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Abstract. We propose two e-check systems construction which can be regarded as the extensions of Fergerson’s e-cash
system [4]. The first one is as efficient as a single term e-cash system and supports partial unlinkability. The other one
provides complete unlinkability with a more complex setting. Both of them do not require any trusted party and can be
implemented efficiently.
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1 Introduction

E-check was introduced by Chaum, et al. [2, 3]. In [3],
several offline cut-and-choose based e-check systems were
proposed. The systems proposed in [1, 5] avoid using the
cut-and-choose technique. However, [5] requires a trustee
which knows the owner of each e-coin in the system even
without double-spending. In this paper, we propose two e-
check schemes by direct extension from an e-cash scheme
[4]. The second scheme which provides complete linkabil-
ity is as efficient as that in [1] in terms of computational
complexity. The paper is organized as follows. In Sec. 2,
the Single Term offline e-cash scheme proposed by Fergu-
son [4] is reviewed. This is followed by the proposed two
e-check schemes in Sec. 3 and conclude the paper in Sec. 4.

2 Single Term Off-line Coins

It is an offline untraceable e-cash system without providing
transferability [4]. The scheme is efficient and does not
use the cut-and-choose methodology. Here we give a brief
review of the scheme. Letn be the public RSA modulus of
the bank andv be its public exponent. It is required thatv is
a reasonably large prime. Letga, gb, gc, hb, hc be publicly
known integers such thatga, gb, gc ∈ Z∗

n have large order
andhb, hc are of ordern in GF (p), wherep−1 is a multiple
of n. Let U be an identity which is the concatenation of
the user’s identity and a unique coin number so thatU is
distinct for each e-coin. Letf1 : {0, 1}∗ → Zv andf2 :
{0, 1}∗ → Z∗

n be cryptographic hash functions.

2.1 Withdrawal Protocol

The withdrawal protocol consists of three parallel runs
of the randomized blinded RSA signature scheme [4].
The user picksc1, a1, b1 ∈R Z∗

n, σ, r, φ ∈R Zv,

γ, α, β ∈R Zn, and computesGc = γvc1gc
σ mod n,

Ga = αva1ga
r mod n, and Gb = βvb1gb

φ mod n. It
sendsM1 = (U,Gc, Ga, Gb) to the bank. For simplic-
ity, we omit the notation of modular reduction in the rest
of the paper when it gets clear from its context. The
bank picksc2, a2, b2 ∈R Z∗

n and sendsM2 = (hc
c2 mod

p, a2, hb
b2 mod p) to the user. The user pickst1 ∈R

Z∗
v and computesec = f1(hc

c1c2) − σ mod v, eb =
f1(hb

b1b2)−φ mod v, a = (a1a2f2(ec, eb))t1 mod n, and
ea = 1

t1
f1(a) − r mod v. It then sendsM3 = (ec, ea, eb)

to the bank1. The user also signs(M1,M2,M3) and sends
the signature to the bank2.

The bank computesC = Gcc2gc
ec , A =

Gaa2f2(ec, eb)ga
ea , andB = Gbb2gb

eb and selectst2 ∈R

Z∗
v. It sends(c2, b2, t2, (C

t2
A)1/v, (C

U
B)1/v) to the user.

The user computesc = c1c2, b = b1b2, t = t1t2 mod v,
C = cgc

f1(hc
c), A = aga

f1(a), B = bgb
f1(hb

b), Sa =
(C

t2A)1/v

γt2α )t1 and Sb = (C
U

B)1/v

γU β
, and checks whether

Sa
v ?= CtA andSb

v ?= CUB. If these two equalities hold,
it accepts. The user stores(a, b, c, t, Sa, Sb) as an e-coin.
(a, b, c) are thebase numbersof the coin.

