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Abstract: - Nowadays the protection of information against unauthorized disclosure, transfer, modification, or destruction, whether accidental or intentional, is a very important matter that concerns the information society. The scope of this paper is the development of a Contactless Smartcard protocol which can operate securely and effectively, under a variety of attack techniques. The system under design implements a novel mutual authentication procedure between a Contactless Reader and a Smartcard, calculates securely the corresponding parameters, and protects the system against several malicious attacks. The system can be used in a wide spectrum of applications that require simplicity, ease of use, long life, low cost and portability. Suitable applications could be, Electronic Payments, Public Transport Electronic Fare, Highway toll payments, Medical Applications, and Access Control.
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1   Introduction

Contactless Smartcards represent a particular type of Smart Cards, with a very convenient usage, and it is expected that they will expand their application capabilities in a variety of different fields, including Electronic-money, the Public Transportation, etc. However, this type of Smartcards is subject to several constraints, such as bandwidth availability, memory space, and computational effort. These limitations make the execution of complicated procedures, such as data processing under the prism of Public Key Cryptography, extremely difficult. However the solution to these matters, can be given using Elliptic Curves, which due to their unique capabilities, match perfectly to the constraints posed by Contactless Smartcard’s and their applications. Elliptic Curve Cryptography can provide the strongest security per Binary digit, in comparison to any other already proposed asymmetric Cryptosystem.

[image: image1.wmf]23

(1)

yxaxb,

=++

[image: image2.png]


This paper focuses on the implementation of Cryptographic applications using Elliptic Curves, in order to minimize the overall cost and increase the efficiency in terms of computational speed and security. We focus on the implementation of optimized techniques in Elliptic Arithmetic and we propose a Mutual Authentication and key agreement Protocol, between, a Contactless Smartcard and a Terminal. The selected keys are being published in a way so as to avoid a -man in the middle- attack, without the use of certificates. The whole idea is based on the calculation of two ephemeral keys, one for each entity, that perform a binding between each transmitted message and the identity of the corresponding sender. In addition we propose the generation of a special parameter called transaction’s descriptor together with a counter, in order to ensure message’s integrity. 
2   Elliptic Curve Cryptography

2.1
Finite Fields

We provide a brief introduction to finite fields. A finite field F consists of a finite set of elements together with two binary operations, called addition and multiplication that satisfy certain arithmetic properties. The order of a finite field is the number of elements in the field. There exists a finite field of order q, if and only if q is a prime power. If q is a prime power, then there is essentially only one finite field of order q; this field is denoted by Fq. There are, however, many ways of representing the elements of Fq. If p=qm where q is a prime and m is a positive integer, then p is called the characteristic of Fq and m is called the extension degree of Fq. Most standards specifying elliptic curve cryptographic techniques restrict the order of the underlying finite field to be an odd prime (q=p) or a power of 2 (q=2m). In this paper we are using a Fq field [1].

2.2 Finite Field Fq
Let p be a prime number. The finite field Fp, called a prime field, is comprised of the set of integers {0, 1, 2,..., p-1} with the following operations [7]:
Addition If a, b ( Fp, then a+b=r, where r is the remainder when a+b is divided by p and 0≤ r ≤ p-1. 

Multiplication: If a, b ( Fp, then a(b=s, there s is the remainder when a(b is divided by p and 0≤ r ≤ p-1.
Inversion: If a is a non-zero element in Fp, the inverse of a modulo p denoted a-1, is the unique integer c ( Fp for which a(c =1 

2.3 Elliptic Curves over Fp

We give a quick introduction to the theory of elliptic curves. Chapter 6 of Koblitz’s book [7] provides an introduction to elliptic curves and elliptic curve systems.
Let p > 3 be an odd prime. An Elliptic Curve E over Fp is defined by an equation of the form
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where a, b ( Fp and 4α3+b ≠ 0 (mod p). The set E(Fp) consists of all points (x, y), x, y ( Fp, which satisfy the definition equation (1), together with a special point O called point at infinity.

Addition Formula: There is a rule called the chord and tangent rule, for adding two points on an Elliptic Curve E(Fp) to give a third elliptic curve point. Together with this addition operation, the set of points E(Fp) forms a group with O serving as its identity. However, the addition formula is best explained geometrically. 

