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Abstract:- The proposed method of order reduction of linear systems is based on dominant pole retention coupled with step response matching technique for zero evaluation. At different points i.e., the time axis, of the unit step response of the original high order system (HOS), the output is equated with that of the reduced low order system (ROS). Depending on the order to be reduced to, the numbers of points are chosen. A set of linear equations equal in number to the unknowns in the numerator are solved to obtain these terms. A number of examples of different varieties are solved to check the validity of the proposed method and the results are encouraging.
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1. Introduction

      Among a large number of methods proposed for obtaining low order model of a high order system, those using step response matching criteria occupy a premier position. Although, there are several approaches in this area, but these can be broadly put under two categories, such as ones using the concept of response matching ‘a priori’ and the others as matching after obtaining the low order model. Methods under ‘a priori’ approach in fact uses error minimization between the step responses of HOS and ROS and some of the methods in this category can be mentioned as [3]-[7]. The other group of methods uses several mathematical approaches but ultimately uses the error criteria between step responses of HOS and ROS to evaluate the quality of ROS obtained using the method and some such methods can be located in literatures [1], [2], [8] and [9]. Present attempt is a mixed approach, like both ‘a priori’ for the steady state part of the step response and exact matching at several predefined points of the transient part of the step response. Later on, after obtaining the ROS, it is compared with HOS graphically and also the value of the Integral Square Error (ISE) between the transient parts of the responses of HOS and ROS is calculated to judge the quality of ROS.

      The problem statement and algorithm of the proposed method is given in the following sections.

2. Problem Formulation

If the transfer function of the nth order HOS is 
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where 
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 are the poles of HOS, that can be real or imaginary and distinct or repeated.

and consequently the unit step response of (1) is obtained as:
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After taking the inverse Laplace of (2) 
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then the reduced rth order ROS, 
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and 
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having unit step response as:
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is to be obtained such that the following conditions are fulfilled.

(i) Steady state parts of the responses shown in (3) and (5) should be equal i.e., 
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(ii) 
[image: image14.wmf])

r

,...,

2

,

1

i

(

,

ˆ

i

i

=

=

l

l

 are the dominant poles chosen from 
[image: image15.wmf]n

2

1

,...,

,

l

l

l

 (r<n), where 
[image: image16.wmf])

Re(

)

Re(

1

i

i

+

³

l

l

,(i=1,2,…,n-1) and 
[image: image17.wmf]0

)

Re(

n

<

l

.

(iii) Transient parts of the responses shown in (3) and (5) are matched at ‘r’ points i.e., 
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3. Description of the Method

      The procedure of the order reduction methods developed, based on the problem statement above is described in terms of steps to be followed as under: 

Step1:Selection of dominant poles to be retained

      By definition, nearer a pole is to the origin, more dominant it is said to be. So, if  
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 is least dominant. In case of imaginary pole pairs, the real part will decide the dominance. In this method, the dominant poles are to be selected as under:

      If the poles of a nth order HOS are 
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Step 2: Determination of unit step responses of HOS and ROS

As the unit step function has Laplace transform 1/s, giving a unit step input to (1) it becomes


[image: image27.wmf])

s

(

).........

s

)(

s

(

s

c

s

c

.

..........

s

c

s

)

s

(

G

)

s

(

T

n

2

1

0

1

1

n

1

n

n

n

l

l

l

+

+

+

+

+

+

=

=

-

-

           (6)                                                             

taking inverse Laplace transform of (10) gives the unit step response as
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Similarly giving the unit step input to ROS 
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its unit step response is:
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Step3:Matching of steady state parts of responses of HOS and ROS.

      As mentioned above, in order to match steady state parts, following condition is required to be fulfilled:

i.e., 
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Step4:Choice of ‘r’ matching points at 
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on the transient part of the unit step responses of HOS and ROS

      The ‘r’ matching points on system response are chosen in the transient part of the response curve only as steady state matching has already been taken into account and hence no point is chosen on the steady state part. These ‘r’ matching points are chosen using visual inspection of the response curve.

Step 5:Point-to-point matching of transient parts of unit step responses of HOS and ROS
      As the method suggests, unit step responses of the HOS and ROS should exactly match at ‘r’ points to reduce the original system HOS to 
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are constants as all 
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So,
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Step 6: Determination of unknown coefficients of numerator of (4) i.e., 
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or,
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4. Examples

Example-1
The transfer function of the original 5th order system,
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Transfer function of the reduced 2nd and 4th order systems using the proposed method are as under:
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The step responses between the original and reduced order system are shown in Fig. 1.

Example-2

The transfer function of the original 8th order system,
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Transfer function of the reduced 3rd and 4th order systems using the proposed method are as under:
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The step responses between the original and reduced order system are shown in Fig. 2.
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Fig.1: Step response comparison of original 5th and reduced 2nd and 4th order models
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Fig. 2: Step response comparison of original 8th and reduced 3rd and 4th order models

5. Conclusion

As can be seen in Figs (1-2), step response matching between original high order and reduced low order system is nearly perfect. Though the poles of the new low order systems were obtained using the well-known dominant pole retention method, the approach of obtaining the zeros is new in the proposed method and the results are encouraging. Different types of systems have been considered in the two examples solved using the proposed method. Further investigation is being undertaken by the authors towards application of the proposed method in variety of other systems as well as with different techniques of pole finding methods. Distinct advantages of the method are like an assured stable reduced order system and perfect matching of the steady state part of the unit step responses of the original high order and reduced low order systems obtained using the proposed method.
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