2.2 Payment Protocol

To spend an e-coin(a, b, c, t, Sa, Sb), the user executes the
following protocol with the shop. The user sends(a, b, c)
to the shop. The shop randomly chooses a challengex
and sends it to the user. The user computes and sends
r = tx + U andS = (Sa)x(Sb) to the shop. The shop
computesC = cgc

f1(hc
c), A = aga

f1(a), B = bgb
f1(hb

b)

and checks ifSv ?= CrAxB. If the equality holds, the shop
accepts the coin and stores(a, b, c, x, r,S). Otherwise, it
rejects. (x, r,S) is a proof of the user’s ownership to the

1Note that the exponentsec, eb andea are computed modulov. Cer-
tain corrections in the final signature(Sa, Sb) are needed to make the
blinding perfect. This is done by multiplying the final signature by a suit-
able powers ofgc, ga andgb [4]. Corrections are not shown in this paper.

2This corresponds to a signature of the user for all the data in the first
three transmissions. It is used to protect the user against framing by the
bank. We refer readers to [4] for detail.
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e-coin with base number(a, b, c). Obviously, the user can
only provide one proof in order to prevent from revealing
its identity.

2.3 Deposit Protocol

To deposit an e-coin, it sends(a, b, c, x, r,S) to the bank.
The bank verifies the coin by following the steps below.
ComputeC = cgc

f1(hc
c), A = aga

f1(a) and B =
bgb

f1(hb
b). Check if Sv ?= CrAxB. If it is false, the

bank rejects the deposit. Otherwise, it checks if(a, b, c)
are already existed in its database. If yes, the bank rejects
the deposit. Otherwise it accepts and stores(a, b, c) in its
database and it credits the shop. Double-spending is de-
tected if the bank finds the same triple(a, b, c) are already
in its database. If the corresponding(x, r,S) are the same
as the ones stored in the database, the bank concludes that
the shop is cheating. Otherwise, it concludes that the user
double spends the coin. The identity of the user,U can be
obtained easily by solving the two linear equations.

3 Our Proposed E-Checks

We present two e-check systems. The first one is highly
efficient and supports partial unlinkability. The second one
supports complete unlinkability.

3.1 E-Check I

We use the same notations as before. In this e-check
system, there is a list of reasonable large prime numbers
(v1, · · · , vk) as public exponents of the bank withvi corre-
sponding the value of$2i−1. Define that multiplying any
set ofvi, 1 ≤ i ≤ k, represents to the sum of their cor-
responding values.vd denotes the public exponent of the
bank representing$d such that

vd =
k∏

i=1

vi <d>i (1)

where<d>i denotes the value of thei-th least significant
bit of d. For example,< 6>1= 0, < 6>2= 1, < 6>3= 1.
In this way, we can represent any amount up to$2k − 1.

Withdrawal Protocol Suppose a user wants to withdraw
an e-check of maximum value$2k − 1. The withdrawal
protocol is the same as Ferguson’s one (Sec. 2.1) by having
the public exponentv = v1 · v2 · · · vk. Note that the maxi-
mum value of the e-check must be in the form of$2i − 1,
for anyi > 1. That is, all the bits of the maximum value of
the e-check should be 1 in its binary representation. This
ensures that the devaluation ofvd (first step of the Payment
Protocol below) is always computable. Let the e-check be
denoted asK = (a, b, c, t, Sa, Sb) where(a, b, c) are the
base numbers of the check.

Payment Protocol Suppose the user wants to spend$d
to the shop, where1 ≤ d ≤ 2k − 1. The correspond-
ing public exponent of the bank isvd which can be pub-
licly computed from Eq. (1). First, the user ‘devalues’ the

check from$2k − 1 to $d. It proceeds as follows: The
user computesvd = v1 · · · vk div vd, andS′a = (Sa)vd ,
S′b = (Sb)vd . Note: div is normal division without tak-
ing modulo. Then he sends the base numbers of the check
(a, b, c) to the shop. The shop randomly picks a challenge
x and sends it to the user. The user computesr = tx + U ,
S = (S′a)x(S′b) and sendsr,S to the shop. The shop com-

putesC = cgc
f1(hc

c), A = aga
f1(a), B = bgb

f1(hb
b) and

checks whetherSvd
?= CrAxB. If it is true, the shop ac-

cepts and stores(a, b, c, x, r,S, d). Otherwise, it rejects.

