
An Architecture for Publishing and Distributing Service Components
in Active Networks

N. DRAGIOS, C. HARBILAS, K. P. TSOUKATOS, G. KARETSOS

School of Electrical and Computer Engineering
National Technical University of Athens

GREECE

Abstract - Application level active networks provide a way of transforming the current network infrastructure
into one where new services and protocols are more easily adopted without the need for standardization. In this
paper we deal with an application layer active networking system, and address the problem of publishing and
distributing software components, provided by trusted service providers, throughout the active network. We
propose a distribution architecture that is based on forming a network of dedicated servers providing Content
Distribution Network (CDN) functionality; this leads to smaller response times to client requests and decreased
network traffic. Experimental results from a test network configuration illustrate the benefits obtained from
exploiting CDN capabilities, and support the viability of our approach.

Keywords – Active and programmable networks, content distribution.

1 Introduction
The evolving technology of Active Networking
(AN) aims at changing the way computer networks
behave. Activeness in networks is an idea proposed
in [13], and seeks to address the problem of slow
adoption of new technologies and standards, as
well as the slow evolution of network services.
Activeness entails injecting programmability into
the network infrastructure, so as to allow the rapid
introduction of many new services inside the
network.

In this paper we focus on an application level
active network. Here, processing of various data
flows within the network takes place at the
application layer (not at the network layer).
References [6, 7, 9] discuss an Application Level
Active Networking system (ALAN), which has
been implemented to provide users with a flexible
framework for supporting active services within
traditional network boundaries. Software
components implementing these services, called
proxylets, can be loaded onto service nodes, called
active servers, where they are executed on demand.
This approach is similar in spirit to the Active
Services framework of [1]. In this context, the
distribution of service components, provided by
trusted third parties, throughout the active network,
is of considerable interest, for it directly affects
response times to client requests and the volume of
network traffic. We herein attempt to address this
issue. Consequently, our focus is not on the AN per

se, but on the network architecture used for
publishing and distributing the service components
throughout the active network, so as to better
support the desired active functionality. We note
that the idea of building Content Distribution
Networks (CDNs) for enabling speedy,
uninterrupted, and reliable access to web content
may well fit in an application layer active
networking environment, where service
components are requested from specific web
servers. We thus exploit the CDN concept to
present a distribution mechanism that implements
part of a CDN’s functionality. The proposed
architecture has been tested, behaves as desired,
and leads to smaller response times to client request
and decreased network traffic.

The paper is organized as follows: In Section 2
we describe the structure of the particular
application level active network under
consideration. In Section 3 we present the
architecture for distributing and publishing service
components; this is based on forming a Proxylet
Distribution Network of servers. In Section 4 we
report experimental results from a test network
configuration which illustrate the benefits obtained
from applying CDN technology and support the
viability of this approach.

2 An application level active network
The application level active networking system
presented in this section was developed in the

context of the European Commission IST project
ANDROID (Active Network Distributed Open
Infrastructure Development) [5] and borrows from
the ALAN system discussed in [6, 7, 9].

In ALAN, clients can place proxylets onto
service nodes, and execute them on demand. These
nodes provide an Execution Environment for
Proxylets (EEP), allowing these proxylets to be run.
Requests can be sent to the EEP to load a proxylet,
referenced by a URL, and the node will load the
proxylet subject to checking the permissions,
validity and security. Proxylets can be downloaded
from a number of different sources, known as
Independent Software Vendors (ISVs), and run on
an EEP. In our approach, proxylets exist as Jar
files, containing Java classes placed on a WWW
server and can be referenced via its URL. They are
self-describing, so that they can be used effectively
in a dynamic environment. This is achieved by
specifying appropriate proxylet metadata,
expressed in XML, which include the proxylet
functional characteristics, their facilities for
communicating with other components and the
corresponding security policies.

3 Publishing and Distribution of
Proxylets
In this section we discuss the content distribution
mechanism used for publishing and distributing the
service components, and present in detail its
architecture.

3.1 Content Distribution Network (CDN)
A CDN is an independent network of dedicated
servers that web publishers can use to distribute
their contents throughout the Internet [4]. Basic
mechanisms supported by a CDN are caching, with
all the advantages it offers, transparent routing of
request to a server that can satisfy the request, and
securing of the contents from modification. A CDN
infrastructure can be divided in three main
components: (a) the redirection infrastructure, (b)
the content delivery infrastructure and (c) the
distribution infrastructure [3]. The first one consists
of the mechanisms utilized by the CDN to redirect
the client request towards a server that contains a
copy of the requested object. The second one
consists of a number of servers, which deliver the
requested objects and behave as content providers.
Finally, the third one includes mechanisms for

moving contents from the origin server to the
servers of the content delivery system.

