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Abstract: The paper deals with hybrid control schemes, i.e. with the design of discrete-time controllers for continuous-time processes. The special concern is to ensure robust control, i.e., acceptable stability and performance in the face of physical parameter uncertainties or variations over certain ranges in the controlled process. An original approach to the analysis of robust stability and robust performance in terms of robust region stability has been developed. In addition, a design method based on algebraic approach and on systematic iterative investigation of robustness margins on system parameters has been made allowing that a specified settling time can be achieved with very favorable dynamics.
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1 Introduction

The paper is concerned with the effective digital control algorithm design using polynomial algebraic theory (Fig. 2). This is very topical with the almost universal move to computer-based control schemes. In addition, the special concern is to ensure robust control with respect to parameter uncertainties, i.e., acceptable stability and performance in the face of physical parameter uncertainties or variations in the controlled process over certain ranges when only upper and lower bounds are known for each uncertain parameter.

Robust stability and robust performance are jointly guaranteed by so called robust region stability. The criterion of robust region stability presented in this paper is based on an exploration of the phase of a "characteristic function". The characteristic function is a natural extension of term 'characteristic polynomial' with wider applicability for mixed discrete/continuous time closed loop systems      (Fig. 2). 
A practically oriented method for the design of digital controllers complying with robust region stability is based on the algebraic approach where a key feature is an original reasonable standard form of discrete characteristic polynomial which allows that a specified settling time can be achieved with very favorable dynamics. For the specified settling time it allows to tune the robustness margins in terms of robust region stability.

The region stability criterion is presented in the example of hybrid control system that has been designed via the proposed design method.

2 Uncertainty descriptions
To deal with the parametric uncertainties the following family of plants is defined
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where  
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It is assumed that the polynomial coefficients are real and depend continuously on an unknown real parameter vector with independent bounds given for 
each parameter    β = [β1, β2, …, βl], βi  = <βi-, βi+>. 
As a result the set of possible parameter vectors is given by 
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A vertex is a parameter vector having marginal parameter values, where
βv = [β1, β2, …, βl]T ,  βi  = < βi-, βi+ >.
Very often also typical dynamic uncertainties caused by neglected fast dynamics are described as, for example, simple lag factors or time delay factors with uncertain time constant
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leading also to parametric uncertainty description.
Affine transfer functions, when all coefficients depend linearly on β, are of particular interest
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Multilinear transfer functions can be defined

[image: image8.wmf]=

=

-

s

D

p

p

e

s

A

s

B

s

G

)

,

(

)

,

(

)

,

(

b

b

b



[image: image9.wmf]...

)

(

)

(

)

(

)

(

...

)

(

)

(

)

(

)

(

3

2

1

3

2

1

0

0

+

+

+

+

+

+

+

+

=

å

å

å

å

å

å

s

A

s

A

s

A

s

A

s

B

s

B

s

B

s

B

I

ijk

k

j

i

I

ij

j

i

I

i

i

I

ijk

k

j

i

I

ij

j

i

I

i

i

b

b

b

b

b

b

b

b

b

b

b

b

             (3)

where, for example
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Fig. 1 Continuous-time feedback linear control system. (Dashed line arrows represent discrete-time signal flows and compact line is used for continuous time signals).

Fig. 2 Hybrid feedback linear control system. (Dashed line arrows represent discrete-time signal flows and compact line is used for continuous time signals).
3 Robust stability and performance definition

The time responses of the control system should be composed of rapidly decaying and well damped terms for every β
[image: image11.wmf]Î

B. Eigenvalues of linear control system indicate if this requirement is satisfied. Hence, this time domain requirement can be reformulated into the requirement that all closed loop poles should be placed in a prescribed region γ in the complex plane and must remain in this region for all admissible parameter variations. 
The region is determined by the designer to comply for example with some damping and/or bandwidth requirements. This approach is called robust pole region assignment (Ackermann, 1993).

a) For purely continuous-time systems the region γ can be described by a boundary δ(y) that consists of one or more contours in s-complex plane such that the membership Si
[image: image12.wmf]Î

γ   is well defined. 
The boundary contours can be given as a value set of complex function f(w), which is defined over real parameter w
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W called generalised frequency. 
Set W is a subset of real numbers. Hence the boundary is defined by
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b) For hybrid systems the region γ is defined in z-complex plane. It’s boundary can be derived from (4) using the transform 
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 (T - sampling period) under condition that the region in s-plane lies inside of the band given by imaginary axis limits (-π/T, π/T). 
Then the boundary is described by: 
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Defínition 1: (Region stability):  The system will be called γ –stable (or region stable), if it has all poles within the region γ.

