/timers, communication ports, etc. The
Peripheral Component Interconnect (PCI) local bus specifi-
cation with a bus width of 64 bit and a bus speed of 66 MHz
is used for interacting with the environment, which is fast,
architecture independent and standardized. Figure 4 shows
the main components of the hardware architecture:

• FPGA: Gate array implementation of the signal pro-
cessing algorithm. The FPGA can be reconfigured
while processing the data stream, i.e., in real-time.

• Microcontroller: Evaluates the signal processing re-
sults. Depending on the evaluation, the microcon-
troller selects the most suitable signal processing con-
figuration and writes it to the configuration controller.

• Data memory: Location for storing volatile microcon-
troller and FPGA data during execution.

• Program memory: Write-protected location to store
the microcontroller program and the precompiled
FPGA reconfiguration bit streams.

• Memory controller: Two-way, independent bus con-
nections for data and program memory, respectively.



Memory Controller

FPGA

Configuration Controller

Data

Interrupts

Program MemoryData Memory

Microcontroller

PCI

PC
I C

ontroller

Figure 4. RASP hardware architecture.

• Configuration controller: One-way bus connection and
configuration protocol implementation for reconfigur-
ing the FPGA.

• PCI controller: Local I/O bus for interfacing with the
environment. This bus carries the data stream as input
and signal processing results as output.

One of the key features of RASP is the ability to adapt to
changes in the signal, i.e., the signal processing results are
evaluated on-the-fly to determine if the FPGA is optimally
configured with the available variants. The evaluation algo-
rithm is implemented in the form of a mapping function and
is executed in a dedicated fashion by the microcontroller.
The mapping function requires a fixed number of CPU cy-
cles for each evaluation and is executed at least 100 times
per second, which is a guaranteed lower bound given the
microcontroller specification. For each 250 evaluations, the
configuration with the highest vote count is written to the
configuration controller, assuming it is different from the
current FPGA configuration. The configuration controller
then reconfigures (parts of) the FPGA accordingly.

3.2.2 Software Architecture
The software architecture of RASP is designed, imple-
mented and documented according to the variability nomen-
clature and independent from the hardware architecture.
Due to the conditional expressions of the nomenclature, the
run-time variability dependencies can be stored (program
memory), processed (microcontroller) and written (config-
uration controller) in a one-to-one fashion, i.e., ‘as is’. To
prevent ambiguities in the product configuration process, a
valid RASP configuration should bind all variation points.
The Empty variant is available for binding variation points
that are excluded from providing functionality. The RASP
product family consists of five products, i.e., RASP iden-
tifies five process modes that are marketed as independent
products. See also Table 1. Each mode requires a combi-
nation of the family variants shown in Table 2. The RASP
product family is defined as follows:

• RASP ≡ V P = {Mode, SPA,Analysis,
Compression, Indexing, Monitoring, Sampling}

• Mode = {Analysis, Compression, Indexing,
Monitoring, Sampling, Empty}

• Analysis = {SPA,RM,AF,Empty}
• Compression = {SPA,RM,CF,Empty}

Table 1. RASP product family.

Process mode Data stream operation

Analysis Artifact recognition
Compression Removing redundancy
Indexing Artifact addressing
Monitoring Anomaly tracing
Sampling Sample set selection

Table 2. RASP product family variants.

Family variants Description

SPA Signal Processing Algorithm
RM Reference Matrix
AF Analysis Filter
CF Compression Filter
IF Indexing Filter
MF Monitoring Filter
SF Sampling Filter
Empty void functionality

• Indexing = {SPA,RM, IF,Empty}
• Monitoring = {SPA,RM,MF,Empty}
• Sampling = {SPA,RM,SF,Empty}

Selecting a particular process mode means that the other
modes can not be selected, which is expressed by binding
the Empty variant:

• if ¬(Analysis, Empty) then
((Compression, Empty) ∧ (Indexing, Empty) ∧
(Monitoring,Empty) ∧ (Sampling,Empty))

• if ¬(Compression, Empty) then
((Analysis, Empty) ∧ (Indexing, Empty) ∧
(Monitoring,Empty) ∧ (Sampling,Empty))

• if ¬(Indexing, Empty) then
((Analysis, Empty) ∧ (Compression, Empty) ∧
(Monitoring,Empty) ∧ (Sampling,Empty))

• if ¬(Monitoring,Empty) then
((Analysis, Empty) ∧ (Compression, Empty) ∧
(Indexing, Empty) ∧ (Sampling, Empty))

• if ¬(Sampling,Empty) then
((Analysis, Empty) ∧ (Compression, Empty) ∧
(Indexing, Empty) ∧ (Monitoring,Empty))

• if (Mode,Empty) then
((Analysis, Empty) ∧ (Compression, Empty) ∧
(Indexing, Empty) ∧ (Monitoring,Empty) ∧
(Sampling,Empty))

Except for the Empty variant, the variants of the varia-
tion point Mode are also variation points and have a one-to-
many relationship to the product family variants:

• if ¬(Analysis, Empty) then
(Analysis, (SPA ∧RM ∧AF ))

• if ¬(Compression, Empty) then
(Compression, (SPA,∧RM ∧ CF ))

• if ¬(Indexing, Empty) then
(Indexing, (SPA ∧RM ∧ IF ))

• if ¬(Monitoring,Empty) then
(Monitoring, (SPA ∧RM ∧MF ))



Table 3. RASP signal processing variants.