Our effort is focused on building an independent
network of servers that implements part of the
functionality of a CDN. We call this network a
Proxylet Distribution Network (PDN). The PDN
distributes the metadata of the available services,
along with the actual services, i.e., the software
components implementing those services. Those
services are offered by ISVs, through web servers
providing the proxylets. The hosts comprising the
network, which provides CDN-like functionality,
are called Proxylet-Brokers (PBs). These hosts
serve as brokers, for they mediate between the
clients and the content providers to inform the
former about what services are available and bring
them close to the latter in a transparent way.

In our approach, one PB is located in each
administrative domain, where one or more active
servers may exist. PBs could also be placed
anywhere in the network, since their services are
quite independent from any other procedure. The
gathering and distribution of information about
services could be seen as an off-line process,
similar to the creation of a VPN on our AN, so PBs
do not depend on any other component of the AN.
Their network is built independently and its
purpose is to serve the clients of the AN. However,
PBs need to be close to active servers, where the
proxylets are loaded and executed, and close to
clients, who need to have quick access to
information about the services available on the
network. Guided by these considerations, we
decided to place one PB in each administrative
domain, so that they are as close as possible to
where their services are needed.

3.2 Building the Proxylet Distribution
Network

The Proxylet Distribution Network (PDN) is built
in a step-by-step manner. The only information a
new PB needs in order to join the PDN is the IP
address of another PB that is already a member of
the PDN. To this end, each time a new PB is
launched at least one IP address of some other PB
is passed to the new PB by the PDN administrator.
The PDN administrator is responsible for making
the IPs of participating PBs available to any one
interested. Thus, a new PB contacts a member of
the PDN and follows a join process. This takes
place as follows: (a) the member of the PDN

accepts the IP address of the new PB and sends him
the list of all IP addresses of the PBs participating
in the network, (b) the member of the PDN also
sends all information it has, if any, about services
provided by ISVs in this network; what is actually
sent to the new PB is the proxylet metadata.

After this join process, all PBs in the PDN,
including the new one, are aware of the services
available. Then, the new PB contacts all other
members of the PDN and identifies itself; i.e., he
sends his IP address to all other PBs, so that they
add the new PB in their list of members of the
PDN. The end result is a completely interconnected
network of PBs, the Proxylet Distribution Network.

Using the aforementioned procedure, PBs may
join or leave the PDN as needed, no matter their
number. Whenever a new PB comes in, it informs
the rest of the PDN about his arrival, whereas if
some failure occurs and a PB cannot be contacted,
it is removed from the list of members of the PDN.
Thus, any number of PBs can access the PDN at
any time, making the network of brokers a dynamic
set that shrinks and stretches in an autonomous
manner.

3.3 Proxylet metadata publishing
The next step is to see how the PDN is populated
with proxylet metadata provided by ISVs. During
this phase a new ISV presents itself to the PDN by
contacting the closest PB in order to publish the
proxylets it provides. The new ISV sends all
proxylet metadata to the PB it contacted as a
number of XML files, each one representing one
proxylet. Now that these metadata are present on at
least one network node, the PDN should distribute
them across all PBs. The PB reached by the ISV
contacts every PB of the PDN separately, and in
turn distributes the metadata received from the ISV.
After that, all PBs have the same view of the
available services (proxylets) and associated
metadata describing them.

Given that one PB resides in every
administrative domain, where clients have access to
the network and request services from, the
gathering of proxylet metadata information close to
the client results in a quick browsing of the
available services. If the PDN facility were not in
place, a client would need to know and query all
remote ISVs, in order to find out if they own the
required service or not. The difference in response
times between these two cases is made apparent in

Section 4, and the faster response gained from the
PDN is what renders it important and necessary.

Although the replication of all XML files at all
nodes of the PDN seems to be inefficient and
consuming both of bandwidth and disk space, this
is not really the case. Firstly, most of these file
transfers are performed off-line, without
aggravating the traffic of the actual active network,
and, secondly, the size of these files is quite small,
allowing them to be stored at all nodes of the PDN.