Deposit and Refund Protocols The deposit protocol of
our e-check system is the same as Ferguson’s (Sec. 2.3),
with the public exponentv = vd. The user can refund
the remaining$2k − 1 − d from the bank by executing a
refund protocol. The protocol is almost the same as the
deposit protocol, except the checking of double spending.
In the refund protocol, the user sends the used check-tuple
(a, b, c, x, r,S, d) to the bank. The bank verifies user’s
ownership of the e-check by first carries out the steps sim-
ilar to the payment protocol, namely it sends a challenge
x′ and obtains a response pair(r′,S ′). Then it checks if
the base numbers(a, b, c) are already in its database. If it
exists and the amount isd, the bank refunds the remaining
$2k − 1 − d to the user and updates its database to record
that the e-check has already been refunded.

Note that this part is not anonymous. The bank knows
the identity of the user who asks for refund. The bank can
also link the e-check which has already spent by the user in
earlier time.

3.2 E-Check II

The scheme in the last section is linkable at the refund
stage. We now propose another scheme which is com-
pletely unlinkable. In this scheme, the bank has only
one public exponentv. Instead, we use different elements
gai

∈ Z∗
n, 1 ≤ i ≤ k of large order to represent different

values of the e-check. Like the representation system in E-
Check I, we usegai

to represent$2i−1. In this way, withk
consecutive elements, the e-check has a maximum value of
$2k−1. We further usega0 to prevent a user from using the
e-check twice or more. Thusga0 is included in the payment
of an e-check regardless of the payment amount. E-Check
II is similar to Ferguson’s e-cash system. However, there
arek+1 signatures in each e-check if its maximum value
is $2k − 1, one is for embedding the identity of the user to
prevent double-spending while the others are for compos-
ing the value of the e-check.

Withdrawal Protocol Suppose a user wants to withdraw
an e-check of$2k − 1. Let ga0 , ga1 , · · · , gak

, gb, gc be pub-
lic wherega0 , ga1 , · · · , gak

, gb, gc are of large order inZ∗
n.

The Withdrawal Protocol proceeds as follows.
The user picks b1, c1, a10 , a11 , · · · , a1k

∈R Z∗
n,

σ, φ, r0, r1, . . . , rk ∈R Zv and γ, β, α0, α1, · · · , αk ∈R

Zn. It then computesGb = βvb1gb
φ, Gc = γvc1gc

σ

and Gai
= αi

va1i
gai

ri , for i = 0, . . . , k, and sends
M1 = (U,Gb, Gc, Ga0 , · · · , Gak

) to the bank.
The bank picksb2, c2, a20 , a21 , · · · , a2k

∈R Z∗
n and

sendsM2 = (hb
b2 , hc

c2 , a20 , a21 , · · · , a2k
) to the user.
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The user pickst10 , t11 , · · · , t1k
∈R Z∗

v, computeseb =
f1(hb

b1b2) − φ mod v, ec = f1(hc
c1c2) − σ mod v, ai =

(a1i
a2i

f2(i, ec, eb))t1i , andeai
= 1

t1i
f1(ai) − ri mod v,

0 ≤ i ≤ k. He sendsM3 = (eb, ec, ea0 , ea1 , · · · , eak
) to

the bank.
The user also signs(M1,M2,M3) and sends the sig-

nature to the bank. Note: refer to Sec. 2.1 for discus-
sions. The bank computesC = Gcc2gc