SPA variants Description

2DP 2-Dimensional Processing
4DP 4-Dimensional Processing
8DP 8-Dimensional Processing
... ...
64DP 64-Dimensional Processing
128DP 128-Dimensional Processing
256DP 256-Dimensional Processing
Empty void functionality

• if ¬(Sampling,Empty) then
(Sampling, (SPA ∧RM ∧ SF ))

As said, one of the key features of RASP is the ability to
adapt to changes in the signal it is processing. Table 3 shows
the variants of the Signal Processing Algorithm (SPA) vari-
ation point that are available at run-time. As opposed to
process mode selection, selecting the signal processing al-
gorithm is a one-to-one relationship between the variation
point SPA and its variants. In other words, SPA variant se-
lection is an exclusive OR operation:

• SPA = {2DP, 4DP, 8DP, 16DP, 32DP, 64DP,
128DP, 256DP, Empty}

• if (Mode,Empty) then (SPA,Empty)
• if ¬(Mode,Empty) then

(SPA, (2DP Y 4DP Y 8DP Y 16DP Y
32DP Y 64DP Y 128DP Y 256DP ))

The software architecture of RASP is the formal defi-
nition of the variability infrastructure as described above.
This definition is implemented by the configuration con-
troller in the form of programmable logic gates. In addi-
tion to writing the configuration bit streams to the FPGA,
the configuration controller also provides an integrated
soft- and hardware lock, i.e., logic gates (hardware) im-
plement the variability infrastructure in the form of condi-
tional expressions (software). An encrypted 32 bit string
is programmed into the on-chip Electrically Erasable Pro-
grammable Read Only Memory (EEPROM) of the micro-
controller and defines the default settings for RASP, i.e., the
product (process mode) the customer has purchased and the
default variant for the variation point SPA, which is usu-
ally 32DP. After reading this string from EEPROM at sys-
tem start-up, the FPGA is programmed with the appropriate
combination of reconfiguration bit streams.

Please note that the variation point SPA is used to recon-
figure the FPGA to optimize the signal processing algorithm
at run-time, whereas the other variation points are used to
configure the FPGA as a member of the product family at
system start-up.

4 Conclusions
In a product family context, system variability is the combi-
nation of hardware neutral and hardware enforced variabil-
ity, i.e., variation points and variants appear in both soft- and
hardware and may depend on each other regardless of their

origin. Binding a variation point means establishing a rela-
tionship between the variation point and a variant. This re-
lationship may impose dependencies (constraints) on other
variation points and variants. The variability relationships
and dependencies have been formalized in the form of a
variability nomenclature. The nomenclature is used in a
case study in developing a Real-Time Adaptive Signal Pro-
cessing (RASP) system. RASP is a run-time reconfigurable,
FPGA-based signal processing board.

The study shows that the nomenclature can be used to
design, implement and document a dynamically reconfig-
urable product family architecture such as RASP. Both soft-
and hardware variability dependencies are described in a
relatively easy to understand notation, i.e., in constraint
specification language style. Describing variability in a con-
straint specification language is particularly useful for au-
tomating the product configuration process and for binding
variation points at run-time according to criteria that have
been defined in the development process.

References:
[1] M. D. McIlroy: Mass Produced Software Com-

ponents. NATO Software Engineering Conference,
Garmisch, Germany, 1968, pp. 138-155.

[2] D. L. Parnas: On the Design and Development of
Product Families. IEEE Transactions on Software En-
gineering, Vol. 2, No. 1, 1976, pp. 1-9.

[3] J. Bosch: Design & Use of Software Architectures:
Adopting and Evolving a Product-Line Approach.
Addison-Wesley, 2000.

[4] I. Jacobson, M. Griss, P. Jonsson:Software Reuse:
Architecture, Process and Organization for Business
Success. Addison-Wesley, 1997.

[5] J. van Gurp, J. Bosch, M. Svahnberg:On the Notion of
Variability in Software Product Lines. Proceedings of
the Working IEEE/IFIP Conference on Software Ar-
chitecture, Amsterdam, The Netherlands, 2001, pp.
45-54

[6] M. Jaring, R. L. Krikhaar, J. Bosch:Representing
Variability in a Family of MRI Scanners. Software:
Practice and Experience, Vol. 34, No.1, 2004, pp. 69-
100.

[7] A. Maccari, A. Heie: Managing Infinite Variabil-
ity. Workshop on Software Variability Management,
Groningen, The Netherlands, 2003.

[8] F. J. Linden: Software Product Families in Europe:
The ESAPS & CAF́E Projects. IEEE Software, Vol.
19, No. 4, 2002, pp. 41-49.

[9] F. J. Buckley: Implementing Configuration Manage-
ment: Hardware, Software and Firmware. IEEE Press,
1996.

[10] P. Oreizy, M. M. Gorlick, R. N. Taylor, D. Heim-
bigner, G. Johnson, N. Medvidovic, A. Quilici, D.
S. Rosenblum, A. L. Wolf: An Architecture-based
Approach to Self-Adaptive Software. IEEE Intelligent
Systems, Vol. 14, No. 3, 1999, pp. 54-62.

[11] W. S. Carter, K. Duong, R. H. Freeman, H. C. Hsieh, J.
Y. Ja, J. E. Mahoney, L. T. Ngo and S. L. Sze:A User
Programmable Reconfigurable Logic Array. Proceed-
ings of the IEEE Custom Integrated Circuits Confer-
ence, Rochester, USA, 1986, pp. 233-235.