Definition 2: (Robust region stability): The system is robustly region stable if it is region stable for all admissible parameter variations.

 [image: image18.png]
Fig. 3 Example of region γ in s-domain and z-domain.
3.1 Iterative approach to the controller design

An iterative method how to find a digital controller which is able to guarantee the robust region stability of control system is based on the following steps:
1. Determine nominal model 
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 and find corresponding z-transform model. Using equation (10) compute the minimal necessary number n of discrete closed loop poles. 
2. Select region γ.
3. Generate closed loop poles according to the following standard form
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where 
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 is the vector of tuning parameters (active damping coefficients), which enable the designer to form the closed loop root set.
Constant Tm can be computed by two ways:
a) if     
[image: image23.wmf]b1=b2=…=bn-1=1  then  
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b) else    
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where Tr represents a required settling time which should be prescribed by the designer.

(Settling Time): The settling time of a stable unit gain linear system (having only real poles and a zero order numerator) is equal to Tr, if its impulse response amplitude is equal to eTr.
An exact analytical formula similar to (7) cannot be derived for case (8). Hence, for given vector b, constant Am in (8) has to be computed numerically as the maximum of impulse response of the unit gain system which has a zero order numerator and poles generated using (6) for Tm=1.

4. Transform the prescribed poles si to the z-domain using equation 
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. All poles zi are distributed along the real axis within interval <0,1). Coefficients of active damping bi, determine a relative distance between every two consecutive poles. 
5. Use the procedure described in section 3 to find a digital controller that guaranties the pole placement prescribed in step (3).
6. For the designed controller plot the root set in the z-plane for uncertain parameters. Modify vector b of tuning parameters according to the following principle: The part of the root set that first tends to exceed the prescribed region y determines which coefficient bi must be increased. Then repeat steps (3), (4), (5), (6) until the complete root set remains in the prescribed region (if possible). 
7. Ensure that the coefficient values of controller polynomial Q (Fig. 4) are realistic (i.e. not extremely high). 
Otherwise the system will become very sensitive to a sensor noise, to the unstructured model uncertainties or to neglected nonlinearities. In such case it is necessary to reduce the parametric robustness requirements (uncertainty intervals must be shortened or region γ enlarged or settling time Tr prolonged).
Tuning control system performances with changing parameters b, is published in work (Budinsky-Kozak 1994).
3.2 Feedforward-feedback based algebraic pole-placement

This section deals with a method which enables the designer to find such the digital controller that guarantees the nominal pole placement. 
The algebraic polynomial approach to the output feedback based pole placement in the discrete time domain is applied. To comply with the required asymptotic properties, the internal model principle is included in the proposed design procedure. 
The two degree of freedom controller structure is utilized. It leads to the solution of two diophantine equations. The feed-forward feed-back structure favors the step responses with the zero or small over-shoot no pole-zero cancellations between controller and process are used. Together with internal model principle it guarantees that the closed loop hybrid system behaves nicely without intersample ripples.


Fig. 4 Hybrid discrete control system.
Problem 1: Consider the discrete control system in (Fig. 4). Find the minimal degree polynomials P(q), Q(q) and R(q) in delay operator q=z-1 representing the two degree of freedom digital controller managed by equation
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The controller must guarantee that the closed loop discrete control system (Fig. 4) satisfies the following two requirements:

1) Internal pole placement: The transfer functions from any point of the control system to any other point must have the same prescribed closed loop poles z1 , ..., zn.
2) Asymptotic properties: (Reference tracking and disturbance rejection): The error sequence must vanish asymptotically for prescribed generic classes of reference and disturbance signals characterised by denominator polynomials F(q) and D(q) (Fig. 4).

Theorem 1: (Feedforward feedback based pole
                      placement). 
Polynomials P, Q, R computing problem (1) can be determined according to the following steps:

1. Find factor J(q) = lcm(A.F,D)/A, where lcm() is the least common multiple of polynomials. 

2. Compute number n which is the minimal degree 
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 of closed loop characteristic polynomial
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3. Get characteristic polynomial C(q) whose n roots are selected according to section (3.1).

4. Find a minimal degree solution to diophantine equation AJMX + BNQ = C where X and Q are unknown polynomials. Such solution is unique. 