ec , B = Gbb2gb
eb ,

Ai = Gai
a2i

f2(i, ec, eb)gai
eai , , 0 ≤ i ≤ k. The bank

selectst20 , t21 , . . . , t2k
∈R Z∗

v and sends

c2, b2, {t2i
}0≤i≤k, {(Ct2i Ai)1/v}0≤i≤k, (C

U
B)1/v

to the user. The user computesc = c1c2, b = b1b2,
ti = t1i

t2i
mod v, 0 ≤ i ≤ k, B = bgb

f1(hb
b),

C = cgc
f1(hc

c), Ai = aigai
f1(ai), 0 ≤ i ≤ k,

Sb = (C
U

B)1/v

γU β
, Si = (C

t2i Ai)
1/v

γ
t2i αi

)t1i , 0 ≤ i ≤ k,

and checks whetherSb
v ?= CUB andSi

v ?= CtiAi, for
i = 0, . . . , k. If all the equalities hold, he accepts. The
user stores(a0, · · · , ak, b, c, t0, · · · , tk, Sb, S0, S1, · · · , Sk)
for the payment of the e-check.

Payment Protocol Suppose the user wants to spend$2j−
1, for some1 ≤ j ≤ k, to the shop. The payment protocol
proceeds as follows.

The user sendsb, c, a0, . . . , aj to the shop. The shop
selects a challenge numberx and sends it to the user. The
user computesri = tix + U andS ′i = (Sb)(Si)x, and
sends(ri,S ′i), 0 ≤ i ≤ j, to the shop. The shop computes

C = cgc
f1(hc

c)

B = bgb
f1(hb

b)

Ai = aigai

f1(ai), 0 ≤ i ≤ j,

and checks whetherS ′iv
?= CriAi

xB for 0 ≤ i ≤
j. If all the equalities hold, the shop accepts and stores
(a0, · · · , aj , b, c, x, r0, · · · , rj ,S ′0, · · · ,S ′j). Otherwise, it
rejects.

Deposit Protocol The deposit protocol is constructed in
its natural way. When the shop deposits the e-check, it
sends the check-tuple

(a0, · · · , aj , b, c, x, r0, · · · , rj ,S ′0, · · · ,S ′j)

to the bank. The bank verifies of the tuple as follows.
Compute C = cgc

f(hc
c), B = bgb

f(hb
b), Ai =

aigai
f(ai), for i = 0, · · · , j. Check whetherS ′iv

?=
CriAi

xB, 0 ≤ i ≤ j. If not all equal, the bank rejects
the deposit. Check whether the same values of(a0, b, c)
already exist in its database. If yes, the bank rejects the
deposit and the double-spender can easily be found. Other-
wise, it accepts and credits the shop.

Refund Protocol If the user wants to refund the remaining
amount of the e-check, that is,$2k − 1− (2j − 1) = $2k −
2j , he has to inform the bank his account number and his
identityU for the refund purpose and execute the following
steps.

The user sendsU, aj+1, · · · , ak and tj+1, · · · , tk to the
bank. The bank retrievesB,C from the withdrawal record.

The bank checks if any ofaj+1, · · · , ak are already in the
database. If yes, it rejects. Otherwise, the bank selects a
challenge numberx and sends it to the user. The bank also
computesri = tix + U , for j + 1 ≤ i ≤ k. The user
computesri = tix + U andS ′′i = (Sb)(Si)xγriβ, and
sendsS ′′i, j + 1 ≤ i ≤ k, to the bank. The bank computes

Ai = aigai
f(ai) and checks whetherS ′′iv

?= C
ri

Ai
xB

for j + 1 ≤ i ≤ k. If not all of them are equal, the bank
rejects. Otherwise, the bank records that the e-check has
been refunded in its database and refunds$2k − 2j to the
user.

4 Conclusion

We have proposed two e-check systems. One is almost as
efficient as a single term e-cash such as [4] with partial
unlinkability only. The other one provides complete un-
linkability with a more complex setting. We believe these
e-check systems can be implemented practically.
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