3.4 Service component request
The client component decides what service
components an application needs, and asks the
PDN to find and bring them close to him. The
client is presented a list of all available proxylets,
and their main characteristics, so that he selects the
most appropriate service for his application. To this
end, the client contacts the closest PB – the one
residing at the same domain - and receives a list of
all proxylets provided by the PDN, along with their
metadata. The client either asks to check all
metadata coming with a service, or requests the
downloading of the service in his administrative
domain. In the former case the PB responds with a
complete list of attributes-values pairs contained in
the XML file. In the latter case the PB establishes a
URL connection to the ISV providing the proxylet
requested by the client, and fetches the Jar file, i.e.,
the actual code for the service. When the Jar file is
fetched it is cached locally and made available to
any application, run by a local user, to use it by
loading it to an active server. The PB that has just
fetched a service from an ISV informs the rest of
the PDN about this action, so that all other PBs
know that the fetched service is available not only
at the appropriate ISV, but also elsewhere in the
PDN.

Smaller response times, reduced network traffic
and reliability are achieved by this approach. Any
other client can directly fetch an already cached
service without downloading it from the ISV.
Moreover, suppose a client contacts a PB and
requests a service that is not cached locally in the
PB. If this service is cached elsewhere in the PDN,
it can be fetched directly from the PDN instead of
the ISV. This leads to considerable reduction of
traffic at the ISV web server, as well as continuous
reliable provision of the service, even when the ISV
is inaccessible because of a network failure.

3.5 Update of distributed metadata
One of the most important issues in a network such
as the one described above is keeping up-to-date all
the metadata it hosts. There is a need to develop a
mechanism to publish possible changes on the
proxylets provided by ISVs. When a new proxylet
appears in an ISV site, or an existing proxylet is
modified, the ISV announces this change to the PB
it had initially contacted to publish his services.
The ISV sends the new XML file to the PB, who in
turn distributes this XML file to all nodes of the
PDN. Upon receiving the new XML file, each PB
updates its structures where proxylet associated
information is stored. It may also be the case that
the previous version of the software component
represented by the replaced metadata has been
downloaded recently. Thus, in order for the new
metadata to be compatible with the corresponding
Jar file, the PB should re-fetch the proxylet from
the appropriate ISV.

4 Performance evaluation
In order to quantify the benefits obtained by the
proposed PDN approach, we measure the
performance of two experimental network
topologies. In both topologies a client is assumed to
issue requests for locating and fetching certain
proxylets. A PDN infrastructure is available only in
the second network topology

4.1 The network topologies
Both network topologies consist of 4 web servers,
which act as ISVs, and are located at the addresses
www.di.uoa.gr (ISV 1), theseas.softlab.ntua.gr
(ISV 2), www.glue.umd.edu (ISV 3) and
abs.telecom.ece.ntua.gr (ISV 4). ISV 3 is located in
the U.S., while the other ones are located in Greece.
Each ISV provides 7 proxylets (Jar files) of
different sizes, so that there are, in total, 28
available proxylets. The selected sizes are 20, 50,
100, 250, 500 KB, 1 MB and 1.5 MB. Each ISV
also provides 7 XML files, whose size is fixed at 6
KB, each one containing the metadata describing
the corresponding proxylet. The client requesting
the proxylets is located in the domain ntua.gr (same
domain as ISVs 2 and 4). Figures 1 and 2 depict the
two experimental topologies.

ISV 1: www.di.uoa.gr

ISV 4: abs.telecom.ece.ntua.gr CLIENT

2

4 1

3

ISV 3: www.glue.umd.edu

ISV 2: theseas.softlab.ntua.gr

Fig. 1: Non-PDN topology

CLIENT

ISV 1: www.di.uoa.gr

ISV 3: www.glue.umd.eduISV 4: abs.telecom.ece.ntua.gr

ISV 2: theseas.softlab.ntua.gr

PDN

Fig. 2: PDN topology

4.2 Service establishment in the non-PDN
topology

In this topology, the client maintains a list of ISVs
providing proxylets, and queries them in order to
locate the desired proxylet. The proxylet search is
carried out with the help of metadata, which
include the address of the ISV where it is located.
Initially, the client selects an ISV from his list,
either based on some policy, or in random, or in
sequence. In our experiment the client scans the
ISVs sequentially, in the order ISV 1, 2, 3, 4.
Starting from ISV 1, the client issues 7 HTTP
requests to get all metadata (XML files) available
from ISV 1. After checking the metadata, if he
finds the desired proxylet, he issues one more
HTTP request to ISV 1, to retrieve the proxylet
code (Jar file). In case the client does not find the
desired proxylet in ISV 1, he proceeds with ISV 2,
if he fails again he contacts ISV 3, and finally, if
necessary, ISV 4. We measure the total response
time, defined as the time that elapses from the
moment the client issues the requests for the XML
files of ISV 1, until the moment the desired Jar file
is downloaded. We repeat our measurements for all
cases where the desired proxylet is each one of the
28 proxylets provided by all ISVs.