Let P= (x1, y1) and Q=(x2, y2) be two distinct point on an elliptic curve E. Then the sum of P and Q denoted R=(x3, y3) is defined as follows. Draw the line through P and Q; this line intersects the elliptic curve in a third point. Then R is the reflection of this point in the x-axis. 
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Fig.1. Geometric Description of an elliptic addition
Doubling Formula: If P=(x1, y1), then the double of P, denoted as R is as follows. First draw the tangent line to the elliptic curve at P. This line intersects the elliptic curve in a second point. Then R is the reflection of this point in the x-axis. 
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   Fig.2. Geometric Description of the elliptic doubling
The following algebraic formulae for the sum of two points and the double of a point can now be derived from the geometric description.
1. P + O = O + P = P for all P ( E(Fp).
2. If  P= (x, y) ( E(Fp) then (x, y) + (x, -y) = O.
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Point addition. Let P= (x1, y1) ( E(Fp) and Q=(x2, y2) ( E(Fp), where P ≠ ±Q. Then P+Q=(x3, y3), where

4. Point Doubling. Let P= (x1, y1) ( E(Fp), where P ≠ -P. Then 2P = (x3, y3) where


2.4 Elliptic Curve Discrete Logarithm Problem
The primary reason for the attractiveness of ECC over RSA and discrete log (DL) public-key systems is that the best algorithm known for solving the underlying hard mathematical problem in ECC (ECDLP) [11] takes fully exponential time. On the other hand, the best algorithms known for solving the underlying hard mathematical problems in RSA and DL systems take sub exponential time. This means that the algorithms for solving the ECDLP become infeasible much more rapidly as the problem size increases than those algorithms for the integer factorization and discrete logarithm problems. For this reason, ECC offers security equivalent to that of RSA [12] and DL systems, while using significantly smaller key sizes.
The security of ECC relies on the hardness of solving the ECDLP, which states that:

If E is an elliptic curve over a finite field Fq, P is some point of E(Fq) of n order and Q a point in the group generated by P then is hard to find an integer t so that  0≤ t ≤ n-1 such that Q = t(P. 

Based on the statement above we define Q to be the public key and t the private one. 

2.5 Speeding Up ECC Calculations Using SDR.
The Double and Add algorithms [8] is the simplest efficient method for scalar multiplication. Since ECDLP is defined through a scalar multiplication the double and add algorithm seems to match perfectly. The idea is to compute k∙P as a sum of some points Pi = 2i P. Which Pi’s are summed is determined by the multiplier k’s binary representation: k∙P = (∑ki2i)P.
In the double and add algorithm the number of additions needed depends on the number of 1’s in k’s binary representation. One way to make the method more efficient is to modify k in such a way that its representation has more 0’s. This can be done using the Signed Digit Representation (SDR) for k where also -1’s are used. 

This is best described using a so-called example: 7=22 + 21 + 20 = (111)2 = (1001)2 = 23 – 20, where 1 is -1. So assuming that k is already given in SDR form we present the following Algorithm 1.

Algorithm 1.
R ← O
If k0 = 1 then R ← P

If k0 = -1 then R ← -P 

For i =1 to n-1 do


P ← 2P



If ki = 1 then R ← R + P



If ki = -1 then R ← R - P

Return R
As in the double and add algorithm we need n-1 doublings and w(k) – 1 additions. However, in this case we have w(k) ≤ |(n+1)/2)|. Moreover we need to compute inverses –P. In the elliptic curve case the cost of this is negligible compared with the cost of one addition. In our approach we are using Algorithm 1.

2.6 Constructing Secure Elliptic Curves.
It is widely believed that the elliptic curve discrete logarithm problem is hard to computationally solve when the base point P has large prime order. The known methods for solving the ECDLP are:
· The Pohlig-Hellman algorithm [14].

· Pollard's methods [15]. 
· The Menezes- Vanstone attacks [9]. 

· The Frey-Rueck attack [5]. 

· The attacks on anomalous elliptic curves due to Semaev, Satoh-Araki and Smart. [1]

· Weil Descent (For some finite fields) [5].
Of the above methods, only the anomalous curves attack runs in polynomial time. The MOV, Frey-Rueck and Weil descent [5] methods are (at their fastest) subexponential in complexity. In our approach we follow the method of Complex Multiplication [11] for generating cryptographic suitable secure elliptic curves and preventing any security threats.

3 Authentication and Key Agreement Protocol 
3.1 Proposed Protocol’s Overview.
In this section we will provide a brief description of our proposed protocol that can be defined as a challenge – response protocol for mutual, dynamic authentication together with a key agreement establishment. It involves two participating entities, the contactless smartcard (Csc) and the contactless Reader (R). We assume that entity R possesses a Master key that is uniquely defined for every card [11] and can identify certain card characteristics such as the particular type of the card, the producing company etc. It is obvious that since the particular key contains very sensitive information it must be safely kept and shielded from any unauthorized access. This can be accomplished either by storing the Master Key in R’s non Volatile memory, or in a Smartcard placed inside R [6].