5. Find a solution to diophantine equation FS+BMR=C where R and S are unknown polynomials. Minimize the degree of polynomial R only. Such the solution is unique. 

6. P(q) = J(q) X(q) 
4 Criterion of robust region stability 

4.1 Continuous-time control system

Consider the continuous-time system. Define a complex values function


[image: image30.wmf])

(

)

,

(

)

(

)

,

(

)

,

(

s

Q

e

β

s

B

s

P

β

s

A

β

s

C

s

D

P

-

+

=

                (11) 
which corresponds to its characteristic polynomial. If s is substituted by function s=f(w) defining the boundary of the considered region, then it can be rewritten in argument w of generalised frequency
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Theorem 2: (Condition of robust region stability)
Consider the continuous control system (Fig. 2). Assume that the region γ and its boundary function f(w) is given. Assume that there exists at least one nominal vector 
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 such that the closed loop system is y -stable.

a) Necessary and sufficient condition for affine transfer function (2).
The closed loop system is y-stable for all vectors 
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 if and only if the phase condition   
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is satisfied for all couples 
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 of such vertices which differs only in one parameter βi. Their number is equal to l*2(l-1) . (Symbol 
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 denotes phase of complex number)

b) Sufficient condition for multilinear transfer function (3): The system is γ -stable for all vectors 
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 if the phase condition is satisfied for all possible couples of vertices. Their number is equal to 
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4.2 Hybrid Control System
This section brings an extension of theorem (2) for the hybrid control systems shown in (Fig. 2).

Lemma 1: (Condition of robust region-stability for hybrid systems) Theorem (2) is valid also for the hybrid control system (Fig. 2) with the following modification of the complex valued characteristic function C
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Using substitutions 
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 and s=f(w) the function (13) can be rewritten in common argument of the generalised frequency w.
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Equations (13) and (14) represent modifications of equations (12) and (11). B0(s) and A0(s) are polynomials of the nominal transfer function for which the controller was designed. 
It is defined by equation 
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, 
where β0 is a concrete nominal vector. 
Polynomials B0*(z), A0*(z) are polynomials of transfer function that is obtained by sampling of the nominal continuous transfer function considering the zero-order holder. It is assumed that the region γ was defined in the s-plane by the boundary defining function f(w).
Function C now represents a generalisation of characteristic polynomial and will be called characteristic function of the closed loop of hybrid system. Till now the theoretical proof of lemma (1) or the determination of its validity area is not finished yet. But its applicability is already proved by many practical numerical examples reaching very exact results.
5  Case studies
5.1 Position servo-system design

A simple example is given in this section which describes the application of proposed methods to the design of digital robust controller for a positioning servo-system. Varying inertial moment (J) of the system is considered as an uncertain parameter. 
Proces is described with transfer function 
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Nominal value for uncertain parameter β = 6.6e-5. Interval for uncertain parameter is from 80-200%. 

of nominal value. Settling time is Tr = 0.2s, which corresponds to the system bandwidth about 314rad/s. The number of discrete loop poles is 6. The vector b1=[1  5  3.5  1  1] and the region of stability 
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The control algorithm has been designed and implemented in a computer with sample period T=0.001s.   The      resulting    polynomials  of   the 
controller 
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P=[1  -1.5019  0.6521  -0.1502]; R=[0.0163];
Q=[9.1448  -25.2563  23.1833  -7.0702].
Corresponding time responses of the control system can be seen in (Fig. 6-7). Vector b guarantees the shape of root locus which lies in the prescribed region γ (Fig. 5). 
[image: image48.png]
Fig. 5  Root locus of robustly region-stable closed loop system for uncertain parameter β.

[image: image49.png]
Fig.6 Time responses of controlled variables.

[image: image50.png]
Fig.7 Time responses of control action
5.2 Distillation column design
Another example is model distillation column. We consider a MIMO system with 2 inputs and 2 outputs. System is described by transfer function
(2 x 2) with uncertain parameter β.
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Nominal value for uncertain parameter is β=1. 
Interval for uncertain parameter is changed from 90-110% of nominal value. Desired settling time is Tr1=15s and Tr2=37s  for subsystem 1 and  2. The number of discrete loop poles is 3 and 5.
The vector  b1=[1  2  1] ,   b2 =[1.6  1.6  1.6  1.6  1.6].
Region of stability for subsystems: 
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The control algorithm has been designed and implemented in a computer with sample period T=1s. 
The resulting polynomials of the controller for individual subsystems are: 
Q1=[2.522  -4.0269  1.6465], R1=[0.1415],   
P1=[1  -0.7262  -1.5477  1.2738], R2=[-0.0048], 
P2=[1  -2.1  1.7  -0.63  -0.42   0.46], 
Q2=[-0.405   0.7314   -0.3312] 
Corresponding time responses of the control system can be seen in (Fig. 9-10).Vector b guarantees the shape of root locus which lies in the prescribed region γ (Fig. 7-8).
[image: image54.png]
Fig. 7 Root locus of robustly region-stable closed loop system for uncertain parameter β subsystem 1.