http://www.di.uoa.gr/
http://www.glue.umd.edu/
http://www.abs.telecom.ntua.gr/

4.3 Service establishment in the PDN
topology

In the PDN topology, the client does not search for
proxylets by connecting to ISVs directly, but
instead relies on the functionality provided by the
PDN. The client contacts the PB, who resides in the
same domain (ntua.gr) as the client, and hosts all
metadata from all ISVs (28 XML files). The
connection between the client and the PB is based
on socket communication; hence it is faster than
HTTP. After receiving and parsing the XML
metadata, the client requests that the desired
proxylet be fetched. The PB subsequently makes
one HTTP request to the appropriate ISV providing
the proxylet, retrieves the Jar file and sends it back
to the client, again through a socket connection.
The PB also caches the downloaded Jar file. As in
the previous experiment, we measure the resulting
total response time until the Jar file is downloaded.
We also measure the response time for the situation
where the requested proxylet is already cached in
the PB, in which case the ISV does not need to be
contacted at all. This process is repeated for all 28
available proxylets.

4.4 Experimental results and discussion
We collect the response times obtained from the
experiments described above in Fig. 3. The top left
plot shows the response times for proxylets located
in ISV 1, vs. the proxylet file size, the top right plot
corresponds to proxylets located in ISV 2, etc.

The three lines in each plot represent the
response times for downloading a proxylet, under
the following three scenarios:

a) Non-PDN topology: The client sequentially
scans ISVs 1 through 4 using HTTP, in order to
find and download the appropriate proxylet.
(Scenario labelled as Direct-ISV, in Fig. 3).

b) PDN topology: The client requests the
proxylet via a PB participating in the PDN, who, in
turn, fetches the proxylet from the appropriate ISV.
(Scenario labelled as PB-ISV).

c) PDN topology: The client requests a
proxylet that has already been cached by the PB.
(Scenario labelled as PB-cache).

We observe that if the desired proxylet is found
in either ISV 1 or ISV 2, the response times for
scenario Direct-ISV are only slightly lower than
those of scenario PB-ISV. That is, the resulting
PDN performance is very much comparable even
with the case where the client would need to

Fig. 3. (ISV 1) www.di.uoa.gr, (ISV 2)

theseas.softlab.ntua.gr, (ISV 3) www.glue.umd.edu,
(ISV 4) abs.telecom.ece.ntua.gr

directly query only one or two ISVs in order to
retrieve the proxylet. Thus, the top two plots
indicate that the overhead associated with the use
of the PDN is rather small. Next, for the proxylets
located in ISV 3, in which case scenario ISV
requires sequential scanning of ISVs 1, 2, and 3, we
see that the use of the PDN already leads to smaller
response times than those of scenario ISV. This is
due to the fact that scenario PB-ISV requires only
one HTTP connection from the PB to the ISV
where the proxylet is located, regardless of the
number of ISVs, as opposed to multiple HTTP
requests that may be necessary without the PDN.
Obviously, as the number of uccessfully contacted
ISVs increases, the response time under the Direct-
ISV scenario also increases, and significantly
exceeds that of PB-ISV. This difference between
the response times of the Direct-ISV and PB-ISV
scenarios becomes more pronounced when the
proxylet is located in ISV 4, in which case the
client needs to contact all four ISVs if no PDN is
available. It is also worth noting that the smallest
response times are achieved when the desired
proxylet is found at the PB cache, as shown by the
PB-cache lines in all four plots. The % response
time improvement under the PB-ISV scenario, as
compared to the Direct-ISV scenario, is
summarised in Table 1.

http://www.di.uoa.gr/
http://www.glue.umd.edu/

ISV 1 ISV 2 ISV 3 ISV 4
-8.43 % 2.82 % 20.21 % 74.91 %

Table 1. Response time reduction achieved by PDN

A further benefit of the PDN approach is that

finding the desired proxylet in the PB cache yields
a 70,71% response time reduction over the case
where the proxylet is fetched using HTTP from
ISV 1, i.e., the first ISV contacted by the client
under scenario ISV.

In short, the PDN approach offers better
performance than direct HTTP when the existing
ISVs are three or more. Clearly, the performance
gains of the PDN would become far more apparent
in an active network with a large number of ISVs.
This state of affairs should be typical of a realistic
environment, where an increasing number of
vendors provide their own proxylets to support add-
ons or pure new network services.