The construction of a smartcard is state oriented procedure [2]. During a particular state, called the Personalization Phase, the smartcard is supplied with a unique, personal number called the Identification Card Number [2]. This number along with the Master Key is fed as input to a Diversification Algorithm to produce the Diversify Key DF which is then stored in the Smartcard’s ROM. The DF will be the vital component for our proposed authentication and key establishment procedure. However we must emphasize, that the Master Key is never stored in the card’s memory, but it only participates in the generation procedure of the DF. In other words it is impossible for any user to extract any kind information concerning the Master Key from the smartcard itself. On the contrary we assume that only the authorized producing company knows the actual value of the Master Key and also that it cannot be compromised.

3.2 The Proposed Protocol in detail
Keeping in mind all of the above, we will describe the exact procedure that both entities must follow in order to successfully accomplish the proposed protocol. 
1. Entity R initiates the procedure by selecting a prime number p and defining the underlying prime field Fp. It then generates a secure Elliptic Curve E over Fp according to the CM method [11], selects a proper Base Point P ( E(Fp) of order n and performs a security check [11] on the selected parameters [p, α, b, P, n, h] to ensure that all necessary security restrictions are satisfied. If that is confirmed, R selects a random number k, 0<k<order(P) and performs Q=k∙P, according to Algorithm 1. By performing this elliptic multiplication R produces its public (Q) and the private key (t) denoted as, KpubR and KpriR respectively.
2. According to this step entity R transmits a message to entity Csc containing a specific group of components. The transmitted message includes the Base point P, its order n, and the parameters α, b, and q of the Elliptic Curve. As you can notice R’s public key is not transmitted during this step since no identification of the other participating party has yet taken place. This way we aim to eliminate the threat of a man-in-the-middle attack where a non legitimate entity intercepts the transmitted original message and replaces the included public key with its own, in order to manipulate the receiving party.
3. In step 3, entity Csc receives the transmitted message and verifies the validity of all the included components, by performing a number of security tests [10], [11], [6]. After successfully completing all of the security tests, it selects an integer t, 0<t<order(P) and performs W=t∙P where W is Csc‘s public key, denoted as KpubCsc and t is the secret one, denoted as KpriCsc. Then Csc calculates:
         R1=Hashedsha-1(DF×α,p)×KpubCsc 
where R1 is also a point on the selected EC which will act as the transaction’s ephemeral key and SHA-1 is the hash algorithm [13]. Since the DF must be transmitted over the air, it is vital to ensure its privacy. By calculating R1, we force DF to participate in an elliptic multiplication and so its transmission is considered safe. Finally Csc transmits a message containing KpubCsc, R1 and the identification card number denoted as IDCard. 
4. Entity R on the other hand receives the message [IDCard, R1, KpubCsc], and checks for the validity of R1. As previously mentioned, R is the only entity that can successfully calculate all necessary components for the precise reconstruction of R1. So R generates the DF using the Master Key, gathers [α,p, KpubCsc] and calculates R1 which is now denoted as R1R. R now performs an equality check between R1 and R1R (i.e. R1R = R1). If this yields a successful result R generates a random integer R3, 0<R3<order(P) that will act as the transaction’s descriptor. That means that R3 will remain valid only for the particular transaction and that it will accompany all transmitted messages after the completion of the key establishment procedure. Now R calculates R4 as followed:
R4=KpubR×Hashsha-1((Divkey×α,p)×R3× Rnum).
Quantity R4, as R1 for Csc, is an ephemeral key responsible for binding the response of R with its identity and no other entity, except Csc and R, has the ability to successfully calculate it. After R4 is calculated, R encrypts R3 and its own serial number denoted as Rnum, according to the EC Menezes Vanstone [10] Cryptosystem using Csc’s public key KpubCsc and transmits the message [R4, enc(R3), enc(Rnum), KpubR] to Csc.
5. Entity Csc receives the transmitted message from R, and verifies the validity of KpubR, and R4 by performing an explicit public key validation [11]. In case this key validation fails, the protocol is unsuccessfully terminated at this point. Elsewhere Csc decrypts enc(R3) and enc(Rnum) using KpriCsc, to obtain R3 and Rnum. The decrypted quantities, together with R’s public key, enable entity Csc to reconstruct R4 that will now be denoted as R4Csc. After completing the calculation of R4Csc, Csc checks whether R4Csc is equal to R4. If that is true, entity Csc verifies R’s identity and from now on, every exchanged message will be encrypted using the appropriate public key (KpubR, or KpubCsc) and it will be followed by the transaction’s descriptor R3 and a counter in the form enc(msg, R3, cntr). The use of cntr is obligatory in order to immune the replay attack hazard. If the cntr was not included in every exchanged message then everyone would have the ability to send over and over again the same message, earning time and perhaps enough responses to extract important information. Now though, since every transmitted message must contain a specific counter cntr, every opponent aiming to perform a replay attack must select the exact cntr value that the receiving entity is waiting for, otherwise the message will be immediately discarded. At this point we have to denote that the counter is different for each entity, uses a default starting value, and is updated after every transmission.
6. This is the last step. Having secured the communication channel, the authentication and key agreement protocol is terminated. From now on every transmitted message will be in the form enc(msg, R3, cntr), where the encryption is performed by the two public keys depending on the receiving entity.
In Fig. 3 we demonstrate the proposed protocol so that it can be better understood.