[image: image55.png]
Fig.8 Root locus of robustly region-stable closed loop system for uncertain parameter β subsystem 2.

[image: image56.png]
Fig.9 Time responses of controlled variables.

[image: image57.png]
Fig.10 Time responses of controlled and control variables.
6 Conclusions

The main aim of the proposed paper is effective the algebraic controller design with respect to the model parameters uncertainties. For the parametric type of the uncertainties detail described in part two, effective robust digital controller algorithm is proposed. The algorithm was verified and tested for many practical control problems from industry. Obtained results confirm high performance and robustness of the controlled algorithms for SISO and MIMO systems.  
Acknowledgements

This work was supported by the Grant Agency of the Slovak Republic under grant No. 1/0155/03. 
References: 
[1] Budinsky, M., Kozak, S., Zalman, M., Design of hybrid control systems based on the robust pole region approach, Preprints of the 2nd IFAC Workshop on New trends in control systems Smolenice, Slovak Republic, 1997, pp. 26-31.

 



 



 



s



 



 



 



A



 



 



 



s



 



 



 



β



 



 



 



β



 



 



 



(



 



 



 



,



 



 



 



)



 



 



 



(



 



 



 



,



 



 



 



 



)



 



 



 



 



 



 



 



 



 



 



 



 



 



 







 



 



 



Q



 



 



Continuous   -time

process



 



 



q



 



B



 



 



 



 



 



P



 



 



 



q



 



 



 



 



 



 



(



 



 



 



)



 



 



 



(



 



 



 



)



 



 



 



 



 



 



 



 



 



 



 



 



 



 



 



 



 



 



)



 



 



 



A/D



 



 



 



Sampler (



 



 



 



 



 



 



 



 



 



u(t)



 



 



Continuous

-time algebraic

controller



 



 



 



Z.O.H



 



 



 



 



 



 



)



(



)



(



s



P



s



Q







 



)



,



(



)



,



(



β



β



s



A



s



B



 



 



 



 



 



 



 



 



Digital



 



algebraic



 



controller



 



Continuous



 







   







 -time



 



process



 



 



 



y



 



m



 



*



 



 



 



u



 



*



 



 



 



r



 



*



 



 



 



y



 



 



 



d



 



*



 



 



 



+



 



 



 



+



 



 



 



F



 



G



 



 



 



A



 



B



 



 



 



P



 



1



 



 



 



M



 



N



 



 



 



Q



 



 



 



D



 



E



 



 



 



R



 



 



 



-



 



 



 



-



 



 



 



 



 



 



 



 



 



 



 



 



 



 



 



 



 



 



Two degree of 



freedom digital 



controller



 





1

_1146982906.unknown

_1146984078.unknown

_1146984327.unknown

_1146985371.unknown

_1146985398.unknown

_1147000673.unknown

_1146985667.unknown

_1146985385.unknown

_1146984427.unknown

_1146984452.unknown

_1146984407.unknown

_1146984257.unknown

_1146984313.unknown

_1146984211.unknown

_1146983099.unknown

_1146983872.unknown

_1146984060.unknown

_1146983323.unknown

_1146982948.unknown

_1146983039.unknown

_1146982918.unknown

_1146981585.unknown

_1146982455.unknown

_1146982548.unknown

_1146982853.unknown

_1146982521.unknown

_1146982238.unknown

_1146982254.unknown

_1146981616.unknown

_1146980323.unknown

_1146981012.unknown

_1146981057.unknown

_1146981584.unknown

_1146981029.unknown

_1146980967.unknown

_1146980995.unknown

_1146980704.unknown

_117796952.unknown

_159408760.unknown

_1146978933.unknown

_1146979001.unknown

_1142359591.unknown

_117907272.unknown

_114124584.unknown

_114255968.unknown

_117735208.unknown

_113855944.unknown