5 Conclusions

We discussed an application level active
network’s main components and key
characteristics. The need for a content distribution
mechanism to spread out the services available on
the network was documented, and our effort to
implement a dedicated network of servers to
provide part of a CDN’s functionality was
presented.

Experiments with the proposed content
distribution architecture indicate that it may well
offer a promising solution to the problem of
distribution of services in an active networking
environment. Information on services and the
services themselves are distributed across a
network of nodes placed close to users and the
active servers, where they can be easily accessed.
Reduced network traffic, quick response to
applications that use those services and caching of
those services are some of the benefits gained by
this approach.

6 References
[1] E. Amir, S. McCanne and R. Katz, “An Active
Service Framework and its Application to Real
Time Multimedia Transcoding,” Proc.
SIGCOMM’98, pp. 178-189, September 1998.
[2] K. Calvert, S. Bhattacharjee, E. Zegura and J.
Sterbenz, “Directions in Active Networks” IEEE
Communications Magazine, 1998.

[3] M. Day, B. Cain and G. Tomlinson, “A Model
For CDN Peering,” IETF Internet Draft,
http://www.alternic.org/drafts/drafts-d-e/draft-day-
cdnp-model-01.html.
[4] M. Day and D. Gilletti, “Content Distribution
Network Peering Scenarios,” IETF Internet Draft,
http://www.alternic.org/drafts/drafts-d-e/draft-day-
cdnp-scenarios-00,01,02.html.
[5] D5: Active Networking Architecture, public
document on
http://www.cs.ucl.ac.uk/research/android/
[6] M. Fry and A. Ghosh, “Application Level
Active Networking,” Fourth International
Workshop on High Performance Protocol
Architectures (HIPPARCH '98), June 1998.
[7] M. Fry and A. Ghosh, “Application Layer
Active Networking,” Computer Networks, Vol. 31,
No 7, pp. 655-667, 1999.
[8] U. Legedza, D. J. Wetherall, and J. Guttag,
“Improving the Performance of Distributed
Applications Using Active Networks”, Proc. IEEE
INFOCOM ’98, San Francisco (CA), USA.
[9] G. MacLarty and M. Fry, “Policy-based
Content Delivery: An Active Network Approach,”
Fifth International Web Caching and Content
Delivery Workshop, Lisbon, Portugal, 22-24, May
2000.
[10] I. W. Marshall and M. Banfield, “An
Architecture For Application Layer Active
Networking,” IEEE Workshop on Application Level
Active Networks: Techniques and Deployment,
November 2000.
[11] I. W. Marshall, J. Crowcroft, M. Fry, A.
Ghosh, D. Hutchison, D. J. Parish, I. W. Phillips,
N. G. Pryce, M. Sloman and D. Waddington,
“Application-Level Programmable Internetwork
Environment,” BT Technology Journal Vol. 17,
No. 2, April 1999.
[12] D. Tennenhouse, J. Smith, D. Sincoskie, D.
Wetherall and G. Minden, “A Survey of Active
Network Research,” IEEE Communications
Magazine, Vol. 35, No. 1, pp. 80-86, January 1997.
[13] D. Tennenhouse and D. Wetherall, “Towards
an Active Network Architecture,” Computer
Communication Review, Vol. 26, No. 2, pp. 5-18,
April 1996.
[14] D. Wetherall, U. Legedza and J. Guttag,
“Introducing New Internet Services: Why and
How,” IEEE Network Magazine Special Issue on
Active and Programmable Networks, July 1998.

http://www.alternic.org/drafts/drafts-d-e/draft-day-cdnp-model-01.html
http://www.alternic.org/drafts/drafts-d-e/draft-day-cdnp-model-01.html
http://www.alternic.org/drafts/drafts-d-e/draft-day-cdnp-scenarios-00,01,02.html
http://www.alternic.org/drafts/drafts-d-e/draft-day-cdnp-scenarios-00,01,02.html
http://www.cs.ucl.ac.uk/research/android/

	Introduction
	An application level active network
	Publishing and Distribution of Proxylets
	Content Distribution Network (CDN)
	Building the Proxylet Distribution Network
	Proxylet metadata publishing
	Service component request
	Update of distributed metadata

	Performance evaluation
	The network topologies
	Service establishment in the non-PDN topology
	Service establishment in the PDN topology
	Experimental results and discussion

	Conclusions
	References