Fig.3. Proposed Protocol’s Graphical Representation

4   Experimental test bed and Results 
4.1 Testbed

The proposed protocol has been developed in Java 2.0 for JavaCards using the Sm@rtCafé Professional Toolkit 2.0. We also used C++ and the MIRACL library for the secure Elliptic Curve generation. 

4.2 Conclusions and Results. 
After completing the detailed description of our protocol we now ready to present its main advantages.
In most proposed key establishment protocols no precaution is taken for the -man in the middle- attack. Since no identification is performed before a public key is sent to an entity, the public key while is being transmitted can be altered or replaced causing various security problems. In other words, a malicious entity can intercept a genuine transmitted message and inject a weak public key without the receiving entity being able to detect it. In our case we manage to overcome this problem by introducing the ephemeral keys R1, and R4 that can uniquely bind the identity of the transmitting party with the corresponding public key and ensure that all transmitted data are not altered during their transmission. Moreover we avoid transmitting a public key to any entity whose identity has not been proven or verified.
In addition by introducing quantity R3 as the transaction’s descriptor, we can maintain message’s integrity during a transaction. That is if an opponent tries to intercept or alter a message, he must also include the correct value of R3 in the new message, otherwise the receiving party cannot be convinced for the reliability of the transmitted message. 

A very important aspect of our protocol is the introduction of the cntr. This quantity helps us to overcome replay attacks since without cntr it would be very confusing for the receiving entity to distinguish an original message from its copy. Each message holds a specific value of the cntr, which is incremented after every transmission. 
Another important factor is the use of Elliptic Curve Cryptosystems, and not some other cryptosystem, we managed to increase the efficiency of our protocol since as we have already mentioned Elliptic Curves Cryptosystem Elliptic Curves Cryptosystem can provide the strongest security per Binary digit, in comparison to any other already proposed asymmetric Cryptosystem. To prove this speculation we provide two tables where the great difference between the RSA [12] and EC version of our protocol is obvious.
	RSA type
	RSA 1024
	RSA 512

	p
	5.448 ms
	701 ms

	q
	5.448 ms
	701 ms

	N=p∙q
	<1 ms
	< 1ms

	RSA time
	10.896 ms
	1402 ms

	Public Key
	90 ms
	71 ms

	Private Key
	40 ms 
	10 ms

	Encryption
	460 ms
	160 ms 

	Decryption
	901 ms
	314 ms

	Time 
	1.491 ms
	555 ms

	Total Time
	12.297 ms
	1.957 ms


            Table 1. Protocol - RSA calculation times.
	EC type
	EC 161
	RSA 81

	EC gen/tion
	430 ms
	191 ms

	Public Key
	10 ms
	1 ms

	Private Key
	<1 ms
	<1 ms

	Encryption
	75 ms
	40 ms 

	Decryption
	60 ms
	41 ms

	Time 
	145 ms
	81 ms

	Total Time
	575 ms
	172 ms


            Table 2. Protocol - ECC calculation times.
5   Future Work
Our future goal focuses on proposing a mechanism for managing the Smart Card's non volatile memory, in order to enhance the efficiency of the security protocol. This way, we will be able to account for the lack of electrical power, invoked, either by the Smartcard’s bad topology in the Magnetic Field, or from the interference by an unauthorized person who might wants to obtain important information.
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